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Tutorial on sparse approximations and algorithms

• Compress data

accurately
concisely
efficiently (encoding and decoding)

• Focus on

mathematical and algorithmic theory: sparse approximation
and compressive sensing
algorithms: polynomial time, randomized, sublinear,
approximation
bridge amongst engineering applications, mathematics, and
algorithms

• Not focus on

applications
image reconstruction or inverse problems
image models, codecs
dictionary design



Lectures

• Lecture 1: Background, problem formulation

• Lecture 2: Computational complexity

• Lecture 3: Geometry of dictionaries, greedy algorithms,
convex relaxation

• Lecture 4: Sublinear (approximation) algorithms



Basic image compression: transform coding



Orthogonal basis Φ: Transform coding

θ(c)

Φᵀ x = c

Φ ≈ x

• Compute orthogonal transform

ΦT x = c

• Threshold small coefficients

Θ(c)

• Reconstruct approximate image

Φ(Θ(c)) ≈ x
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Nonlinear encoding

=c xΦᵀ ⇒ x =
Ψᵀ

a

c'

=c yΦᵀ ⇒ y =
Ωᵀ c'

• Position of nonzeros depends on signal
• Different matrices ΦT , ΩT for 2 different signals
• Adaptive procedure, adapt for each input
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Linear decoding

≈c xΦ

cΦ ≈ y

• Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear
combination of coefficients and
basis vectors

Φ(Θ(c)) ≈ x

• Decoding procedure not signal
dependent

• Matrix Φ same for all signals



Linear decoding

≈c xΦ

cΦ ≈ y

• Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear
combination of coefficients and
basis vectors

Φ(Θ(c)) ≈ x

• Decoding procedure not signal
dependent

• Matrix Φ same for all signals



Linear decoding

≈c xΦ

cΦ ≈ y

• Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear
combination of coefficients and
basis vectors

Φ(Θ(c)) ≈ x

• Decoding procedure not signal
dependent

• Matrix Φ same for all signals



Nonlinear encoding/linear decoding

• Nonlinear encoding
• Instance optimal: given

signal x , find best set of
coefficients for given signal

• Algorithm does not guarantee
basis is a good one, only
representation good wrt basis

• Relatively easy to compute
• But compressibility, sparsity of

signal depends on choice of
orthonormal basis

• Hard to design best
orthonormal basis

• Linear decoding: easy to
compute

x =
c

≈c xΦ

Φt



Sparsity/Compressibility

• Sparsity: `0 “norm” = number of non-zero coefficients

• Compressibility: rate of decay of sorted coefficients

• Reflects sparsity/compressibility of signal in particular basis

• Fewer non-zero coefficients =⇒ fewer items to encode =⇒
fewer total bits to represent signal

• Occam’s razor: capture essential features of signal



Basic compressibility results

• Definition
The optimal k-term error for x ∈ RN

σk(x)p = min
z k-sparse

‖x − z‖p.

The `p-error of best k-term representation for x in canonical basis.

• How to relate ‖x‖p to σk(x)p? restrict 1 ≤ p <∞.

• Proposition

If 1 ≤ p <∞ and q = (r + 1
p )−1, then for all x ∈ RN ,

σk(x)p ≤ k−r‖x‖q.



Basic compressibility results

• Definition
The optimal k-term error over the class K ⊂ RN

σk(K )p = sup
x∈K

σk(x)p.

• Let K = BN
q = {x ∈ RN | ‖x‖q = 1}.

σk(K )p ≤ k−r

with r = 1
q −

1
p .



Redundancy

If one orthonormal basis is good, surely two (or more) are better...

...especially for images
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Dictionary

Definition
A dictionary Φ in Rd is a collection {ϕ`}N`=1 ⊂ Rd of unit-norm
vectors: ‖ϕ`‖2 = 1 for all `.

• Elements are called atoms

• If span{ϕ`} = Rd , the dictionary is complete

• If {ϕ`} are linearly dependent, the dictionary is redundant



Matrix representation

Form a matrix
Φ =

[
ϕ1 ϕ2 . . . ϕN

]
so that

Φc =
∑
`

c`ϕ`.

x

Φᵀ

Φ c



Examples: Fourier—Dirac

Φ = [F | I ]

ϕ`(t) =
1√
d
e2πi`t/d ` = 1, 2, . . . , d

ϕ`(t) = δ`(t) ` = d + 1, d + 2, . . . , 2d



Examples: DCT—Wavelets, 2 dimensions

Φ = [F |W ]



Examples: Wavelet packets



Sparsity: Tradeoff

xΦ c =

cost of representation ←→ error in approximation

rate ←→ distortion



Sparse Problems

• Exact. Given a vector x ∈ Rd and a complete dictionary Φ,
solve

arg min
c
‖c‖0 s.t. x = Φc

i.e., find a sparsest representation of x over Φ.

• Error. Given ε ≥ 0, solve

arg min
c
‖c‖0 s.t. ‖x − Φc‖2 ≤ ε

i.e., find a sparsest approximation of x that achieves error ε.

• Sparse. Given k ≥ 1, solve

arg min
c
‖x − Φc‖2 s.t. ‖c‖0 ≤ k

i.e., find the best approximation of x using k atoms.
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Computational complexity

• How hard is it to solve these problems?

• How difficult are these problems as compared to well-studied
problems; e.g., Primes, SAT?

• What is the asymptotic complexity of the problem?

• Is there a feasible algorithm that is guaranteed to solve the
problem?

• Sparse approximation problems are at least as hard as SAT



Complexity theory: Decision problems

• Fundamental problem type: output is Yes or No

• RelPrime. Are a and b relatively prime?

• SAT. Boolean expression . Given a Boolean expression with
and, or, not, variables, and parentheses only, is there some
assignment of True and False to variables that makes
expression True?

• D-Exact. Given a vector x ∈ Rd , a complete d × N
dictionary Φ, and a sparsity parameter k , does there exist a
vector c ∈ RN with ‖c‖0 ≤ k such that Φc = x?

• Can be used as a subroutine (partially) to solve Exact



Complexity theory: Languages

• Encode input as a finite string of 0s and 1s

• Definition
A language L is a subset of the set of all (finite length) strings.

• Decision problem = language L

• Given input x , decide if x ∈ L or if x /∈ L

RelPrime = {binary encodings of pairs (a,b) s.t. gcd(a, b) = 1}

• Algorithm AL for deciding L

AL(x) =

{
Yes iff x ∈ L

No otherwise



Complexity theory: P

• P = polynomial time

• Definition
P is the class of languages L that are decidable in polynomial time;
i.e., there is an algorithm AL such that

• x ∈ L iff AL(x) = Yes (otherwise AL(x) = No)
• there is some n so that for all inputs x, the running time of AL

on x is less than |x |n



Complexity theory: NP

NP 6= “Not Polynomial time”



Complexity theory: Verify vs. determine

• Verifying existence of k-sparse vector c with Φc = x easier
than determining existence

• Given witness c , check (i) ‖c‖0 = k and (ii) Φc = x

• Checks can be done in time polynomial in size of Φ, x , k

• Definition
A language L has a (polynomial time) verifier if there is an
algorithm V such that

L = {x | ∃w s.t. V accepts (x ,w)}

(and algorithm V runs in time polynomial in the length of x).



NP

• NP = nondeterministic
polynomial time

Definition
NP is the class of languages L
that have polynomial time
verifiers.

• P = membership decided
efficiently

• NP = membership
verified efficiently

• P = NP?

P = NP

NP

P
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Summary

• Formal, precise definitions of sparse approximation problems

• Set up complexity theory: goals, definitions, 2 complexity
classes

• Next lecture: reductions amongst problem, hardness results


