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High dimensional data with low-dimensional structure

300 by 300 pixel images = 90, 000 dimensions
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High dimensional data with low-dimensional structure
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High dimensional data with low-dimensional structure

Chart 1: Monthly Stock Price Movements Over 5-Yr Period
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We need to recall some ...

m Euclidean geometry
m Statistics

m Linear algebra
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Euclidean Geometry
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m An element of R" is written
X = (X1,X2, ...,Xn)

m R” is a vector space:

B x+y=(X+y1, %+ Y2, s Xo + Yn)
E ax ::(axl,axg,".,axn)

mX= (Xl,XQ, ...,Xn) = Ejf_l:l Xj€j

where
e; =(1,0,...,0), e»=(0,1,...,0),...
e, =(0,0,...,1)

are the standard basis vectors.
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m The inner product between x and y is:
(X,¥) = x1y1 + Xoya + oo 4 XnYn = D71 XY

m x| ;= <x,x>1/2 = (X% 4+ x3 4 ... + x?)}/? is the Euclidean length of x. It
is a norm:
m ||x|| =0 if and only if x = 0.
m [ax|| = |afllx]|
m triangle inequality: [|x +y|| < ||x]| + |ly||

m x and y are orthogonal (perpendicular) if and only if (x,y) =0
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Statistics



X = (X1,X2,X3,...,Xn) e R”

L= 1N .
m Sample mean: X = > 7 | X

m Standard deviation:
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2_ 1

m Variance: s

A —%x—%) = Lllx — %I

m Suppose we have p data vectors {xl,x2, e ,xp}

m Covariance: Cov(xj,xx) = =25 (x; — X}, X — X¢)

m Covariance matrix for 3 data vectors {xl,xQ,X3}:

cov(xy,X1) cov(xy,Xxp) cov(xy,x3)
C=| cov(xz,x1) cov(xa,x2) cov(xa,X3)
cov(xs,X1) cov(x3,Xz) cov(xs,X3)

m Covariance matrix for p data vectors has p columns and p rows
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Chart 1: Monthly Stock Price Movements Over 5-Yr Period
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What does the covariance matrix look like?
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Linear Algebra
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Eigenvectors

Suppose A is a p X p matrix. If Av = Av, then we say v is an eigenvector of
A with eigenvalue \.

Are these eigenvectors?

= (31) =)
= (31) =(3)

m If v is an eigenvector of A with eigenvector A, then av is also an
eigenvector of A with eigenvector A. We will always use the normalized
eigenvector ||v|| = 1.
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m Any real-valued and symmetric matrix C has n eigenvectors
{vi1,v2,...,vp} which form an orthonormal basis for R” (a.k.a. rotated
coordinate view).

m Any x € R" can be expressed in this basis via x = Zle (x,vj) vj.

m Cx = Zf:l Aj (X, vj) v;

m C = PDP~ ! is diagonalizable:

R T A0 0
v 0 X 0
P = 5 = .
L T 0 0 An
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Example

-3

-3 0 3 6 9

X

(7.5, 1.5, 6.6, 5.7, 9.3, 6.9, 6, 3, 4.5, 3.3 ),
y=(7221,87,66,9 81,48, 33,48,27)

1

COV(va) = n—1 <X_)_(7y _Y>7
([ cov(x,x) cov(x,y) \ [ 5549 5.539
~ \ cov(x,y) cov(y,y) / \ 5539 6.449
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1 e 1 Eigenvectors / values for C:

/" 6780
0 BV = ( 2350 ) ,A1 = 11.5562
-1 . 1
y —.7352
> | H V) = ( .6780 > ,)\2 = .4418

-2 -1 0 1 2
Figure: x—X vs. y—y
m v; the first principal component of the data (x,y), and v, the second

‘principal component’, and so-on ...

m Prove: vy is in the direction of the 'least squares fit' to the centered data
(x—%yj—y), j=12..n
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Principal component analysis
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Figure: Original data and projection onto first principal component
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Figure: Residual
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>

“Best fit ellipsoid” to the data
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Principal component analysis

m The covariance matrix is written as C = PDP 1, where

—— = vy —— = A1 0 ... 0
——— vy ——— 0 X ... O
P = ) , D= ) )
——— v, ——— 0 0 ... A
Suppose that C is n x n but Ay11 =--- = A, = 0. Then the underlying

data is low-rank

Suppose that C is n x n but A through A, are very small. Then the
underlying data is approximately low-rank.
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Eigenfaces

The first few principal components (a.k.a. eigenvectors of the covariance
matrix) for a database of many faces. Different components accentuate
different facial characteristics

21/47



Eigenfaces

Top left face is projection of bottom right face onto its first principal
component. Each new image from left to right corresponds to using 8
additional principal components for reconstruction
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Eigenfaces

The projections of non-face images onto first few principal components
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Reducing dimensionality using
random projections



-3 ] 3 6 9 -1 0 1 2 3

Principal components: Random projections:
Directions of projection are Directions of projection are
data-dependent independent of the data

Why not always use principal components?
May not have access to all the data at once, as in data streaming

Computing principal components (eigenvectors) is computationally
expensive in high dimensions: O(kn?) ‘flops’ to compute k principal
components
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Data streaming

m Massive amounts of data
arrives in small time
increments
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m Often past data cannot
be accumulated and
stored, or when they can,
access is expensive.
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Data streaming

B x = (x1,Xx2,...,Xp) at time (t1, ta, ..., ty), and X = (X1, X2, ..., Xy) at time
(tr 4+ A(t), t2 + A(t), ..., tn + A(L))

Summary statistics that can be computed in one pass:

Ly — 1N\ .
m Mean value: X = ) i1 X

m Euclidean length: ||x||? = > ij

m Variance: 02(x) = Y7 (X — X)?

What about the correlation (x — X,y — ¥) /o (x)o(y)?
m used to assess risk of stock x against market y
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Approach: introduce randomness

m Consider x = (x1,x2, ..., Xp) and vector g = (g1, &2, ..., &) of
independent and identically distributed (i.i.d.) unit normal Gaussian
random variables

*® 1 _»
gJNN(O,].), P(gJZX)_/X Ee t/2dt
m Consider

u = (g,X> - <g7i>
= (gix1+gx+ - +8xn) — (8151 + &% + - + gnkn)
<ga X — i>

E(g,x—%)° =[x —y|?
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m q) XH
n

m For an m x N matrix ® with i.i.d. Gaussian entries ¢;; ~ N (0, 1)

Bl =0t} = —=5(3 @x-%7)

i=1

=[x —yl?
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Approach: introduce randomness

m q) x| =|b

Concentration around expectation:

m For a fixed x € R",
P(I—= 0P = (1+2)xl) < exp (~ 7<)
Vvm N - 4
m For p vectors {Xl,Xz, ...,xp} in R"

1

How small can m be such that this probability is still small?

m
x))|12 = (1+)lixs]12) < exp (logp— 7<?)
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Geometric intuition

m The linear map x — imde is similar to a random projection onto an
m-dimensional subspace of R”

B most projections preserve geometry, but not all.
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Measure-concentration for Gaussian matrices

Theorem (Concentration of lengths / Johnson-Lindenstrauss)

Fix an accuracy € > 0 and probability of failure n > €? > 0. Fix an integer
m > 10e =2 log(p), and fix an m x n Gaussian random matrix ®.

Then with probability greater than 1 — 7,

1
ﬁ\l‘bxj' = Pl =[x = x| < ellxj = x|

for all j and k.
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Corollary (Concentration for inner products)

Fix an accuracy € > 0 and probability of failure n > 0. Fix an integer
m > 102 log(p) and fix an m x n Gaussian random matrix ®.

Then with probability greater than 1 — n,
1 € >
|5 coxi, oxe) = 61,00 | < S (712 + el

for all j and k.
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Nearest-neighbors
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m Find the closest point to a point q from among a set of points
S= {xl,xz, . ,xp}. Originally called the “post-office problem” (1973)
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Applications
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The nearest-neighbors problem

m Find the closest point to a point q from among a set of points
S= {xl,xQ,...,xp}

X = argminla x|
J

=

= arg min ) — X; )2
x;€S J
k:l

m Computational cost (number of ‘flops’) per search: O(Np)

Computational cost of m searches: O(Nmp).

Curse of dimensionality: If N and p are large, this is a lot of flops!
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The e-approximate nearest-neighbors problem

m Given a tolerance £ > 0, and a point q € RV, return a point x* from the
set S = {x1,x2,...,Xp} which is an e-approximate nearest neighbor to q:

la—xZ|| < (1+¢)llg—x*
This problem can be solved using random projections:
m Let ® be an m x N Gaussian random matrix, where m = 102 log p.

m Compute r = ®q. For all j = 1,..., p, compute x; — u; = ®x;.
Computational cost: O(Nplog(p)).

m Compute x? = arg miny.cs [[r — uj||. Computational cost: of m searches:
O(pmlog(p + m)).

Total computation cost: O((N + m)plog(p + m)) << O(Np?) !
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Random projections and sparse recovery
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Theorem (Subspace-preservation)

Suppose that ® is an m X n random matrix with the distance-preservation
property:

For any fived x : P(mq>x||2 — x| > 5||x]|2> < 2e=cEm
Let k < ¢.m and let Ty be a k-dimensional subspace of R". Then

P(For dlxeTe:  (1—e)x|? < ||ox|? < (1 -|-z—:)||x||2) >1— eGm

Outline of proof:
m A e-cover and the Vitali covering lemma

m Continuity argument
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Sparse recovery and RIP

Restricted Isometry Property of order k: ® has the RIP of order k if
8x[|? < [|ox|? < 1.2||x|>

for all k-sparse vectors x € R".

If ® has RIP of order k, then for all k-sparse vectors x such that ®x = b,

N
x:argmin{Z‘z(j)’ . $®z=b, ZER”}
j=1
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Theorem (Distance-preservation implies RIP)

Suppose that ® is an m x N random matrix with the subspace-preservation
property:

P(Ixe Ti:  (L—2)xIP < ox) < (1+ &) x|?) < emcém
Then with probability greater than .99,
(1= &)lIxl* < ox]* < (1 + &)

for all x of sparsity level k < c.m/log(N).

Outline of proof:

m Bound for a fixed subspace Tk.

m Union bound over all ( ) < Nk subspaces of k-sparse vectors
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Fast principal component analysis
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Principal component analysis
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Figure: Original data and projection onto first principal component
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Figure: Residual
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Principal components in higher dimensions

Computing principal components is expensive: Use fast randomized algorithms
for approximate PCA
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Randomized Principal component analysis

m First principal component is largest eigenvector vi = (vl(l), e vl(n))
of covariance matrix C = PDP~1, where

V]_(].) V1(2) vl(n) )\1 0 0
p _ V2(1) V2(2) v2(n) D— 0 )\2 0
vn.(l) v,,.(2) ... vp(n) O O oo An

m 'Power method’ for computing largest principal component based on
observation:

If xo is a random Gaussian vector and x,+1 = Cxp,, then x,/||xn|| — v1.
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Randomized principal component analysis

m If C=PDP1is a rank-k (or approximately rank-k) matrix, then all
principal components can be computed using 2k gaussian random
vectors.

m For more accurate approximate PCA, do more iterations of power
method.
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