Methods for sparse analysis of high-dimensional data, II

Rachel Ward

May 23, 2011

300 by 300 pixel images $=90,000$ dimensions

High dimensional data with low-dimensional structure

Chart 1: Monthly Stock Price Movements Over 5-Yr Period

We need to recall some

■ Euclidean geometry
■ Statistics
■ Linear algebra

Euclidean Geometry

- An element of \mathbb{R}^{n} is written $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$\square \mathbb{R}^{n}$ is a vector space:

$$
\begin{aligned}
& ■ \mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right) \\
& ■ a \mathbf{x}=\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right)
\end{aligned}
$$

$■ \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{n} x_{j} \mathbf{e}_{j}$ where

$$
\begin{aligned}
& \mathbf{e}_{1}=(1,0, \ldots, 0), \quad \mathbf{e}_{2}=(0,1, \ldots, 0), \ldots \\
& \mathbf{e}_{n}=(0,0, \ldots, 1) \\
& \text { are the standard basis vectors. }
\end{aligned}
$$

- The inner product between \mathbf{x} and \mathbf{y} is:
$\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}=\sum_{j=1}^{n} x_{j} y_{j}$
■ $\|\mathbf{x}\|:=\langle\mathbf{x}, \mathbf{x}\rangle^{1 / 2}=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}$ is the Euclidean length of \mathbf{x}. It is a norm:
- $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=0$.
- \|ax $\|=|a|\| \mathbf{x} \|$
- triangle inequality: $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$
- $\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|x\|\|y\|}=\cos (\theta)$
$■ \mathbf{x}$ and \mathbf{y} are orthogonal (perpendicular) if and only if $\langle\mathbf{x}, \mathbf{y}\rangle=0$

Statistics

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

- Sample mean: $\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}$
- Standard deviation:

$$
s=\sqrt{\frac{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}{n-1}}=\frac{1}{\sqrt{n-1}} \sqrt{\langle\mathbf{x}-\overline{\mathbf{x}}, \mathbf{x}-\overline{\mathbf{x}}\rangle}
$$

■ Variance: $s^{2}=\frac{1}{n-1}\langle\mathbf{x}-\overline{\mathbf{x}}, \mathbf{x}-\overline{\mathbf{x}}\rangle=\frac{1}{n-1}\|\mathbf{x}-\overline{\mathbf{x}}\|^{2}$

- Suppose we have p data vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right\}$
- Covariance: $\operatorname{Cov}\left(\mathbf{x}_{j}, \mathbf{x}_{k}\right)=\frac{1}{n-1}\left\langle\mathbf{x}_{j}-\overline{\mathbf{x}}_{j}, \mathbf{x}_{k}-\overline{\mathbf{x}}_{k}\right\rangle$
- Covariance matrix for 3 data vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$:

$$
\mathcal{C}=\left(\begin{array}{ccc}
\operatorname{cov}\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \operatorname{cov}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \operatorname{cov}\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \\
\operatorname{cov}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & \operatorname{cov}\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & \operatorname{cov}\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right) \\
\operatorname{cov}\left(\mathbf{x}_{3}, \mathbf{x}_{1}\right) & \operatorname{cov}\left(\mathbf{x}_{3}, \mathbf{x}_{2}\right) & \operatorname{cov}\left(\mathbf{x}_{3}, \mathbf{x}_{3}\right)
\end{array}\right)
$$

- Covariance matrix for p data vectors has p columns and p rows

Chart 1: Monthly Stock Price Movements Over 5-Yr Period

What does the covariance matrix look like?

Linear Algebra

Eigenvectors

Suppose \mathcal{A} is a $p \times p$ matrix. If $\mathcal{A} \mathbf{v}=\lambda \mathbf{v}$, then we say \mathbf{v} is an eigenvector of \mathcal{A} with eigenvalue λ.

Are these eigenvectors?

$$
\begin{array}{ll}
\mathcal{A}=\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right), & \mathbf{v}=\binom{1}{3} \\
\mathcal{A}=\left(\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right), & \mathbf{v}=\binom{3}{2}
\end{array}
$$

- If \mathbf{v} is an eigenvector of \mathcal{A} with eigenvector λ, then $\alpha \mathbf{v}$ is also an eigenvector of \mathcal{A} with eigenvector λ. We will always use the normalized eigenvector $\|\mathbf{v}\|=1$.
- Any real-valued and symmetric matrix \mathcal{C} has n eigenvectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ which form an orthonormal basis for \mathbb{R}^{n} (a.k.a. rotated coordinate view).

■ Any $\mathbf{x} \in \mathbb{R}^{n}$ can be expressed in this basis via $\mathbf{x}=\sum_{j=1}^{n}\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle \mathbf{v}_{j}$.
■ $\mathcal{C} \mathbf{x}=\sum_{j=1}^{n} \lambda_{j}\left\langle\mathbf{x}, \mathbf{v}_{j}\right\rangle \mathbf{v}_{j}$
■ $\mathcal{C}=\mathcal{P D P}^{-1}$ is diagonalizable:

$$
\mathcal{P}=\left[\begin{array}{ccc}
--- & \mathbf{v}_{1} & --- \\
--- & \mathbf{v}_{2} & --- \\
& \vdots & \\
--- & \mathbf{v}_{n} & ---
\end{array}\right], \quad \mathcal{D}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & & \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

Example

$$
\begin{aligned}
& \mathbf{x}=(7.5,1.5,6.6,5.7,9.3,6.9,6,3,4.5,3.3) \\
& \mathbf{y}=(7.2,2.1,8.7,6.6,9,8.1,4.8,3.3,4.8,2.7) \\
& \qquad \operatorname{cov}(\mathbf{x}, \mathbf{y})=\frac{1}{n-1}\langle\mathbf{x}-\overline{\mathbf{x}}, \mathbf{y}-\overline{\mathbf{y}}\rangle,
\end{aligned}
$$

$$
\mathcal{C}=\left(\begin{array}{cc}
\operatorname{cov}(\mathbf{x}, \mathbf{x}) & \operatorname{cov}(\mathbf{x}, \mathbf{y}) \\
\operatorname{cov}(\mathbf{x}, \mathbf{y}) & \operatorname{cov}(\mathbf{y}, \mathbf{y})
\end{array}\right)=\left(\begin{array}{ll}
5.549 & 5.539 \\
5.539 & 6.449
\end{array}\right)
$$

Figure: $\mathbf{x}-\overline{\mathbf{x}}$ vs. $\mathbf{y}-\overline{\mathbf{y}}$

Eigenvectors / values for \mathcal{C} :
$■ \mathbf{v}_{1}=\binom{.6780}{.7352}, \lambda_{1}=11.5562$
$■ \mathbf{v}_{2}=\binom{-.7352}{.6780}, \lambda_{2}=.4418$

■ \mathbf{v}_{1} the first principal component of the data (\mathbf{x}, \mathbf{y}), and \mathbf{v}_{2} the second 'principal component', and so-on ...

- Prove: $\mathbf{v}_{\mathbf{1}}$ is in the direction of the 'least squares fit' to the centered data $\left(x_{j}-\bar{x}, y_{j}-\bar{y}\right), \quad j=1,2, \ldots, n$.

Principal component analysis

Figure: Original data and projection onto first principal component

Figure: Residual

Principal component analysis

"Best fit ellipsoid" to the data

Principal component analysis

- The covariance matrix is written as $\mathcal{C}=\mathcal{P D} \mathcal{P}^{-1}$, where

$$
\mathcal{P}=\left[\begin{array}{ccc}
--- & \mathbf{v}_{1} & --- \\
--- & \mathbf{v}_{2} & --- \\
& \vdots & \\
--- & \mathbf{v}_{n} & ---
\end{array}\right], \quad \mathcal{D}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & & \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

Suppose that \mathcal{C} is $n \times n$ but $\lambda_{k+1}=\cdots=\lambda_{n}=0$. Then the underlying data is low-rank

Suppose that \mathcal{C} is $n \times n$ but λ_{k} through λ_{n} are very small. Then the underlying data is approximately low-rank.

Eigenfaces

The first few principal components (a.k.a. eigenvectors of the covariance matrix) for a database of many faces. Different components accentuate different facial characteristics

Eigenfaces

Top left face is projection of bottom right face onto its first principal component. Each new image from left to right corresponds to using 8 additional principal components for reconstruction

Eigenfaces

The projections of non-face images onto first few principal components

Reducing dimensionality using random projections

Principal components:
Directions of projection are data-dependent

Random projections:

Directions of projection are independent of the data

Why not always use principal components?
1 May not have access to all the data at once, as in data streaming
2 Computing principal components (eigenvectors) is computationally expensive in high dimensions: $O\left(k n^{2}\right)$ 'flops' to compute k principal components

Data streaming

■ Massive amounts of data arrives in small time increments

- Often past data cannot be accumulated and stored, or when they can, access is expensive.

Data streaming

■ $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ at time $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, and $\tilde{\mathbf{x}}=\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right)$ at time $\left(t_{1}+\Delta(t), t_{2}+\Delta(t), \ldots, t_{n}+\Delta(t)\right)$
Summary statistics that can be computed in one pass:

- Mean value: $\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j}$
- Euclidean length: $\|\mathbf{x}\|^{2}=\sum_{j=1}^{n} x_{j}^{2}$

■ Variance: $\sigma^{2}(\mathbf{x})=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}$
What about the correlation $\langle\mathbf{x}-\bar{x}, \mathbf{y}-\bar{y}\rangle / \sigma(\mathbf{x}) \sigma(\mathbf{y})$?
■ used to assess risk of stock \mathbf{x} against market \mathbf{y}

Approach: introduce randomness

■ Consider $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and vector $\mathbf{g}=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ of independent and identically distributed (i.i.d.) unit normal Gaussian random variables:

$$
g_{j} \sim \mathcal{N}(0,1), \quad \mathbb{P}\left(g_{j} \geq x\right)=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

- Consider

$$
\begin{aligned}
u & =\langle\mathbf{g}, \mathbf{x}\rangle-\langle\mathbf{g}, \tilde{\mathbf{x}}\rangle \\
& =\left(g_{1} x_{1}+g_{2} x_{2}+\cdots+g_{n} x_{n}\right)-\left(g_{1} \tilde{x}_{1}+g_{2} \tilde{x}_{2}+\cdots+g_{n} \tilde{x}_{n}\right) \\
& =\langle\mathbf{g}, \mathbf{x}-\tilde{\mathbf{x}}\rangle
\end{aligned}
$$

Theorem

$\mathbb{E}\langle\mathbf{g}, \mathbf{x}-\tilde{\mathbf{x}}\rangle^{2}=\|\mathbf{x}-\mathbf{y}\|^{2}$

■ For an $m \times N$ matrix Φ with i.i.d. Gaussian entries $\varphi_{i, j} \sim \mathcal{N}(0,1)$

$$
\begin{aligned}
\mathbb{E}\left(\left\|\frac{1}{\sqrt{m}} \Phi(\mathbf{x}-\mathbf{y})\right\|^{2}\right) & =\frac{1}{\sqrt{m}} \mathbb{E}\left(\sum_{i=1}^{m}\left\langle\mathbf{g}_{i}, \mathbf{x}-\tilde{\mathbf{x}}\right\rangle^{2}\right) \\
& =\|\mathbf{x}-\mathbf{y}\|^{2}
\end{aligned}
$$

Approach: introduce randomness

Concentration around expectation:

- For a fixed $\mathbf{x} \in \mathbb{R}^{n}$,

$$
\mathbb{P}\left(\left\|\frac{1}{\sqrt{m}} \Phi(\mathbf{x})\right\|^{2} \geq(1+\varepsilon)\|\mathbf{x}\|^{2}\right) \leq \exp \left(-\frac{m}{4} \varepsilon^{2}\right)
$$

■ For p vectors $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right\}$ in \mathbb{R}^{n}

$$
\mathbb{P}\left(\forall \mathbf{x}_{j}:\left\|\frac{1}{\sqrt{m}} \Phi\left(\mathbf{x}_{j}\right)\right\|^{2} \geq(1+\varepsilon)\left\|\mathbf{x}_{j}\right\|^{2}\right) \leq \exp \left(\log p-\frac{m}{4} \varepsilon^{2}\right)
$$

How small can m be such that this probability is still small?

Geometric intuition

- The linear map $\mathbf{x} \rightarrow \frac{1}{\sqrt{m}} \Phi \mathbf{x}$ is similar to a random projection onto an m-dimensional subspace of \mathbb{R}^{n}
- most projections preserve geometry, but not all.

Measure-concentration for Gaussian matrices

Theorem (Concentration of lengths / Johnson-Lindenstrauss)
Fix an accuracy $\varepsilon>0$ and probability of failure $\eta>\varepsilon$? >0. Fix an integer $m \geq 10 \varepsilon^{-2} \log (p)$, and fix an $m \times n$ Gaussian random matrix Φ.

Then with probability greater than $1-\eta$,

$$
\left|\frac{1}{\sqrt{m}}\left\|\Phi \mathbf{x}_{j}-\Phi \mathbf{x}_{k}\right\|-\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|\right| \leq \varepsilon\left\|\mathbf{x}_{j}-\mathbf{x}_{k}\right\|
$$

for all j and k.

Corollary (Concentration for inner products)

Fix an accuracy $\varepsilon>0$ and probability of failure $\eta>0$. Fix an integer $m \geq 10 \varepsilon^{-2} \log (p)$ and fix an $m \times n$ Gaussian random matrix Φ.

Then with probability greater than $1-\eta$,

$$
\left\|\frac{1}{m}\left\langle\Phi \mathbf{x}_{j}, \Phi \mathbf{x}_{k}\right\rangle-\left\langle\mathbf{x}_{j}, \mathbf{x}_{k}\right\rangle\right\| \leq \frac{\varepsilon}{2}\left(\left\|\mathbf{x}_{j}\right\|^{2}+\left\|\mathbf{x}_{k}\right\|^{2}\right)
$$

for all j and k.

Nearest-neighbors

The nearest-neighbors problem

- Find the closest point to a point \mathbf{q} from among a set of points
$S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right\}$. Originally called the "post-office problem" (1973)

Applications

Similarity searching ...

The nearest-neighbors problem

■ Find the closest point to a point \mathbf{q} from among a set of points $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right\}$

$$
\begin{aligned}
\mathbf{x}^{*} & =\arg \min _{\mathbf{x}_{j} \in S}\left\|\mathbf{q}-\mathbf{x}_{j}\right\|^{2} \\
& =\arg \min _{\mathbf{x}_{j} \in S} \sum_{k=1}^{N}\left(q(k)-x_{j}(k)\right)^{2}
\end{aligned}
$$

■ Computational cost (number of 'flops') per search: $O(N p)$

■ Computational cost of m searches: $\mathrm{O}(\mathrm{Nmp})$.

- Curse of dimensionality: If N and p are large, this is a lot of flops!

The ε-approximate nearest-neighbors problem

■ Given a tolerance $\varepsilon>0$, and a point $\mathbf{q} \in \mathbb{R}^{N}$, return a point $\mathbf{x}_{\varepsilon}^{*}$ from the set $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{p}\right\}$ which is an ε-approximate nearest neighbor to \mathbf{q} :

$$
\left\|\mathbf{q}-\mathbf{x}_{\varepsilon}^{*}\right\| \leq(1+\varepsilon)\left\|\mathbf{q}-\mathbf{x}^{*}\right\|
$$

This problem can be solved using random projections:
■ Let Φ be an $m \times N$ Gaussian random matrix, where $m=10 \varepsilon^{-2} \log p$.
■ Compute $\mathbf{r}=\Phi \mathbf{q}$. For all $j=1, \ldots, p$, compute $\mathbf{x}_{j} \rightarrow \mathbf{u}_{j}=\Phi \mathbf{x}_{j}$. Computational cost: $O(N p \log (p))$.
■ Compute $\mathbf{x}_{\varepsilon}^{*}=\arg \min _{\mathbf{x}_{j} \in S}\left\|\mathbf{r}-\mathbf{u}_{j}\right\|$. Computational cost: of m searches: $O(p m \log (p+m))$.

Total computation cost: $O((N+m) p \log (p+m)) \ll O\left(N p^{2}\right)$!

Random projections and sparse recovery

Theorem (Subspace-preservation)

Suppose that Φ is an $m \times n$ random matrix with the distance-preservation property:

$$
\text { For any fixed } \mathbf{x}: \quad \mathbb{P}\left(\left|\|\Phi \mathbf{x}\|^{2}-\|\mathbf{x}\|^{2}\right| \geq \varepsilon\|\mathbf{x}\|^{2}\right) \leq 2 e^{-c_{\varepsilon} m}
$$

Let $k \leq c_{\varepsilon} m$ and let T_{k} be a k-dimensional subspace of \mathbb{R}^{n}. Then

$$
\mathbb{P}\left(\text { For all } \mathbf{x} \in T_{k}: \quad(1-\varepsilon)\|\mathbf{x}\|^{2} \leq\|\Phi \mathbf{x}\|^{2} \leq(1+\varepsilon)\|\mathbf{x}\|^{2}\right) \geq 1-e^{-c_{\varepsilon}^{\prime} m}
$$

Outline of proof:
■ A ε-cover and the Vitali covering lemma
■ Continuity argument

Sparse recovery and RIP

Restricted Isometry Property of order $k: \Phi$ has the RIP of order k if

$$
.8\|\mathbf{x}\|^{2} \leq\|\Phi \mathbf{x}\|^{2} \leq 1.2\|\mathbf{x}\|^{2}
$$

for all k-sparse vectors $\mathbf{x} \in \mathbb{R}^{n}$.

Theorem

If Φ has RIP of order k, then for all k-sparse vectors \mathbf{x} such that $\Phi \mathbf{x}=\mathbf{b}$,

$$
\mathbf{x}=\arg \min \left\{\sum_{j=1}^{N}|z(j)| \quad: \quad \Phi \mathbf{z}=\mathbf{b}, \quad \mathbf{z} \in \mathbb{R}^{n}\right\}
$$

Theorem (Distance-preservation implies RIP)

Suppose that Φ is an $m \times N$ random matrix with the subspace-preservation property:

$$
\mathbb{P}\left(\exists \mathbf{x} \in T_{k}: \quad(1-\varepsilon)\|\mathbf{x}\|^{2} \leq\|\Phi \mathbf{x}\|^{2} \leq(1+\varepsilon)\|\mathbf{x}\|^{2}\right) \leq e^{-c_{\varepsilon}^{\prime} m}
$$

Then with probability greater than .99,

$$
(1-\varepsilon)\|\mathbf{x}\|^{2} \leq\|\Phi \mathbf{x}\|^{2} \leq(1+\varepsilon)\|\mathbf{x}\|^{2}
$$

for all \mathbf{x} of sparsity level $k \leq c_{\varepsilon} m / \log (N)$.
Outline of proof:

- Bound for a fixed subspace T_{k}.

■ Union bound over all $\binom{N}{k} \leq N^{k}$ subspaces of k-sparse vectors

Fast principal component analysis

Principal component analysis

Figure: Original data and projection onto first principal component

Figure: Residual

Principal components in higher dimensions

Computing principal components is expensive: Use fast randomized algorithms for approximate PCA

Randomized Principal component analysis

■ First principal component is largest eigenvector $\mathbf{v}_{1}=\left(v_{1}(1), \ldots, v_{1}(n)\right)$ of covariance matrix $\mathcal{C}=P D P^{-1}$, where

$$
P=\left[\begin{array}{cclc}
v_{1}(1) & v_{1}(2) & \ldots & v_{1}(n) \\
v_{2}(1) & v_{2}(2) & \ldots & v_{2}(n) \\
\vdots & \vdots & & \\
v_{n}(1) & v_{n}(2) & \ldots & v_{n}(n)
\end{array}\right], \quad D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & & \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

■ 'Power method' for computing largest principal component based on observation:

If \mathbf{x}_{0} is a random Gaussian vector and $\mathbf{x}_{n+1}=\mathcal{C} \mathbf{x}_{n}$, then $\mathbf{x}_{n} /\left\|\mathbf{x}_{n}\right\| \rightarrow \mathbf{v}_{1}$.

Randomized principal component analysis

- If $\mathcal{C}=\mathcal{P} \mathcal{D} \mathcal{P}^{-1}$ is a rank- k (or approximately rank- k) matrix, then all principal components can be computed using $2 k$ gaussian random vectors.

■ For more accurate approximate PCA, do more iterations of power method.

