Algorithms for sparse analysis
 Lecture I: Background on sparse approximation

Anna C. Gilbert

Department of Mathematics
University of Michigan

Tutorial on sparse approximations and algorithms

- Compress data
accurately
concisely
efficiently (encoding and decoding)
- Focus on
mathematical and algorithmic theory: sparse approximation and compressive sensing algorithms: polynomial time, randomized, sublinear, approximation
bridge amongst engineering applications, mathematics, and algorithms
- Not focus on
applications
image reconstruction or inverse problems
image models, codecs
dictionary design

Lectures

- Lecture 1: Background, problem formulation
- Lecture 2: Computational complexity
- Lecture 3: Geometry of dictionaries, greedy algorithms, convex relaxation
- Lecture 4: Sublinear (approximation) algorithms

Basic image compression: transform coding

Orthogonal basis Φ : Transform coding

- Compute orthogonal transform

$$
\phi^{T} x=c
$$

Orthogonal basis Φ : Transform coding

- Compute orthogonal transform

$$
\phi^{T} x=c
$$

- Threshold small coefficients

$$
\Theta(c)
$$

Orthogonal basis Φ : Transform coding

- Compute orthogonal transform

$$
\phi^{T} x=c
$$

- Threshold small coefficients

$$
\Theta(c)
$$

- Reconstruct approximate image

$$
\Phi(\Theta(c)) \approx x
$$

Nonlinear encoding

Nonlinear encoding

- Position of nonzeros depends on signal
- Different matrices Φ^{T}, Ω^{T} for 2 different signals
- Adaptive procedure, adapt for each input

Linear decoding

- Given the vector of coefficients and the nonzero positions, recover (approximate) signal via linear combination of coefficients and basis vectors

$$
\Phi(\Theta(c)) \approx x
$$

Linear decoding

- Given the vector of coefficients and the nonzero positions, recover (approximate) signal via linear combination of coefficients and basis vectors

$$
\Phi(\Theta(c)) \approx x
$$

- Decoding procedure not signal dependent

Linear decoding

- Given the vector of coefficients and the nonzero positions, recover (approximate) signal via linear combination of coefficients and basis vectors

$$
\Phi(\Theta(c)) \approx x
$$

- Decoding procedure not signal dependent
- Matrix Φ same for all signals

Nonlinear encoding/linear decoding

- Nonlinear encoding
- Instance optimal: given signal x, find best set of coefficients for given signal
- Algorithm does not guarantee basis is a good one, only representation good wrt basis

- Relatively easy to compute
- But compressibility, sparsity of signal depends on choice of orthonormal basis
- Hard to design best orthonormal basis
- Linear decoding: easy to compute

Sparsity/Compressibility

- Sparsity: ℓ_{0} "norm" $=$ number of non-zero coefficients
- Compressibility: rate of decay of sorted coefficients
- Reflects sparsity/compressibility of signal in particular basis
- Fewer non-zero coefficients \Longrightarrow fewer items to encode \Longrightarrow fewer total bits to represent signal
- Occam's razor: capture essential features of signal

Basic compressibility results

- Definition

The optimal k-term error for $x \in \mathbb{R}^{N}$

$$
\sigma_{k}(x)_{p}=\min _{z k \text {-sparse }}\|x-z\|_{p}
$$

The ℓ_{p}-error of best k-term representation for x in canonical basis.

- How to relate $\|x\|_{p}$ to $\sigma_{k}(x)_{p}$? restrict $1 \leq p<\infty$.
- Proposition

If $1 \leq p<\infty$ and $q=\left(r+\frac{1}{p}\right)^{-1}$, then for all $x \in \mathbb{R}^{N}$,

$$
\sigma_{k}(x)_{p} \leq k^{-r}\|x\|_{q} .
$$

Basic compressibility results

- Definition

The optimal k-term error over the class $K \subset \mathbb{R}^{N}$

$$
\sigma_{k}(K)_{p}=\sup _{x \in K} \sigma_{k}(x)_{p}
$$

- Let $K=B_{q}^{N}=\left\{x \in \mathbb{R}^{N} \mid\|x\|_{q}=1\right\}$.

$$
\sigma_{k}(K)_{p} \leq k^{-r}
$$

with $r=\frac{1}{q}-\frac{1}{p}$.

Redundancy

If one orthonormal basis is good, surely two (or more) are better...

Redundancy

If one orthonormal basis is good, surely two (or more) are better...
...especially for images

Dictionary

Definition

A dictionary Φ in \mathbb{R}^{d} is a collection $\left\{\varphi_{\ell}\right\}_{\ell=1}^{N} \subset \mathbb{R}^{d}$ of unit-norm vectors: $\left\|\varphi_{\ell}\right\|_{2}=1$ for all ℓ.

- Elements are called atoms
- If $\operatorname{span}\left\{\varphi_{\ell}\right\}=\mathbb{R}^{d}$, the dictionary is complete
- If $\left\{\varphi_{\ell}\right\}$ are linearly dependent, the dictionary is redundant

Matrix representation

Form a matrix

$$
\Phi=\left[\begin{array}{llll}
\varphi_{1} & \varphi_{2} & \ldots & \varphi_{N}
\end{array}\right]
$$

so that

$$
\Phi_{C}=\sum_{\ell} c_{\ell} \varphi_{\ell} .
$$

Examples: Fourier-Dirac

$$
\Phi=[\mathcal{F} \mid I]
$$

$$
\begin{aligned}
& \varphi_{\ell}(t)=\frac{1}{\sqrt{d}} \mathrm{e}^{2 \pi i \ell t / d} \quad \ell=1,2, \ldots, d \\
& \varphi_{\ell}(t)=\delta_{\ell}(t) \quad \ell=d+1, d+2, \ldots, 2 d
\end{aligned}
$$

Examples: DCT—Wavelets, 2 dimensions

$$
\Phi=[\mathcal{F} \mid \mathcal{W}]
$$

Examples: Wavelet packets

Sparsity: Tradeoff

cost of representation
$\longleftrightarrow \quad$ error in approximation
rate \longleftrightarrow distortion

Sparse Problems

- Exact. Given a vector $x \in \mathbb{R}^{d}$ and a complete dictionary Φ, solve

$$
\underset{c}{\arg \min }\|c\|_{0} \quad \text { s.t. } \quad x=\Phi c
$$

i.e., find a sparsest representation of x over Φ.

Sparse Problems

- Exact. Given a vector $x \in \mathbb{R}^{d}$ and a complete dictionary Φ, solve

$$
\underset{c}{\arg \min }\|c\|_{0} \quad \text { s.t. } \quad x=\Phi c
$$

i.e., find a sparsest representation of x over Φ.

- Error. Given $\epsilon \geq 0$, solve

$$
\underset{c}{\arg \min }\|c\|_{0} \quad \text { s.t. } \quad\|x-\Phi c\|_{2} \leq \epsilon
$$

i.e., find a sparsest approximation of x that achieves error ϵ.

Sparse Problems

- Exact. Given a vector $x \in \mathbb{R}^{d}$ and a complete dictionary Φ, solve

$$
\underset{c}{\arg \min }\|c\|_{0} \quad \text { s.t. } \quad x=\Phi_{c}
$$

i.e., find a sparsest representation of x over Φ.

- Error. Given $\epsilon \geq 0$, solve

$$
\underset{c}{\arg \min }\|c\|_{0} \quad \text { s.t. } \quad\|x-\Phi c\|_{2} \leq \epsilon
$$

i.e., find a sparsest approximation of x that achieves error ϵ.

- Sparse. Given $k \geq 1$, solve

$$
\underset{c}{\arg \min }\left\|x-\Phi_{C}\right\|_{2} \quad \text { s.t. } \quad\|c\|_{0} \leq k
$$

i.e., find the best approximation of x using k atoms.

Computational complexity

- How hard is it to solve these problems?
- How difficult are these problems as compared to well-studied problems; e.g., Primes, SAT?
- What is the asymptotic complexity of the problem?
- Is there a feasible algorithm that is guaranteed to solve the problem?
- Sparse approximation problems are at least as hard as SAT

Complexity theory: Decision problems

- Fundamental problem type: output is Yes or No
- RelPrime. Are a and b relatively prime?
- SAT. Boolean expression. Given a Boolean expression with AND, OR, NOT, variables, and parentheses only, is there some assignment of True and False to variables that makes expression True?
- D-Exact. Given a vector $x \in \mathbb{R}^{d}$, a complete $d \times N$ dictionary Φ, and a sparsity parameter k, does there exist a vector $c \in \mathbb{R}^{N}$ with $\|c\|_{0} \leq k$ such that $\Phi c=x$?
- Can be used as a subroutine (partially) to solve Exact

Complexity theory: Languages

- Encode input as a finite string of $0 s$ and $1 s$
- Definition

A language L is a subset of the set of all (finite length) strings.

- Decision problem $=$ language L
- Given input x, decide if $x \in L$ or if $x \notin L$

RelPrime $=\{$ binary encodings of pairs (a, b) s.t. $\operatorname{gcd}(a, b)=1\}$

- Algorithm A_{L} for deciding L

$$
A_{L}(x)= \begin{cases}\text { Yes } & \text { iff } x \in L \\ \text { No } & \text { otherwise }\end{cases}
$$

Complexity theory: \mathbf{P}

- $\mathbf{P}=$ polynomial time
- Definition
\mathbf{P} is the class of languages L that are decidable in polynomial time; i.e., there is an algorithm A_{L} such that
- $x \in L$ iff $A_{L}(x)=$ Yes (otherwise $A_{L}(x)=$ No)
- there is some n so that for all inputs x, the running time of A_{L} on x is less than $|x|^{n}$

Complexity theory: NP

NP \neq "Not Polynomial time"

Complexity theory: Verify vs. determine

- Verifying existence of k-sparse vector c with $\Phi c=x$ easier than determining existence
- Given witness c, check (i) $\|c\|_{0}=k$ and (ii) $\Phi c=x$
- Checks can be done in time polynomial in size of Φ, x, k
- Definition

A language L has a (polynomial time) verifier if there is an algorithm V such that

$$
L=\{x \mid \exists w \text { s.t. } V \text { accepts }(x, w)\}
$$

(and algorithm V runs in time polynomial in the length of x).

NP

- $\mathbf{N P}=$ nondeterministic polynomial time

Definition
NP is the class of languages L
that have polynomial time
verifiers.

NP

- $\mathbf{N P}=$ nondeterministic polynomial time

Definition
NP is the class of languages L
that have polynomial time
verifiers.

- $\mathbf{P}=$ membership decided efficiently
- NP = membership
verified efficiently
- $\mathbf{P}=\mathbf{N P}$?

NP

- $\mathbf{N P}=$ nondeterministic polynomial time

Definition

NP is the class of languages L that have polynomial time
 verifiers.

- $\mathbf{P}=$ membership decided efficiently

- NP = membership
verified efficiently
- $\mathbf{P}=\mathbf{N P}$?

Summary

- Formal, precise definitions of sparse approximation problems
- Set up complexity theory: goals, definitions, 2 complexity classes
- Next lecture: reductions amongst problem, hardness results

