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Convergence of OMP

Theorem
Suppose Φ is a complete dictionary for Rd . For any vector x, the
residual after t steps of OMP satisfies

‖rt‖2 ≤ c
1√
t
.

[Devore-Temlyakov]

• Even if x can be expressed sparsely, OMP may take d steps
before the residual is zero.

• But, sometimes OMP correctly identifies sparse
representations.
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Sparse representation with OMP

• Suppose x has k-sparse representation

x =
∑
`∈Λ

c`ϕ` where |Λ| = k

i.e., copt is non-zero on Λ.

• Sufficient to find Λ—When can OMP do so?

• Define

ΦΛ =
[
ϕ`1 ϕ`2 · · · ϕ`k

]
`s∈Λ

and

ΨΛ =
[
ϕ`1 ϕ`2 · · · ϕ`N−k

]
`s /∈Λ

• Define greedy selection ratio

ρ(r) =
max`/∈Λ | 〈r , ϕ`〉 |
max`∈Λ | 〈r , ϕ`〉 |

=

∥∥ΨT
Λ r
∥∥
∞∥∥ΦT

Λ r
∥∥
∞

=
max i.p. bad atoms

max i.p. good atoms

• OMP chooses good atom iff ρ(r) < 1
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Exact Recovery Condition

Theorem (ERC)

A sufficient condition for OMP to identify Λ after k steps is that

max
`/∈Λ

∥∥Φ+
Λϕ`

∥∥
1
< 1

where A+ = (ATA)−1AT . [Tropp’04]

• A+x is a coefficient vector that synthesizes best
approximation of x using atoms in A.

• P = AA+ orthogonal projector produces this best
approximation
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Proof.
r0 = x ∈ range(ΦΛ)

At iteration t + 1 assume `1, `2, . . . , `t ∈ Λ, thus at ∈ range(ΦΛ) and rt = x − at ∈ range(ΦΛ)

Express orthogonal projector onto range(ΦΛ) as (Φ+
Λ

)T ΦT
Λ , therefore

(Φ+
Λ )T ΦT

Λ rt = rt .

Bound

ρ(rt ) =

∥∥∥ΨT
Λ rt

∥∥∥
∞∥∥∥ΦT

Λ
rt

∥∥∥
∞

=

∥∥∥ΨT
Λ (Φ+

Λ
)T ΦT

Λ rt

∥∥∥
∞∥∥∥ΦT

Λ
rt

∥∥∥
∞

≤
∥∥∥ΨT

Λ (Φ+
Λ )T

∥∥∥
∞

=
∥∥∥Φ+

Λ ΨΛ

∥∥∥
1

= max
`/∈Λ

∥∥∥ΦT
Λ ϕ`

∥∥∥
1
< 1

Then OMP selects an atom from Λ at iteration t and since it chooses a new atom at each iteration,

After k iterations, chosen all atoms from Λ.
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Coherence Bounds

Theorem
The ERC holds whenever k < 1

2 (µ−1 + 1). Therefore, OMP can
recover any sufficiently sparse signals. [Tropp’04]

For most redundant dictionaries, k < 1
2 (
√

d + 1).



Sparse

Theorem

Assume k ≤ 1
3µ
−1. For any vector x, the approximation Φĉ after k

steps of OMP satisfies ‖ĉ‖0 ≤ k and

‖x − Φĉ‖2 ≤
√

1 + 6k ‖x − Φcopt‖2

where copt is the best k-term approximation to x over Φ. [Tropp’04]

Theorem
Assume 4 ≤ k ≤ 1√

µ . Two-phase greedy pursuit produces x̂ = Φĉ
s.t.

‖x − x̂‖2 ≤ 3 ‖x − Φcopt‖2 .

Assume k ≤ 1
µ . Two-phase greedy pursuit produces x̂ = Φĉ s.t.

‖x − x̂‖2 ≤
(

1 +
2µk2

(1− 2µk)2

)
‖x − Φcopt‖2 .

[Gilbert, Strauss, Muthukrishnan, Tropp ’03]



Convex relaxation: BP

• Exact: non-convex optimization

arg min ‖c‖0 s.t. x = Φc

• Convex relaxation of non-convex problem

arg min ‖c‖1 s.t. x = Φc
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Convex relaxation

coefficient value

contribution of 
coefficient to 

norm
!1

!0



Convex relaxation: algorithmic formulation

• Well-studied algorithmic formulation [Donoho, Donoho-Elad-Temlyakov, Tropp,

and many others]

• Optimization problem = linear program: linear objective
function (with variables c+, c−) and linear constraints

• Still need algorithm for solving optimization problem

• Hard part of analysis: showing solution to convex problem =
solution to original problem



LP

x1 + x2 = 4x1 + x2 = 2

x1 + 2x2 = 4

min x1 + x2 s.t. x1 ≥ 0 , x2 ≥ 0 , x1 + 2x2 = 4

feasible region

maximum

minimum

• Feasible region is convex
polytope

• Linear objective function:
convex and concave =⇒
local minimum/maximum
are global

• If feasible solution exists
and if objective function
bounded, then optimum
achieved on boundary
(possibly many points)



Exact Recovery Condition

Theorem (ERC)

A sufficient condition for BP to recover the sparsest representation
of x is that

max
`/∈Λ

∥∥Φ+
Λϕ`

∥∥
1
< 1

where A+ = (ATA)−1AT . [Tropp’04]

Theorem
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Convex relaxation: BP-denoising

• Error: non-convex optimization

arg min ‖c‖0 s.t. ‖x − Φc‖2 ≤ ε

• Convex relaxation of non-convex problem

arg min ‖c‖1 s.t. ‖x − Φc‖2 ≤ δ.

• Convex objective function over convex set.
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Optimization formulations

• Constrained minimization

arg min ‖c‖1 s.t. ‖x − Φc‖2 ≤ δ.

• Unconstrained minimization (`1-regularization):
minimize

L(c ; γ, x) =
1

2
‖x − Φc‖2

2 + γ ‖c‖1 .



• Constrained minimization

Theorem
Suppose that k ≤ 1

3µ
−1. Suppose copt is k-sparse and solves

original optimization problem. Then solution ĉ to constrained
minimization problem has same sparsity and satisfies

‖x − Φĉ‖2 ≤
(√

1 + 6k
)
ε.

[Tropp ’04]

• Unconstrained minimization: many algorithms for
`1-regularization (e.g., Bregman iteration, interior point
methods, LASSO and LARS)



Optimization vs. Greedy

• Exact and Error amenable to convex relaxation and
convex optimization

• Sparse not amenable to convex relaxation

arg min ‖Φc − x‖2 s.t. ‖c‖0 ≤ k

but appropriate for greedy algorithms



Hardness depends on instance

Redundant dictionary Φ input signal x

NP-hard

compressive 
sensing

random 
signal model

depends on 
choice of Φ

arbitrary arbitrary

fixed fixed

random 
(distribution?)

random 
(distribution?)



Random signal model

Theorem
If Φ has consistent coherence µ = 1/

√
d, choose k ∼ d/ log d

atoms for x at random from Φ, then sparse representation is
unique and, given x and Φ, convex relaxation finds it. [Tropp’07]



Summary

• Geometry of dictionary is important but

• Obtain sufficient conditions on the geometry of the dictionary
to solve Sparse problems efficiently.

• Algorithms are approximation algorithms (wrt error).

• Greedy pursuit and convex relaxation.

• Next lecture: Sublinear algorithms for sparse approximation
and compressive sensing


