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Tutorial on sparse approximations and algorithms

e Compress data

accurately
concisely
efficiently (encoding and decoding)

e Focus on

mathematical and algorithmic theory: sparse approximation
and compressive sensing
algorithms: polynomial time, randomized, sublinear,
approximation
bridge amongst engineering applications, mathematics, and
algorithms
e Not focus on
applications
image reconstruction or inverse problems
image models, codecs
dictionary design



Lectures

Lecture 1: Background, problem formulation

Lecture 2: Computational complexity

Lecture 3: Geometry of dictionaries, greedy algorithms,
convex relaxation

Lecture 4: Sublinear (approximation) algorithms



Basic image compression: transform coding

7




Orthogonal basis ®: Transform coding
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Orthogonal basis ¢:

Q

Transform coding

o | e Compute orthogonal transform
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e Threshold small coefficients

O(c)




Orthogonal basis ¢:
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Transform coding

o | e Compute orthogonal transform
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e Threshold small coefficients

O(c)

e Reconstruct approximate image

— ®(0(c)) ~ x




Nonlinear encoding




Nonlinear encoding
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e Position of nonzeros depends on signal
e Different matrices @7, Q7 for 2 different signals
e Adaptive procedure, adapt for each input



Linear decoding

e Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear
combination of coefficients and
basis vectors

®(O(c)) =~ x

:
:




Linear decoding

e Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear

combination of coefficients and
basis vectors
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e Decoding procedure not signal
dependent




Linear decoding

e Given the vector of coefficients and
the nonzero positions, recover
(approximate) signal via linear

combination of coefficients and
basis vectors

®(0(c)) ~ x

e Decoding procedure not signal
dependent

e Matrix ¢ same for all signals




Nonlinear encoding/linear decoding

e Nonlinear encoding

¢ Instance optimal: given
signal x, find best set of
coefficients for given signal

e Algorithm does not guarantee
basis is a good one, only
representation good wrt basis

o Relatively easy to compute

e But compressibility, sparsity of
signal depends on choice of
orthonormal basis

e Hard to design best
orthonormal basis

e Linear decoding: easy to
compute
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Sparsity /Compressibility

X

Sorted indices of x in abs. value, (i)

Sparsity: ¢y “norm” = number of non-zero coefficients

Compressibility: rate of decay of sorted coefficients

Reflects sparsity/compressibility of signal in particular basis

e Fewer non-zero coefficients = fewer items to encode —
fewer total bits to represent signal

e Occam’s razor: capture essential features of signal



Basic compressibility results

e Definition
The optimal k-term error for x € RN

ok(x)p=_min |x—zl|p.
z k-sparse

The {,-error of best k-term representation for x in canonical basis.

e How to relate ||x|[p to ok (X)p? restrict1 < p < 0.

e Proposition
Ifl<p<ooandqg=(r+ %)_1, then for all x € RV,

ok(x)p < Kk Ixlq-



Basic compressibility results

e Definition
The optimal k-term error over the class K ¢ RN

ok(K)p = sup ok(x)p-
xeK

o Let K=B) ={xeR"||x|q =1}.

ok(K)p < k™"

with r =

Q=
T



Redundancy

If one orthonormal basis is good, surely two (or more) are better...



Redundancy

If one orthonormal basis is good, surely two (or more) are better...

...especially for images
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Dictionary

Definition
A dictionary ® in R? is a collection {¢y})_; C RY of unit-norm
vectors: ||p¢ll, =1 for all £.

e Elements are called atoms
o If span{py} = RY, the dictionary is complete
o If {¢¢} are linearly dependent, the dictionary is redundant



Matrix representation
Form a matrix
® = [p1 on|

so that
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Examples: Fourier—Dirac
®=[F|I]

1 ..
oo(t) = —=e?™/d =12 ... .d

Vd
we(t) =00(t) =d+1,d+2,...,2d




Examples: DCT—Wavelets, 2 dimensions

¢ =[F|W]
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Examples: Wavelet packets
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Sparsity: Tradeoff

cost of representation <—  error in approximation

rate <+— distortion



SPARSE Problems

e ExAcT. Given a vector x € R? and a complete dictionary ®,
solve
arg min||c|, st x=&c
C

i.e., find a sparsest representation of x over ®.
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i.e., find a sparsest approximation of x that achieves error e.



SPARSE Problems

e ExAcT. Given a vector x € R? and a complete dictionary ®,
solve
arg min||c|, st x=&c
C

i.e., find a sparsest representation of x over ®.
e ERROR. Given € > 0, solve

arg min[[c|ly st [[x —Pcll, <€
c

i.e., find a sparsest approximation of x that achieves error e.
e SPARSE. Given k > 1, solve

arg min ||x — &cll, st. ¢, <k
Cc

i.e., find the best approximation of x using k atoms.



Computational complexity

How hard is it to solve these problems?

How difficult are these problems as compared to well-studied
problems; e.g., PRIMES, SAT?

What is the asymptotic complexity of the problem?

Is there a feasible algorithm that is guaranteed to solve the
problem?

e Sparse approximation problems are at least as hard as SAT



Complexity theory: Decision problems

e Fundamental problem type: output is YES or NO

e RELPRIME. Are a and b relatively prime?

e SAT. Boolean expression . Given a Boolean expression with
AND, OR, NOT, variables, and parentheses only, is there some
assignment of TRUE and FALSE to variables that makes
expression TRUE?

e D-EXACT. Given a vector x € RY, a complete d x N
dictionary ®, and a sparsity parameter k, does there exist a
vector ¢ € RV with ||c||, < k such that ®c = x?

e Can be used as a subroutine (partially) to solve EXACT



Complexity theory: Languages

e Encode input as a finite string of Os and 1s

e Definition
A language L is a subset of the set of all (finite length) strings.

e Decision problem = language L
e Given input x, decide if x € Lorif x ¢ L
RelPrime = {binary encodings of pairs (a,b) s.t. gcd(a, b) =1}

e Algorithm A; for deciding L

Au(x) Yes iff x €L
X) =
t No otherwise



Complexity theory: P

e P = polynomial time

e Definition
P is the class of languages L that are decidable in polynomial time;
i.e., there is an algorithm A; such that
e x € L iff Ai(x) = Yes (otherwise A;(x) = No)
e there is some n so that for all inputs x, the running time of A,
on x is less than |x|"



Complexity theory: NP

NP # “Not Polynomial time”



Complexity theory: Verify vs. determine

o Verifying existence of k-sparse vector ¢ with ®¢c = x easier
than determining existence

e Given witness c, check (i) ||c||, = k and (ii) ®c = x
e Checks can be done in time polynomial in size of ®, x, k

e Definition
A language L has a (polynomial time) verifier if there is an

algorithm V' such that
L={x|3w st V accepts (x,w)}

(and algorithm V' runs in time polynomial in the length of x).



NP

e NP = nondeterministic
polynomial time

Definition

NP is the class of languages L
that have polynomial time
verifiers.
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efficiently

e NP = membership
verified efficiently

e P =NP?



NP

e NP = nondeterministic
polynomial time

Definition

NP is the class of languages L
that have polynomial time
verifiers.

e P = membership decided
efficiently

e NP = membership
verified efficiently

e P =NP?

NP



Summary

e Formal, precise definitions of sparse approximation problems

e Set up complexity theory: goals, definitions, 2 complexity
classes

e Next lecture: reductions amongst problem, hardness results



