
Methods for sparse analysis of high-dimensional data, II

Rachel Ward

May 23, 2011

High dimensional data with low-dimensional structure

300 by 300 pixel images = 90, 000 dimensions

2 / 47

High dimensional data with low-dimensional structure

3 / 47

High dimensional data with low-dimensional structure

4 / 47

We need to recall some ...

Euclidean geometry

Statistics

Linear algebra

5 / 47

Euclidean Geometry

6 / 47

An element of Rn is written
x =

(
x1, x2, ..., xn

)
Rn is a vector space:

x + y =
(
x1 + y1, x2 + y2, ..., xn + yn

)
ax =

(
ax1, ax2, ..., axn

)
x = (x1, x2, ..., xn) =

∑n
j=1 xjej

where

e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), ...
en = (0, 0, ..., 1)

are the standard basis vectors.

7 / 47

The inner product between x and y is:
〈x, y〉 = x1y1 + x2y2 + ...+ xnyn =

∑n
j=1 xjyj

‖x‖ := 〈x, x〉1/2 = (x2
1 + x2

2 + ...+ x2
n)1/2 is the Euclidean length of x. It

is a norm:

‖x‖ = 0 if and only if x = 0.
‖ax‖ = |a|‖x‖
triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖

〈x,y〉
‖x‖‖y‖ = cos(θ)

x and y are orthogonal (perpendicular) if and only if 〈x, y〉 = 0

8 / 47

Statistics

9 / 47

x = (x1, x2, x3, . . . , xn) ∈ Rn

Sample mean: x̄ = 1
n

∑n
j=1 xj

Standard deviation:

s =

√∑n
j=1(xj − x̄)2

n − 1
=

1√
n − 1

√
〈x− x̄, x− x̄〉

10 / 47

Variance: s2 = 1
n−1 〈x− x̄, x− x̄〉 = 1

n−1‖x− x̄‖2

Suppose we have p data vectors
{

x1, x2, . . . , xp
}

Covariance: Cov(xj , xk) = 1
n−1 〈xj − x̄j , xk − x̄k〉

Covariance matrix for 3 data vectors
{

x1, x2, x3
}

:

C =

 cov(x1, x1) cov(x1, x2) cov(x1, x3)
cov(x2, x1) cov(x2, x2) cov(x2, x3)
cov(x3, x1) cov(x3, x2) cov(x3, x3)


Covariance matrix for p data vectors has p columns and p rows

11 / 47

What does the covariance matrix look like?

12 / 47

Linear Algebra

13 / 47

Eigenvectors

Suppose A is a p × p matrix. If Av = λv, then we say v is an eigenvector of
A with eigenvalue λ.

Are these eigenvectors?

A =

(
2 3
2 1

)
, v =

(
1
3

)

A =

(
2 3
2 1

)
, v =

(
3
2

)

If v is an eigenvector of A with eigenvector λ, then αv is also an
eigenvector of A with eigenvector λ. We will always use the normalized
eigenvector ‖v‖ = 1.

14 / 47

Any real-valued and symmetric matrix C has n eigenvectors{
v1, v2, . . . , vn

}
which form an orthonormal basis for Rn (a.k.a. rotated

coordinate view).

Any x ∈ Rn can be expressed in this basis via x =
∑n

j=1 〈x, vj〉 vj .

Cx =
∑n

j=1 λj 〈x, vj〉 vj

C = PDP−1 is diagonalizable:

P =


−−− v1 −−−
−−− v2 −−−

...
−−− vn −−−

 , D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
0 0 . . . λn



15 / 47

Example

3 0 3 6 9

3

0

3

6

9

x =
(
7.5, 1.5, 6.6, 5.7, 9.3, 6.9, 6, 3, 4.5, 3.3

)
,

y =
(
7.2, 2.1, 8.7, 6.6, 9, 8.1, 4.8, 3.3, 4.8, 2.7

)
cov(x, y) =

1

n − 1
〈x− x̄, y − ȳ〉 ,

C =

(
cov(x, x) cov(x, y)
cov(x, y) cov(y, y)

)
=

(
5.549 5.539
5.539 6.449

)
16 / 47

2 1 0 1 2

2

1

0

1

2

Figure: x− x̄ vs. y − ȳ

Eigenvectors / values for C:

v1 =

(
.6780
.7352

)
, λ1 = 11.5562

v2 =

(
−.7352
.6780

)
, λ2 = .4418

v1 the first principal component of the data (x, y), and v2 the second
‘principal component’, and so-on ...

Prove: v1 is in the direction of the ‘least squares fit’ to the centered data(
xj − x̄ , yj − ȳ

)
, j = 1, 2, ..., n.

17 / 47

Principal component analysis

3 0 3 6 9

3

0

3

6

9

1 0 1 2 3

1

0

1

2

3

Figure: Original data and projection onto first principal component

1 0 1 2 3

1

0

1

2

3

x

y

Figure: Residual
18 / 47

Principal component analysis

“Best fit ellipsoid” to the data

19 / 47

Principal component analysis

The covariance matrix is written as C = PDP−1, where

P =


−−− v1 −−−
−−− v2 −−−

...
−−− vn −−−

 , D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
0 0 . . . λn


Suppose that C is n × n but λk+1 = · · · = λn = 0. Then the underlying
data is low-rank

Suppose that C is n × n but λk through λn are very small. Then the
underlying data is approximately low-rank.

20 / 47

Eigenfaces

The first few principal components (a.k.a. eigenvectors of the covariance
matrix) for a database of many faces. Different components accentuate
different facial characteristics

21 / 47

Eigenfaces

Top left face is projection of bottom right face onto its first principal
component. Each new image from left to right corresponds to using 8
additional principal components for reconstruction

22 / 47

Eigenfaces

The projections of non-face images onto first few principal components

23 / 47

Reducing dimensionality using
random projections

24 / 47

3 0 3 6 9

3

0

3

6

9

Principal components:
Directions of projection are
data-dependent

1 0 1 2 3

1

0

1

2

3

Random projections:
Directions of projection are
independent of the data

Why not always use principal components?

1 May not have access to all the data at once, as in data streaming

2 Computing principal components (eigenvectors) is computationally
expensive in high dimensions: O(kn2) ‘flops’ to compute k principal
components

25 / 47

Data streaming

Massive amounts of data
arrives in small time
increments

Often past data cannot
be accumulated and
stored, or when they can,
access is expensive.

26 / 47

Data streaming

x = (x1, x2, . . . , xn) at time (t1, t2, ..., tn), and x̃ = (x̃1, x̃2, . . . , x̃n) at time(
t1 + ∆(t), t2 + ∆(t), ..., tn + ∆(t)

)
Summary statistics that can be computed in one pass:

Mean value: x̄ = 1
n

∑n
j=1 xj

Euclidean length: ‖x‖2 =
∑n

j=1 x2
j

Variance: σ2(x) = 1
n

∑n
j=1(xj − x̄)2

What about the correlation 〈x− x̄ , y − ȳ〉 /σ(x)σ(y)?

used to assess risk of stock x against market y

27 / 47

Approach: introduce randomness

Consider x = (x1, x2, . . . , xn) and vector g = (g1, g2, ..., gn) of
independent and identically distributed (i.i.d.) unit normal Gaussian
random variables:

gj ∼ N (0, 1), P
(
gj ≥ x

)
=

∫ ∞
x

1√
2π

e−t
2/2dt

Consider

u = 〈g, x〉 − 〈g, x̃〉
=

(
g1x1 + g2x2 + · · ·+ gnxn

)
−
(
g1x̃1 + g2x̃2 + · · ·+ gnx̃n

)
= 〈g, x− x̃〉

Theorem

E 〈g, x− x̃〉2 = ‖x− y‖2

28 / 47

For an m × N matrix Φ with i.i.d. Gaussian entries ϕi ,j ∼ N (0, 1)

E(‖ 1√
m

Φ(x− y)‖2) =
1√
m
E
(m∑

i=1

〈gi , x− x̃〉2
)

= ‖x− y‖2

29 / 47

Approach: introduce randomness

Concentration around expectation:

For a fixed x ∈ Rn,

P
(
‖ 1√

m
Φ(x)‖2 ≥ (1 + ε)‖x‖2

)
≤ exp

(
− m

4
ε2
)

For p vectors
{

x1, x2, ..., xp
}

in Rn

P
(
∀xj : ‖ 1√

m
Φ(xj)‖2 ≥ (1 + ε)‖xj‖2

)
≤ exp

(
log p − m

4
ε2
)

How small can m be such that this probability is still small?

30 / 47

Geometric intuition

The linear map x→ 1√
m

Φx is similar to a random projection onto an

m-dimensional subspace of Rn

most projections preserve geometry, but not all.

31 / 47

Measure-concentration for Gaussian matrices

Theorem (Concentration of lengths / Johnson-Lindenstrauss)

Fix an accuracy ε > 0 and probability of failure η > ε? > 0. Fix an integer
m ≥ 10ε−2 log(p), and fix an m × n Gaussian random matrix Φ.

Then with probability greater than 1− η,∣∣∣ 1√
m
‖Φxj − Φxk‖ − ‖xj − xk‖

∣∣∣ ≤ ε‖xj − xk‖

for all j and k.

32 / 47

Corollary (Concentration for inner products)

Fix an accuracy ε > 0 and probability of failure η > 0. Fix an integer
m ≥ 10ε−2 log(p) and fix an m × n Gaussian random matrix Φ.

Then with probability greater than 1− η,∥∥∥ 1

m
〈Φxj ,Φxk〉 − 〈xj , xk〉

∥∥∥ ≤ ε

2
(‖xj‖2 + ‖xk‖2)

for all j and k.

33 / 47

Nearest-neighbors

34 / 47

The nearest-neighbors problem

Find the closest point to a point q from among a set of points

S =
{

x1, x2, . . . , xp
}

. Originally called the “post-office problem” (1973)

35 / 47

Applications

Similarity searching ...

36 / 47

The nearest-neighbors problem

Find the closest point to a point q from among a set of points

S =
{

x1, x2, . . . , xp
}

x∗ = arg min
xj∈S
‖q− xj‖2

= arg min
xj∈S

N∑
k=1

(
q(k)− xj(k)

)2
Computational cost (number of ‘flops’) per search: O(Np)

Computational cost of m searches: O(Nmp).

Curse of dimensionality: If N and p are large, this is a lot of flops!

37 / 47

The ε-approximate nearest-neighbors problem

Given a tolerance ε > 0, and a point q ∈ RN , return a point x∗ε from the
set S = {x1, x2, . . . , xp} which is an ε-approximate nearest neighbor to q:

‖q− x∗ε‖ ≤ (1 + ε)‖q− x∗‖

This problem can be solved using random projections:

Let Φ be an m × N Gaussian random matrix, where m = 10ε−2 log p.

Compute r = Φq. For all j = 1, ..., p, compute xj → uj = Φxj .
Computational cost: O(Np log(p)).

Compute x∗ε = arg minxj∈S ‖r − uj‖. Computational cost: of m searches:
O(pm log(p + m)).

Total computation cost: O((N + m)p log(p + m)) << O(Np2) !

38 / 47

Random projections and sparse recovery

39 / 47

Theorem (Subspace-preservation)

Suppose that Φ is an m × n random matrix with the distance-preservation
property:

For any fixed x : P
(
|‖Φx‖2 − ‖x‖2| ≥ ε‖x‖2

)
≤ 2e−cεm

Let k ≤ cεm and let Tk be a k-dimensional subspace of Rn. Then

P
(

For all x ∈ Tk : (1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2
)
≥ 1− e−c

′
εm

Outline of proof:

A ε-cover and the Vitali covering lemma

Continuity argument

40 / 47

Sparse recovery and RIP

Restricted Isometry Property of order k : Φ has the RIP of order k if

.8‖x‖2 ≤ ‖Φx‖2 ≤ 1.2‖x‖2

for all k-sparse vectors x ∈ Rn.

Theorem

If Φ has RIP of order k, then for all k-sparse vectors x such that Φx = b,

x = arg min
{ N∑

j=1

∣∣z(j)
∣∣ : Φz = b, z ∈ Rn

}
41 / 47

Theorem (Distance-preservation implies RIP)

Suppose that Φ is an m × N random matrix with the subspace-preservation
property:

P
(
∃x ∈ Tk : (1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2

)
≤ e−c

′
εm

Then with probability greater than .99,

(1− ε)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)‖x‖2

for all x of sparsity level k ≤ cεm/log(N).

Outline of proof:

Bound for a fixed subspace Tk .

Union bound over all
(N
k

)
≤ Nk subspaces of k-sparse vectors

42 / 47

Fast principal component analysis

43 / 47

Principal component analysis

3 0 3 6 9

3

0

3

6

9

1 0 1 2 3

1

0

1

2

3

Figure: Original data and projection onto first principal component

1 0 1 2 3

1

0

1

2

3

x

y

Figure: Residual
44 / 47

Principal components in higher dimensions

Computing principal components is expensive: Use fast randomized algorithms
for approximate PCA

45 / 47

Randomized Principal component analysis

First principal component is largest eigenvector v1 =
(
v1(1), . . . , v1(n)

)
of covariance matrix C = PDP−1, where

P =


v1(1) v1(2) . . . v1(n)
v2(1) v2(2) . . . v2(n)

...
...

vn(1) vn(2) . . . vn(n)

 , D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
0 0 . . . λn


’Power method’ for computing largest principal component based on
observation:

If x0 is a random Gaussian vector and xn+1 = Cxn, then xn/‖xn‖ → v1.

46 / 47

Randomized principal component analysis

If C = PDP−1 is a rank-k (or approximately rank-k) matrix, then all
principal components can be computed using 2k gaussian random
vectors.

For more accurate approximate PCA, do more iterations of power
method.

47 / 47

