
Algorithms for sparse analysis
Lecture I: Background on sparse approximation

Anna C. Gilbert

Department of Mathematics
University of Michigan

Tutorial on sparse approximations and algorithms

• Compress data

accurately
concisely
efficiently (encoding and decoding)

• Focus on

mathematical and algorithmic theory: sparse approximation
and compressive sensing
algorithms: polynomial time, randomized, sublinear,
approximation
bridge amongst engineering applications, mathematics, and
algorithms

• Not focus on

applications
image reconstruction or inverse problems
image models, codecs
dictionary design

Lectures

• Lecture 1: Background, problem formulation

• Lecture 2: Computational complexity

• Lecture 3: Geometry of dictionaries, greedy algorithms,
convex relaxation

• Lecture 4: Sublinear (approximation) algorithms

Basic image compression: transform coding

Orthogonal basis Φ: Transform coding

θ(c)

Φᵀ x = c

Φ ≈ x

• Compute orthogonal transform

ΦT x = c

• Threshold small coefficients

Θ(c)

• Reconstruct approximate image

Φ(Θ(c)) ≈ x

Orthogonal basis Φ: Transform coding

θ(c)

Φᵀ x = c

Φ ≈ x

• Compute orthogonal transform

ΦT x = c

• Threshold small coefficients

Θ(c)

• Reconstruct approximate image

Φ(Θ(c)) ≈ x

Orthogonal basis Φ: Transform coding

θ(c)

Φᵀ x = c

Φ ≈ x

• Compute orthogonal transform

ΦT x = c

• Threshold small coefficients

Θ(c)

• Reconstruct approximate image

Φ(Θ(c)) ≈ x

Nonlinear encoding

=c xΦᵀ ⇒ x =
Ψᵀ

a

c'

=c yΦᵀ ⇒ y =
Ωᵀ c'

• Position of nonzeros depends on signal
• Different matrices ΦT , ΩT for 2 different signals
• Adaptive procedure, adapt for each input

Nonlinear encoding

=c xΦᵀ ⇒ x =
Ψᵀ

a

c'

=c yΦᵀ ⇒ y =
Ωᵀ c'

• Position of nonzeros depends on signal
• Different matrices ΦT , ΩT for 2 different signals
• Adaptive procedure, adapt for each input

Linear decoding

≈c xΦ

cΦ ≈ y

• Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear
combination of coefficients and
basis vectors

Φ(Θ(c)) ≈ x

• Decoding procedure not signal
dependent

• Matrix Φ same for all signals

Linear decoding

≈c xΦ

cΦ ≈ y

• Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear
combination of coefficients and
basis vectors

Φ(Θ(c)) ≈ x

• Decoding procedure not signal
dependent

• Matrix Φ same for all signals

Linear decoding

≈c xΦ

cΦ ≈ y

• Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear
combination of coefficients and
basis vectors

Φ(Θ(c)) ≈ x

• Decoding procedure not signal
dependent

• Matrix Φ same for all signals

Nonlinear encoding/linear decoding

• Nonlinear encoding
• Instance optimal: given

signal x , find best set of
coefficients for given signal

• Algorithm does not guarantee
basis is a good one, only
representation good wrt basis

• Relatively easy to compute
• But compressibility, sparsity of

signal depends on choice of
orthonormal basis

• Hard to design best
orthonormal basis

• Linear decoding: easy to
compute

x =
c

≈c xΦ

Φt

Sparsity/Compressibility

• Sparsity: `0 “norm” = number of non-zero coefficients

• Compressibility: rate of decay of sorted coefficients

• Reflects sparsity/compressibility of signal in particular basis

• Fewer non-zero coefficients =⇒ fewer items to encode =⇒
fewer total bits to represent signal

• Occam’s razor: capture essential features of signal

Basic compressibility results

• Definition
The optimal k-term error for x ∈ RN

σk(x)p = min
z k-sparse

‖x − z‖p.

The `p-error of best k-term representation for x in canonical basis.

• How to relate ‖x‖p to σk(x)p? restrict 1 ≤ p <∞.

• Proposition

If 1 ≤ p <∞ and q = (r + 1
p)−1, then for all x ∈ RN ,

σk(x)p ≤ k−r‖x‖q.

Basic compressibility results

• Definition
The optimal k-term error over the class K ⊂ RN

σk(K)p = sup
x∈K

σk(x)p.

• Let K = BN
q = {x ∈ RN | ‖x‖q = 1}.

σk(K)p ≤ k−r

with r = 1
q −

1
p .

Redundancy

If one orthonormal basis is good, surely two (or more) are better...

...especially for images

Redundancy

If one orthonormal basis is good, surely two (or more) are better...

...especially for images

Dictionary

Definition
A dictionary Φ in Rd is a collection {ϕ`}N`=1 ⊂ Rd of unit-norm
vectors: ‖ϕ`‖2 = 1 for all `.

• Elements are called atoms

• If span{ϕ`} = Rd , the dictionary is complete

• If {ϕ`} are linearly dependent, the dictionary is redundant

Matrix representation

Form a matrix
Φ =

[
ϕ1 ϕ2 . . . ϕN

]
so that

Φc =
∑
`

c`ϕ`.

x

Φᵀ

Φ c

Examples: Fourier—Dirac

Φ = [F | I]

ϕ`(t) =
1√
d
e2πi`t/d ` = 1, 2, . . . , d

ϕ`(t) = δ`(t) ` = d + 1, d + 2, . . . , 2d

Examples: DCT—Wavelets, 2 dimensions

Φ = [F |W]

Examples: Wavelet packets

Sparsity: Tradeoff

xΦ c =

cost of representation ←→ error in approximation

rate ←→ distortion

Sparse Problems

• Exact. Given a vector x ∈ Rd and a complete dictionary Φ,
solve

arg min
c
‖c‖0 s.t. x = Φc

i.e., find a sparsest representation of x over Φ.

• Error. Given ε ≥ 0, solve

arg min
c
‖c‖0 s.t. ‖x − Φc‖2 ≤ ε

i.e., find a sparsest approximation of x that achieves error ε.

• Sparse. Given k ≥ 1, solve

arg min
c
‖x − Φc‖2 s.t. ‖c‖0 ≤ k

i.e., find the best approximation of x using k atoms.

Sparse Problems

• Exact. Given a vector x ∈ Rd and a complete dictionary Φ,
solve

arg min
c
‖c‖0 s.t. x = Φc

i.e., find a sparsest representation of x over Φ.

• Error. Given ε ≥ 0, solve

arg min
c
‖c‖0 s.t. ‖x − Φc‖2 ≤ ε

i.e., find a sparsest approximation of x that achieves error ε.

• Sparse. Given k ≥ 1, solve

arg min
c
‖x − Φc‖2 s.t. ‖c‖0 ≤ k

i.e., find the best approximation of x using k atoms.

Sparse Problems

• Exact. Given a vector x ∈ Rd and a complete dictionary Φ,
solve

arg min
c
‖c‖0 s.t. x = Φc

i.e., find a sparsest representation of x over Φ.

• Error. Given ε ≥ 0, solve

arg min
c
‖c‖0 s.t. ‖x − Φc‖2 ≤ ε

i.e., find a sparsest approximation of x that achieves error ε.

• Sparse. Given k ≥ 1, solve

arg min
c
‖x − Φc‖2 s.t. ‖c‖0 ≤ k

i.e., find the best approximation of x using k atoms.

Computational complexity

• How hard is it to solve these problems?

• How difficult are these problems as compared to well-studied
problems; e.g., Primes, SAT?

• What is the asymptotic complexity of the problem?

• Is there a feasible algorithm that is guaranteed to solve the
problem?

• Sparse approximation problems are at least as hard as SAT

Complexity theory: Decision problems

• Fundamental problem type: output is Yes or No

• RelPrime. Are a and b relatively prime?

• SAT. Boolean expression . Given a Boolean expression with
and, or, not, variables, and parentheses only, is there some
assignment of True and False to variables that makes
expression True?

• D-Exact. Given a vector x ∈ Rd , a complete d × N
dictionary Φ, and a sparsity parameter k , does there exist a
vector c ∈ RN with ‖c‖0 ≤ k such that Φc = x?

• Can be used as a subroutine (partially) to solve Exact

Complexity theory: Languages

• Encode input as a finite string of 0s and 1s

• Definition
A language L is a subset of the set of all (finite length) strings.

• Decision problem = language L

• Given input x , decide if x ∈ L or if x /∈ L

RelPrime = {binary encodings of pairs (a,b) s.t. gcd(a, b) = 1}

• Algorithm AL for deciding L

AL(x) =

{
Yes iff x ∈ L

No otherwise

Complexity theory: P

• P = polynomial time

• Definition
P is the class of languages L that are decidable in polynomial time;
i.e., there is an algorithm AL such that

• x ∈ L iff AL(x) = Yes (otherwise AL(x) = No)
• there is some n so that for all inputs x, the running time of AL

on x is less than |x |n

Complexity theory: NP

NP 6= “Not Polynomial time”

Complexity theory: Verify vs. determine

• Verifying existence of k-sparse vector c with Φc = x easier
than determining existence

• Given witness c , check (i) ‖c‖0 = k and (ii) Φc = x

• Checks can be done in time polynomial in size of Φ, x , k

• Definition
A language L has a (polynomial time) verifier if there is an
algorithm V such that

L = {x | ∃w s.t. V accepts (x ,w)}

(and algorithm V runs in time polynomial in the length of x).

NP

• NP = nondeterministic
polynomial time

Definition
NP is the class of languages L
that have polynomial time
verifiers.

• P = membership decided
efficiently

• NP = membership
verified efficiently

• P = NP?

P = NP

NP

P

NP

• NP = nondeterministic
polynomial time

Definition
NP is the class of languages L
that have polynomial time
verifiers.

• P = membership decided
efficiently

• NP = membership
verified efficiently

• P = NP?

P = NP

NP

P

NP

• NP = nondeterministic
polynomial time

Definition
NP is the class of languages L
that have polynomial time
verifiers.

• P = membership decided
efficiently

• NP = membership
verified efficiently

• P = NP?

P = NP

NP

P

Summary

• Formal, precise definitions of sparse approximation problems

• Set up complexity theory: goals, definitions, 2 complexity
classes

• Next lecture: reductions amongst problem, hardness results

