Finding, Minimizing, and Counting
Weighted Subgraphs’

[Extended Abstract]

Virginia Vassilevska
School of Mathematics
Institute for Advanced Study
Princeton, NJ 08540 USA
virgi@math.ias.edu

ABSTRACT

For a pattern graph H on k nodes, we consider the problems of find-
ing and counting the number of (not necessarily induced) copies of
H in a given large graph G on n nodes, as well as finding minimum
weight copies in both node-weighted and edge-weighted graphs.
Our results include:

e The number of copies of an H with an independent set of size
s can be computed exactly in O* (2°n*~*+3) time. A mini-
mum weight copy of such an H (with arbitrary real weights
on nodes and edges) can be found in O(4°Fo()pk=s+3)
time. (The O™ notation omits poly(k) factors.) These algo-
rithms rely on fast algorithms for computing the permanent
of a k X m matrix, over rings and semirings.

e The number of copies of any H having minimum (or maxi-
mum) node-weight (with arbitrary real weights on nodes) can
be found in O(n**/3 4 n2#/3+°(1)) time, where w < 2.4 is
the matrix multiplication exponent and k is divisible by 3.
Similar results hold for other values of k. Also, the number
of copies having exactly a prescribed weight can be found
within this time. These algorithms extend the technique of
Czumaj and Lingas (SODA 2007) and give a new (algorith-
mic) application of multiparty communication complexity.

e Finding an edge-weighted triangle of weight exactly 0 in gen-
eral graphs requires Q(n?®~¢) time for all € > 0, unless the
3SUM problem on N numbers can be solved in O(N?7¢)
time. This suggests that the edge-weighted problem is much
harder than its node-weighted version.

*This material is based on work supported in part by NSF grant
CCF-0832797 at Princeton University/IAS and Princeton Univer-
sity sub-contract to IAS No.00001583. Any opinions, findings and
conclusions or recommendations expressed are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’09, May 31-June 2, 2009, Bethesda, Maryland, USA.

Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

Ryan Williams
School of Mathematics
Institute for Advanced Study
Princeton, NJ 08540 USA
ryanw@math.ias.edu

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Graph algorithms, Path and circuit problems

General Terms
Algorithms, Theory

Keywords
subgraph isomorphism, 3SUM, paths, cliques, weighted graph

1. INTRODUCTION

We consider the problems of finding and counting the copies of
a fixed k node graph H in a given n node graph G (such copies are
called H-subgraphs). We also study the case of finding and count-
ing maximum weight copies when G has arbitrary real weights on
its vertices or edges.

Subgraphs With Large Independent Sets.

In the unweighted case, the best known algorithm for count-
ing H-subgraphs uses Coppersmith-Winograd matrix multiplica-
tion [14] and runs in Q(n“*3) > Q(n°™'*) time and n®®
space. We present algorithms that do not rely on fast matrix mul-
tiplication yet still beat the above in both runtime and space usage,
for H with a large independent set. In particular, if H has an in-
dependent set of size s, we can count the number of copies of H
in an n-node graph in polynomial space and O(451°()p*=p3) or
O(s!-n*~%sn?) time, orin O(2°n*~*n?) (and exponential space).

Furthermore, our polynomial space algorithms can be used to
find minimum weight H-subgraphs in a graph with arbitrary real
edge weights. These improvements are obtained via new algo-
rithms for computing the permanent of a rectangular matrix over
a semiring. Our algorithms are simple and the runtime analysis
does not hide huge constants.

Our results on counting and finding maximum subgraphs are in-
teresting for both practical and theoretical reasons. On the practical
side, pattern subgraph counting and detection are used in diverse ar-
eas, including the analysis of social networks [8||39,36], computa-
tional biology, and network security [[12}22}|37]]. In molecular biol-
ogy, biomolecular networks are compared by identifying so-called
network motifs [29]] — connectivity patterns that occur much more
frequently than expected in a random graph. Similar techniques
are used to detect abnormal patterns in social networks (potential
spammers, bots) and undesirable usage patterns in a computer net-
work. Because of the extensive computational overhead of pre-

vious exact counting techniques, approximate counting based on
the color coding technique [4] is typically used for pattern graphs
on > 4 nodes (e.g. [1]). Unfortunately, even for approximately
counting trees, the current methods are not efficient for patterns
with more than 9 nodes. Because some of the pattern graphs have
large independent sets, we suspect our methods will be useful in the
above settings: for instance, trees with many leaves will be counted
fairly quickly.

On the theoretical side, our algorithms are interesting because
the problem of counting k-subgraphs (even k-paths) is #W|[1]-
complete (whereas approximately counting k-paths is not, cf. [2|
19, 6]). Hence if one could obtain a O(n®™*)) time algorithm for
counting for a small enough function «, the Exponential Time Hy-
pothesis would be false, and many NP problems would have subex-
ponential algorithms. Alon and Gutner [2] have proven in a formal
sense that the color-coding method cannot hope to do better than
O(nk/ 2) for counting paths exactly. Namely, for any family F
of “balanced” functions from [n] to [k], |F| > Q(n*/?). As we
obtain O(f(k)n*/?*¢) algorithms, our results may be optimal in
some sense (although they do not use color coding).

Node-Weighted Subgraphs Via Matrix Products.

In the second part of the paper, we give algorithms that apply fast
matrix multiplication to find and count weighted H-subgraphs for
general H. We consider three variants of the problem: finding and
counting H-subgraphs of maximum weight, weight at least K, and
weight exactly K (for any given weight K). Due to its relation to
the all pairs shortest paths problem, the maximum weight version
has received much recent attention.

The current best algorithm for finding a maximum weight H-
subgraph in a node-weighted graph is by Czumaj and Lingas [|16]
and runs in O(n“*/3+) time for all ¢ > 0 (when k is divisi-
ble by 3; other cases are similar). We show how to extend their
approach to counting maximum weight H-subgraphs in the same
time. Moreover, we show that the problem of counting the num-
ber of H-subgraphs of node weight at least K and even exactly K
can also be done in the same time. The previous best algorithm
for either of these problems is based on the dominance product
method [40] and has a running time of O(nw‘giw 5) (for k divisible
by 3). Our algorithms rely on a new O(n® + n22°V1°8™) glgo-
rithm for counting the number of triangles of weight K in a node-
weighted graph. In fact, we give two very different algorithms for
exact node-weighted triangles: one based on the Czumaj-Lingas
approach, and one based on a counterintuitive 3-party communica-
tion protocol for the Exactly-W problem.

Hardness Results for Edge-Weighted Subgraphs.
Finally, we provide theoretical evidence that the problem of find-
ing edge weighted H-subgraphs faster than O (n*) will be difficult,
for general H in arbitrary weighted graphs. We focus on the prob-
lem of finding triangles of weight exactly K in an edge-weighted
graph. This triangle problem is not known to have a truly subcubic
algorithm. In an attempt to explain this, we prove that unless 3SUM
has a truly subquadratic algorithm, a triangle of weight sum K in
an edge weighted graph cannot be found in O(n?5~¢) time for any
€ > 0. 3SUM is widely believed to require essentially quadratic
time (cf. [[7] for a slight improvement), so our result suggests that
the exact triangle problem for edge-weighted graphs is harder than
that for node-weighted graphs. Patrascu [33] has recently observed
that using more properties of the hash function in our reduction,
the conditional lower bound for exact weighted triangles can be im-
proved optimally to Q(n?), i.e. unless 3SUM has subquadratic al-

gorithms, finding a triangle of weight 0 in an edge-weighted graph
requires cubic time(!). We also show that subcubic algorithms for
edge weighted triangle imply faster-than-2" algorithms for multi-
variate quadratic equations, an important NP-complete problem in

cryptography.

Prior Work.

Besides the references we have already mentioned, the theoret-
ical problems of subgraph finding and counting are discussed in
many works, for example [24, |31} |13} 27} 38|]. Alon, Yuster and
Zwick [5] showed that for all £ < 7 the number of k-cycles in
an unweighted graph can be computed in O(n*) time using fast
matrix multiplication. Unfortunately their approach does not gen-
eralize for £ > 7. Bjorklund et al. [10] have recently found an in-
teresting algorithm for counting k-paths that runs in (1!;2) poly(n)
time. For sufficiently large k, their algorithm is faster than ours.
However, their algorithm only works for k-paths and uses Q((,;}2))
space. For the special case where H is a bipartite graph, our algo-
rithm uses 25+°(F)p%/2+3 time and poly(n, k) space.

Preliminaries.
For anode w in a graph (V, E), N(u) = {v € V | (u,v) € E}.
For an integer n, let [n] = {1,2,...,n}.

A graph homomorphism f from a graph G = (V, E) to a graph
H = (Vu, En) is a mapping f : V — Vg so that if (u,v) € E,
then (f(u), f(v)) € Eu. A graph isomorphism f from a graph
G = (V,E) to agraph H = (Vg, E) is a bijective map from G
to H such that both f and ' are homomorphisms. An automor-
phism is an isomorphism between a graph G and itself.

2. ALGORITHMS FROM PERMANENTS

We begin by reducing the problems of counting and minimizing
subgraphs to computing permanents of rectangular matrices. We
assume that all given graphs are undirected, but it is not hard to
modify the proofs for directed graphs.

THEOREM 2.1. Suppose the permanent of an s X n matrix can
be computed in T'(n, s) time and S(n, s) space. Let H be a graph
on k nodes {h1,...,hi} with an independent set of size s. Let
G = (V, E) be a graph on n nodes and w : E — R be a weight
function. Let C' be the set of all (not necessarily induced) copies of
H in G. Then the quantity

> 1 w@

H'€C ecE(H')

can be determined in O((nks+T(n,s))-(k—s)!(,",)) time and
O(ns + S(n, s)) space.

Note that when w(e) = 1 for all e € FE, the quantity in the
theorem is just the number of (not necessarily induced) copies of
HindG.

PROOF. Let I be an independent set of size sin H. Lett = k —
s.Let H' = H\I,with H = {hy,...,hy}and I = {s1,...,s5}.
Our algorithm proceeds by iterating over all ordered ¢-tuples ' =
(v1,...,vs) of distinct nodes. It discards T if the map h; — v; for
i € [t] is not a homomorphism. There are ¢! - (') choices for 7.

Consider an ordered s-tuple X = (x1, ..., x) of distinct nodes.
X is good with respect to T if, for every edge (hi, s;) between H’

and I, the edge (v;, z;) is in G. Let

w(X,T) = 11

h;€H',s;€I,(hi,s;)€E(H)

w(vs, x;), and

w(T) =

v, €T, (hi,h;)EE(H)

w(vs, vj).

Let Nr =) w(X,T) where the sum ranges only over X that
are good with respect to 7'. E]Then the quantity of interest is

1
] 2 DNV

where | Aut(H)| is the number of automorphisms of H. We want
to compute each N7 in O(T'(n, s)) time.

For a given T = (v1,...,v:) we make an s X n matrix A as
follows. For a fixed ¢ € [s] and s; € S, consider the neighbors of
siin H, N(s;) = {hiy,..., hi, } (for d’ < (k — s)). For every

Jj¢T,set
A[Zv.]} = H

Ce(d),(viy 1) EE

w(vizv.j)a

else set Afz, j] = 0. It takes O(ns(k — s)) time to create a matrix
A. Over all T, it takes O(nks(k — s)! (")) time to set up all A
matrices.

The permanent of A is exactly Nr: it iterates over the ways to
pick an ordered s-tuple z1,. ..,z of distinct nodes from V' \ T
so that if hy, is a neighbor of s; in H, then z; is a neighbor of vy,
summing over the edge weight products. The number of s X n
permanent computations that we need to do is (k — s)!(,"). The
space used is O(ns + S(n, s)) since we just need to store one
matrix of size s X n at any point.

Finally, we observe that computing |Aut(H)| takes negligible
time, by applying the same approach. To compute |Aut(H)|, enu-
merate all (k — s)!(,*) ordered (k — s)-tuples T of distinct
nodes of H which are isomorphic to H’. With an s x k permanent
computation we can determine the number Nr,, of good s-tuples
X with respect to T, setting [Aut(H)| = > ., Nr,. Hence

the computation of |Aut(H)| takes only (k — s)!(,*)T(k,s) <
(k= 9$)!(,".)T(n,s) time. |

A variant of the above also works for semirings where the addi-
tion operation is min or max.

THEOREM 2.2. Let R be a semiring with min (or max) as its
addition operation, and ® as its multiplication operation. Sup-
pose the permanent of an s X n matrix over R can be computed in
T(n, s) time and S(n, s) space. Let H = {hu, ..., hy} be a graph
on k nodes with an independent set of size s. Let G = (V, E) be a
graph on n nodes and w : E — R be a weight function. Let C be
the set of all (not necessarily induced) copies of H in G. Then

i & ule
c€E(H')
(or the max) can be determined in O((snk + T'(n,s)) - (k —
s)I(,".)) time and O(sn + S(n, s)) space.

PROOF. Analogous to the proof of Theorem 2.1} except we do
not need to compute Aut(H) in order to compute the minimum (or
maximum). That is, the permanent of A over the semiring is just
the minimum (maximum) value of w(T") ® N over all ¢-tuples T'.
]

Let H be any graph on k nodes. Suppose H contains an indepen-
dent set [of size s. Let G be an n node graph. Using the permanent

'In the case where H is a k-path and G is unweighted, note N is
the number of paths of the form vi — w1 — v — wp — -+ —
w¢_1 — U, where the w; are all distinct.

algorithms of the next section, we obtain the below corollaries of
Theorems2.1]and 2.2

COROLLARY 2.3. There is an algorithm which counts the num-
ber of copies of H in G, in

o (nQ(k —5)! (k " S) min {s!,n4s+°(s>}>

time. The algorithm uses poly(n, k) space.

COROLLARY 2.4. Let H be a bipartite graph on k nodes. The
number of copies of H in an n node graph G can be counted in
k!(,,,) poly(n) time.

COROLLARY 2.5. There exists an O(n® (k—s)!(,") s2°) time
algorithm which counts the number of copies of H in G. The algo-

rithm uses poly(n, k) + O(n?2*) space.

COROLLARY 2.6. Let G be a graph with real weights on its
edges. There is an O(n*(k — s)!(,") min{s!, n4*t°Y) time
algorithm which can find a minimum weight copy of H in G. The
algorithm uses poly(n, k) space.

The last corollary is obtained by applying Theorem [2.2] with a
permanent computation over the (min, 4)-semiring (where addi-
tion is min, and multiplication is +, over R U {co, —c0}). By
negating all weights we can compute the maximum weight copy as
well. Note if the weights on edges are treated as probabilities, and
we wish to find a copy of H with maximum probability, this can be
found by working over the (max, X)-semiring.

2.1 Computing Rectangular Permanents

We now investigate the problem of computing the permanent on
matrices with a small number of rows. The best known algorithm
for computing the permanent is very old, due to Ryser [35]. He
gives a formula based on inclusion-exclusion that computes the per-
manent of an » X n matrix over a ring in O(2" poly(n)) time and
O(poly(n)) space. There are two downsides to his algorithm (other
than its running time). First, it cannot be feasibly applied to alge-
braic structures without subtraction, due to its use of the inclusion-
exclusion principleﬂ Secondly, when one tries to generalize the
formula to k X n matrices, one only obtains an O((}) poly(n))
time algorithm (this is well-known folklore [30]]). Both of these
prevent us from using Ryser’s algorithm in the algorithms of the
previous section. Kawabata and Tarui [25] have given a k X n per-
manent algorithm over rings that runs in O(2"n + 3*) time and
O(2%) space, by exploiting the Binet-Minc formula for the perma-
nent [30]. In this section, we present new algorithms that work over
commutative semirings and run in FPT time with respect to k.

Over the integers, the permanent of a k£ X n 0-1 matrix counts the
number of matchings in a bipartite graph with one partition of size
k and the other of size n. The more general #k-MATCHING prob-
lem is to count the number of matchings on &k nodes in an n node
graph. It is a major open problem in parameterized complexity to
determine if #k-MATCHING is FPT or if it is W[1]-hard [18]. We
do not resolve the complete problem here, but our results do show
that for some bipartite graphs (with f(k) vertices in one partition,
for some function f) the problem is fixed-parameter tractable. Our
results also imply a 2F+°(%) (k’;2) poly(n) time, polynomial space
algorithm for #k-MATCHING.

1t is possible to apply the algorithm to other structures such as
the (min, +)-semiring by embedding that structure in the ring, but
such embeddings require an exponential blowup in the representa-
tions of elements in the semiring, cf. Romani [34]], Yuval [43].

THEOREM 2.7. The permanent of a k X n matrix A can be
computed in O(k! - kn?) operations over any finite commutative
semiring.

Note that we count time in terms of the number of plus and times
operations over the semiring along with other basic machine in-
structions, and we count space in terms of the total number of el-
ements of the semiring that need to be stored at any given point in
the computation.

PROOF. For a k x n matrix A where k < n, we have

k
perm(d) = 3 (HA[i,fun).
Filk]—[n] \i=1

fis1-1

Our permanent algorithm tries all possible permutations 7 : [k] —
[k] of the rows in A. Let A be the resulting matrix. A function f
on (k] is increasing if f(i + 1) > f(i) foralls = 1,...,k — 1.
Given m, define

perm”™(A) = Z

f is increasing

k
<H A[iyf(i)}) ~

=1
Observe that
perm(A) = Z perm™(Ax),

since for any one-to-one f there is a unique permutation 7 on [k]
such that f’ with f'(7) = f(m(¢)) is increasing.

We now show how to compute each perm™ (A) efficiently. We
create a layered DAG having k layers and at most n nodes per layer.
We include a node labelled j in layer 7 if and only if Ax[z, j] # 0.
Give the node labelled j in layer ¢ a weight of A[i, j]. Now from
layer i to layer ¢ 4 1, put arcs from all nodes labelled j to all nodes
labelled j', for all j < 5.

Finally, we need to sum the weights of all k-paths in this DAG,
where a path with node weights w1, . . ., wy is said to have weight
15, w;. Note this sum is precisely perm*(A,). The idea is to
process the nodes in topological order and do dynamic program-
ming. At each node v, we maintain the weight W,” of all i-paths
that end with v, for all ¢ = 1,...,k. Observe when v has inde-
gree 0, computing W}’ is trivial. For an arbitrary node v, we may
assume that we have already computed the Wi“/ ’s, for all nodes v’
with arcs to v. Let the nodes with arcs to v be v}, ..., v} and let
w(v) be the weight of node v. Clearly, Wi = w(v). For every
i=1,...,k— 1, compute

d !
z'v+1 = <Z W:j) ~w(v).

When this process completes, we have the weights of all k-paths
that end in each node v. It follows that perm™(A,) =3, Wy. O

We can improve the dependence on k by using recursion.

THEOREM 2.8. The permanent of a k X n matrix can be com-
puted in O(4k+°(k)n3) time and O(kn?) space over any commu-
tative semiring.

PROOF. Let A be the matrix. The idea is to try all possible
partitions of [k] into sets L and R of cardinality |k/2] and [k/2]
respectively, performing a recursive call on an |L| X n and an |R]| X
n submatrix (one indexed by L, one indexed by R) which returns
all the information we need to reconstruct the permanent. More
precisely, let j1 < j2 and define A7!72 to be the |L| X |j2 — j1 + 1|

PERMANENT(A):
If £ = 1 then
Returnn x n M with M[i, j] =32, ., ; A[1, 4]
M :=the n X n matrix of all zeroes
Forall L C [k] with |L| = | k/2],
Let By, and C', be initially all zero

Forall £ € L:
1,n
Let My, (¢} := PERMANENT(A; ").
For all 4, jo:

add A[E,JQ] . ML,{g} [i,jz - 1} to BL[i,jQ].
Forall ¢' € [k] — L:

Let My ey := PERMANENT(ART | ()))-
For all 53, 5:
add A[l', ja] - Mgy—r—qery[js + 1, 5] to CL[Js,).
Define M’ by
Ml[i:j} = Z/'Q,j3;i§j2<j3§j Bvli, j2] - Ciljs, j]
M:=M+ M.
Return M.

submatrix of A with rows indexed by L and columns ranging from
the j1th column of A to the jath column of A. Note A = A[lé]".
Let

By =3 Alf, ja] - perm (AL), and
LeL

C£11j2 — Z All, 1] -perm(Aj1+1’j2).

L\{¢}
LeL

The following identity is the key to the algorithm (the proof ap-
pears in the full version):

CLAIM 2.9.

1,5 i3,m
perm(A)= > >, BUP-Oi
LC[k] 1<j2<j3<n
|L|=k/2]

We give a simple algorithm PERMANENT to recursively compute
perm(A) using the claim. In particular, given a k X n matrix A, the
algorithm returns an n xn matrix M where M i, j] = perm(AEl’j]).
Hence M[1,n] = perm(A).

The correctness of PERMANENT follows from Claim A
naive way to construct the M’ of the algorithm requires ©(n?)
time. To implement it in O(n?) time, first compute for all i, j, ¢,
Nipli,f) = 32 _, Brli,] and Ng[l, j] = Cr[¢ + 1, j] whenever
¢ < j and Ng[(,j] = 0 otherwise. Via dynamic programming,
building up Ng and Ny, takes only O(n?) operations. We claim
that M = Ny - Nr where the matrix product is over the semiring.
Indeed, for all ¢, j we have

> NL[i, 0] - Ng[t,]

= Z _(BL[M'] + -+ Br[i,{]) - Cr[£ + 1, 7]

3 Bili, 1] - Crll2, 5] = M'[i, j].

£y,£2:1<0y <La<j

The runtime recurrence is

k 3
T(k) < k(mm]) (T(k/2) + O(n*)),

yielding T'(k) < O(k'*4*n®). The space bound holds, since
only O(n?) semiring elements are stored in each recursive call. O

We remark that Gurevich and Shelah [23]] gave a 4™ poly(n) al-
gorithm for solving TSP, by trying all partitions of the vertices into
two halves and recursing. In retrospect, the above approach is sim-
ilar in spirit.

Finally, we can obtain a faster permanent algorithm over rings.
While it also uses exponential space, it still exponentially improves
on Kawabata and Tarui’s algorithm [25]. We require a lemma
which is a simple extension of the fast subset convolution of Bjork-
lund et al. [9].

LEMMA 2.10. Let N be a positive integer and R be a ring. Let
f be a function from the subsets of [N] of size | K/2| to R and
let g be a function from the subsets of [N] of size [K/2] to R.
Suppose we are given oracle access to f and g. Consider h which
is a function on the subsets of [N] of size K to R and is defined as
Sfollows:

h(S) = f(L)-9(S—1L).

L |L|=|K/2)
Then one can compute h(S) for all S C [N],|S| = K in overall
O(K2N) time.

THEOREM 2.11. The permanent of a k X n matrix over any
ring can be computed in O(kn>2%) time and O(n?2") space.

PROOF. We use the formula from Claim [2.9] from the proof of
Theorem 2.8] o

Suppose that perm(AZ}7?) is known for all j1, j2 € [n] and all
sets T of size | k/2'| — 1, |k/2"| —2, | k/2"| — 3. Then for all sets
L of size |k/2"], |k/2"] — 1, |k/2"] — 2, B3*?% and C7'?? can
be computed in O(kn?2* /2") time. Consider A% *’2 for S of size
|k/2i7 Y| — 1, [k/271] — 2, |k/2°" | — 3. From Claim [2.9| we
have:

perm(A%L72) = Z Z
LCS j1<p2<p3<j2
ILI=LIS1/2]

The size | |S|/2] is | k/2], |k/2"] —1, 0r |k/2"| —2,and [|S]/2]

is |k/2¢] or | k/2"| — 1. The values for B3"'** and C%3"2 for L of

such sizes have been computed and stored. By computing Ny, and

Nr as in the previous theorem, and swapping the order of the sums

in the resulting expression, we can use the fast subset convolution

of Lemmato compute perm(A%L72) in O(n*k2" /2") time,

forall S of size |k/2°~"' | -1, |k/2""' | —2,0r |k/2"""] —3, and

J1,J2 € [n].

Therefore computing perm(A) takes

log k
o} <Z kn32k—i> = O(kn®2")
=0

time. The space usage is O(n?2") since at each stage we need to
store O(n?2%) values. O

3. COUNTING WEIGHTED PATTERNS

In the following, we assume k = |H| is divisible by 3. However
our results trivially extend to all k, with possibly an extra factor of
n or n? in the running time. The weight of a subgraph is defined to
be the sum of its node (or edge) weights. A graph has K-weight if
its weight is K.

The algorithms in the previous section can find a maximum (or
minimum) weight H-subgraph in a given G. They can be ex-
tended to count maximum weight subgraphs if the weights in G

J1,P2 | (1P3,72
BL CS*L .

are bounded. However, it is unclear how to extend the results of the
previous section for counting general weighted subgraphs H.

There has been a lot of recent work in finding weighted H-
subgraphs in node-weighted graphs ([40l 41} [16]]). There are sev-
eral versions of the problem: (1) find a maximum (or minimum)
weight H-subgraph, (2) find an H-subgraph of weight at least K
for a given K, and (3) find a K-weight H-subgraph for a given
weight K. The idea which has been used in attacking all three
versions of the problem is that each version can be reduced to find-
ing a weighted (maximum, at least K, or K-weight) triangle in
a larger node-weighted graph. If such a triangle can be found in
T'(n) time and .S (n) space in an n node graph, then the correspond-
ing weighted H-subgraph problem can be solved in O (k>T (n*/?))
time and O(S(n*/?)) space. The same reduction works for count-
ing H-subgraphs: if the weighted triangles in an n node graph can
be counted in 7'(n) time and S(n) space, then the weighted H-
subgraphs can be counted in O(k*T'(n*/3)) time and O(S(n*/?))
space. Here we take a similar approach, and study the correspond-
ing triangle problems.

In previous work [40] we showed that the triangles of weight
at least K in a node-weighted graph on n nodes can be counted
in O(nHTw) time. The same approach yielded an O(nHTM) run-
time for counting K -weight triangles. By binary searching on K,
this gave a way to count the maximum weight triangles in a node-

weighted graph in O~(n3+Tw) time. This implied an O(n?%89%%)

running time for counting weighted H-subgraphs (for any of the
three versions of the problem), and constituted the first nontrivial
improvement over the brute force O(n*) runtime.

Czumaj and Lingas [[16] used an interesting technique to show
that a maximum weight triangle can be found in O(n® + n?**)
time for all ¢ > 0. Their method is based on a combinatorial lemma
which bounds the number of triples in a set where no triple strictly
dominates another.

LEMMA 3.1 (CZUMAJ AND LINGAS [|16]]). Let U be a sub-
set of {1,...,nY>. If there is no pair of points (uy, uz,us) and
(v1,v2,v3) € U such that u; > wvj; forall j = 1,2,3, then
|U| < 3n2.

We show that Lemma [3.1] can be used to solve all three versions
of the weighted triangle problem in node-weighted graphs. Further-
more, it can be used to count node-weighted triangles in O(n*)

time, improving on the O(nHTW) time solution. The new algo-
rithm immediately implies an O (n“" / 3) running time for counting
weighted subgraph patterns in a node-weighted graph. We prove
the result for counting exact node-weighted triangles. Counting
maximum weight triangles or triangles of weight at least K can be
done similarly, hence we omit those algorithms.

THEOREM 3.2. Let G = (V, E) be a given n node graph with
weight function w : V. — R. Let K € R be given. Then in
n? . 20(Wlen) 4 O(n*) time one can compute for every pair of
vertices 1, j the number of K-weight triangles that include (i, j).
Moreover, for every (i,7) in a K-weight triangle, the algorithm
finds a witness k such that i, j, k form a K-weight triangle. The
witness computation incurs only a polylogarithmic runtime factor.

PROOF. Create a global n x n output matrix D that is initially
zero. After the completion of the algorithm, D[i, 7] will contain the
number of K -weight triangles that include ¢ and j.

In O(nlogn) time, sort the vertices in nondecreasing order of
their weights. We build three identical sorted lists A, B, C of the
n nodes. Our algorithm counts all triangles with a single node in
each of A, B, and C.

The algorithm is recursive, and its input is three sorted lists of
nodes A, B, C' each having at most N nodes. The algorithm does
not return information, but rather adds numbers to D when the re-
cursion bottoms out.

Let ¢ be a parameter. Partition A, B and C' into ¢ sorted sublists
{A1,..., A}, {B1,...,B:}, {C4,...,C.} with at most [N/c]
vertices each. In particular, the partition splits the sorted lists into
c sorted sublists; for example, if A = (a1,...,an) then we have
Air1 = (@i[N/c141, - - QGi+1)[N/e]) Tor i + 1 < c. Each new
sublist is now associated with the interval of weights between the
smallest and largest weights of its nodes.

Consider all ¢® triples (A;, B;j,Ck). Let [ai, aj], [bj,b}] and
[ck, c},] be the weight intervals for A;, B;, and C, respectively.
Case 1: a; = aj, b; = b}, or ¢, = ¢, If b; = b, then create two
matrices X and Y, defined as:

_ [1 if (Afp], Bslg]) € E,
X[p.dl = { 0 otherwise, and

_ [1 if(Byq],Cklr]) € E,
Ygr]= { 0 otherwise.

Multiply X and Y. For all p, g with w(A;[p]) + w(Ck[q]) =
K — b; and (A;[p], Cklq]) € E, (XY)[p, q] gives the number of
nodes in B; which form a K-weight triangle with A;[p] and Cy[q].
Add (XY)[p,q] to D[As[p], Cilg]).

The cases a; = a; and ¢ = c}, are symmetric. WLOG assume
a; = a;. Then create two matrices X and Y as follows:

AUEE i

1 if (Bj[q],Ck[r]) € E and
w(Bj[q]) + w(Ci[r]) = K — ai,
0 otherwise.

Yig,r] =

Multiply X and Y. For every p,q with (4;[p],Cklq]) € E,
(XY)[p, q] gives the number of nodes in B; which form a K-
weight triangle with A;[p] and Ci[q]. Add entry (XY)[p,q] to
D[Ai[p], Cr[q]]-

In both cases above, one can find witnesses and incur only a
polylogarithmic factor by using the Boolean matrix product witness
algorithm of Alon et al. [3]].

Case 2: a; < aj, b; < b}, and ¢ < cj. Recurse on all triples
(As, By, Cy) with intervals [a;, aj], [bs, b, [ck, ci] satisfying

ai +b; +cx < K < a; + b + .

Note we can disregard all other triples of nodes, as they could not
contain a K-weight triangle with a node in each of A;, B;, and Cl.
This concludes the algorithm.

Observe that we only add to D when the recursion bottoms out,
and at least one sublist has the same weight on all of its nodes.
Because of the partitioning, we never overcount, and every triangle
of weight K is counted exactly once.

We claim that the number of recursive calls in the algorithm is at
most 6¢2. There are two types of triples that the algorithm recurses
on: those with a; +b; + cx < K < aj + b} + ¢, (type 1) and those
with a; + bj + cx < K < aj + b + ¢}, (type 2). Let T} and T
be the sets of type 1 and type 2 triples respectively. We show that
|T;| < 3c? fori=1,2.

Each triple in 7% is uniquely determined by the three /eft end-
points of its weight intervals, (a;, bj, c). This follows since a; <
aj, by < b} and ¢; < ¢j. Similarly, each triple in 7% is uniquely

determined by the three right endpoints of its weight intervals,
(ai, 0], ck)-

To prove that |Ti| < 3¢?, let (A;, Bj,Cy) € Ty and consider
any (A, By, Cy) with a; < as, bj < by and ¢ < c¢q. Because of
the way we partitioned A, B, C, we must have a; < as, b; < by
and ¢}, < c,. Hence

ai+bj+c <K <aj+bj+c), <ae+bp+cq,

and therefore (Ag, By, Cq) ¢ T1. That s, no triple in T is strictly
dominated by another one. By Lemma there are at most 3¢?
triples in 7% . The argument for 7% is symmetric.

The time recurrence has the form:

T(n) < 6*T(n/c) + dc’(n/c)”,

for a constant d. By a technical analysis (the proof is in the full
version), ¢ can be chosen (depending on w) so that the recurrence

solves to T'(n) < O(n®) + n?20(VIesn) 0

Theorem [3.2] can be viewed as a reduction from counting node
weighted triangles to counting unweighted triangles. However the
reduction does not preserve the sparsity of the original graph, and
hence a very good algorithm for counting or finding triangles in a
sparse unweighted graph does not necessarily imply an algorithm
with a comparable running timg’| Furthermore, because of the sort-
ing, the method used in Theorem [3.2] would require linear space
to solve weighted triangle problems in truly subcubic time, even
if triangle finding can be done in n°*) space and O(n~¢) time.
This means that the reduction from counting or finding weighted
H-subgraphs to counting or finding triangles would require n‘*(*)
space. To resolve these issues, we give a completely different con-
struction which reduces the problem of finding a weighted triangle
to a small number of instances of finding unweighted triangles in
graphs with the same number of nodes and edges.

We first observe that all versions of the weighted triangle exis-
tence problems can be reduced to the K -weight (exact weight) case
with a poly(log W) runtime overhead, where W is the maximum
weight in the graph. Hence we can concentrate on the exact weight
case. The proof of Theorem[3.3]is in the full version of the paper.

THEOREM 3.3. Suppose that there is an algorithm running in
T (m,n, W) time and S(m,n, W) space which determines if there
is a triangle of weight 0, in an node or edge weighted graph on
n nodes and m edges with maximum weight W. Then given an n
node m edge graph with node or edge weights at most W, there are
O(S(m,n, W)) space algorithms for finding a triangle of weight
at least K (for any K) and for finding a maximum weight triangle,
with time O(T (m, n, W) log W) and O(T (m, n, W) log? W), re-
spectively.

Our goal is to prove the following theorem:

THEOREM 3.4. Suppose that there is a T'(m,n) time, S(m,n)
space algorithm which finds a triangle in an n-node, m-edge graph.
Then there is a T'(m, n) - 2°0V°8 W) time, O(S(m, n)) space al-
gorithm which finds a K-weight triangle (for any K) in an n node
m edge graph with node weights in [1, W].

Our method relies on the existence of a good 3 party communi-
cation protocol for Exactly-W. Exactly-W is the multiparty com-
munication problem where w € [W] is known to all parties, the ith
party has an integer n; € [1, W] on its forehead, and all wish to

*We note that an O(m**!) runtime for counting weighted trian-
gles is possible using the high degree/low degree method of Alon,
Yuster, and Zwick [5]).

determine if), n; = w. This problem was defined by Chan-
dra, Furst, and Lipton [11]. They showed that Exactly-W has
three-party communication complexity O(y/log W), but they did
not give an effectively computable version of their protocol. In the
full version of the paper, we show how to modify the protocol to
run in polynomial time, with O(log W) public bits of randomness
and O(1) communication. Although the number of random bits is
large, fortunately the error probability is good enough that we can
apply this protocol to obtain a fast exact triangle algorithm. A cru-
cial aspect of the protocol is that it does not have false positives: if
the sum is not w then it always rejects.

THEOREM 3.5. Exactly-W has a simultaneous randomized 3-
party protocol with O(1) communication complexity, where each
party runs a poly (log W) time algorithm and has access to 2log W
public random bits. In particular, let (w1, w2, ws) be an instance
of Exactly-W for three parties, with w; € [W] fori = 1,2,3. If
w1 + w2 + w3 = w then the protocol accepts with probability at
least 1/29(v g W) " und if w1 + wa + w3 # w then the protocol
always rejects.

Proof of Theorem Let G = (V, E) be a given graph. Let
V ={v1,...,vn} and let G have weights w : V — {1,..., W}
‘We run the following algorithm an expected 20(V10e W) number of
times. Pick 2log W bits at random. Let B = O(1) be the commu-
nication complexity of the simultaneous protocol in Theorem [3.5]
The algorithm cycles over every possible sequence b1, b2, b3, where
bj € {0,1}" and |b;| < Bforj € {1,2,3}. These sequences rep-
resent all possible simultaneous communications that could take
place. Note the number of sequences is O(1).

Given a possible communication sequence S, we implicitly con-
struct a graph G's on 3n nodes. G is tripartite with node partitions
Vl = {/U%7"'7,U711}7v2 = {’U%7"'7U727«}7v3 = {’U%7"'7/U'§L}'
Fori € {1,2,3} and k, £ € [n], there is an edge between v}, and
vi ™ (the indexing is done mod 3) iff (1) (v, ve) € E and (2)
the ith party accepts while holding w(vx) and w(v¢) and viewing
communication sequence S.

If one finds a triangle in G’ then the corresponding triangle in
G has weight K, by the correctness of the protocol. If there is a K -
weight triangle in GG, then with constant nonzero probability there is
a triangle in G's for some S, after 20 (V1°6 ™) runs of the algorithm.
We do not need to construct any of the graphs G, rather every time
we need to check whether an edge (U;) v,ijl) is in G's, we run the
protocol of Theorem for party ¢ in poly(log W) time, making
sure it matches S. m|

4. HARDNESS FOR FINDING SUBGRAPHS
WITH EDGE WEIGHTS

The methods for finding weighted triangles described in the pre-
vious section still fail in the edge weighted case. No truly subcubic
algorithms are known for finding a (maximum / at least K / K-
weight) triangle in an edge-weighted graph. Finding a maximum
weight triangle in truly subcubic time has received recent attention
(e.g. [41]) due to its connection to all pairs shortest paths (APSP):
the distance product (a.k.a. (min, 4)-product) of two matrices can
be used to find for every pair of nodes the minimum weight of a
triangle going through them. Understanding the hardness of find-
ing edge-weighted triangles could explain why it seems so difficult
to obtain an O(n>~¢) algorithm for APSP in n node graphs. In
this section we relate the edge-weighted triangles to 3SUM and the
multivariate quadratic equations problem. We say that a triangle in
an edge-weighted graph has K-edge-weight if the sum of its edge
weights is K.

41 3SUM

First we show a connection between finding K -edge-weight tri-
angles and the 3SUM problem, which is widely believed to have
no truly subquadratic algorithm (cf. [21]]). In particular, if the K-
edge-weight triangle problem can be solved in O(n?-5~¢) time then

3SUM is solvable in O(n%fl) time. (Recall that in the node-
weighted case of the previous section, we obtained an O(n*) solu-
tion.) Therefore if one can use an algorithm for the distance product
to find an exact edge weighted triangle in the same time, then APSP
requires essentially Q(n??®), unless 3SUM can be solved in sub-
quadratic timeE] Such a conclusion would be intriguing, especially
since the decision tree complexity of APSP is O(n?®) ([20]).

THEOREM 4.1. If for some ¢ > 0 there is an O(n*°7¢) al-
gorithm for finding a 0-edge-weight triangle in an n node graph,
then there exists a randomized algorithm which solves 3SUM on n
numbers in expected O(n% +n? %5) time.

PROOF. Suppose we are given an instance (A, B, C') of 3SUM
so that A, B and C are sets of n integers each. We first use a
hashing scheme given by Dietzfelbinger [[17]] and used by Baran,
Demaine and Patrascu [7] which maps each distinct integer inde-
pendently to one of n/m buckets where m is a parameter we will
choose laterﬂ For each i € [n/m], let A;, B;, and C; be the sets
containing the elements hashed to bucket . The hashing scheme
has two nice properties:

1. for every pair of buckets A; and B; there are two buckets
Cl;;o and Ck,;; (which can be located in O(1) time given
i,j) such thatif a € A; and b € By, thenif a + b € C then
a + bis in either Cy, ., or Ck

350 ij1e

2. the number of elements which are mapped to buckets with at
least 3m elements is O(n/m) in expectation.

After the hashing we process all elements that get mapped to large
buckets (size > 3m). Suppose a € A is such an element (WLOG
itis in A). Then go through all elements b of B and check whether
a4+ b € C. This takes O(n?/m) time overall in expectation.

Now the buckets A;, B;, C; for all ¢ € [n/m] contain O(m)
elements each. For each set S € {A;, Bi, Ci}icin/m] We pick an
arbitrary ordering of the elements and then denote by S[k] the kth
element in S.

For every ¢ € [2m] we will create an instance of 0-edge-weight
triangle as follows. For every i € [n/m], create nodes x; and
y;. Forevery 7 € [m] and s € [m] create a node zs;. Add an
edge (x;,2st) for every 4,s,t with weight A;[s]. Add an edge
(zst,y;) for every j, s, t with weight B;[t]. For every 4, j add an
edge (wi,y;) with weight Cy, [c] if ¢ < m and Cy,;, [c — m] if
c>m.

If in any one of the 2m instances there is a triangle of edge
weight 0, then this triangle has the form x;, zs¢,y; and hence for
some ¢, A;[s], B;[t], C,;[c] is a solution to the 3SUM instance.
Suppose on the other hand that there is a solution a, b, d of the
3SUM instance. Either we found this solution during the reduc-
tion to 0-edge-weight triangle, or a = A;[k], b = Bj;[f] and
d = Cy,;,[pl, for b € {0,1}, k,£,p € {1,...,m}, and 4,5 €

g1

“We note that Patrascu’s recent modification[[33] of our reduction
implies an Q(n?) hardness for APSP.

The scheme performs multiplications with a random number and
some bit shifts hence we require that these operations are not too
costly. We can ensure this by first mapping the numbers down to
O(logn) bits, e.g. by computing modulo some sufficiently large
O(log ng bit prime.

{1,...,n/m}. Then consider instance ¢ = bm + p. The triangle
T4, Yj, 2ke has weight A;[k] + B;[{] + Cy,;,[p] = a +b+d.

Each graph has n/m + m? nodes and can be constructed in
O(n?/m? 4 m*) time. The entire reduction takes O(n?/m +m?*)
expected time. By setting m = O(n'/?) we obtain O(n'/?) in-
stances of 0-edge-weight triangle, each on O(nQ/ %) nodes. Hence
if a 0-edge-weight triangle in an N node graph can be found in
O(N%57¢) time, then 3SUM is in O(n®/® + n%Jr@) =
on°® + n2_‘5%) time.

We note that the reduction can be improved slightly by instead
of creating n'/3 instances of size n>/® we create one instance of
size n*/®. Then an O(n?°~%) algorithm for 0-edge-weight triangle

would imply an O(n®® + nQ’%E) algorithm for 3SUM. To do
this, for each ¢ and j create 2v/m copies x;. and y;. (for ¢ =
1,...,24/m) of the original nodes z; and y;. For each c and each
node z,; the weight of edge (zic,zst) is A;[s] and that of edge
(Yje, 2st) is Bj[t]. Now there are 4m instances (Zic, yjcr) of the
original edge (z:,y;) and we can place the 2m numbers of C, ,, U
Ch,;, on these edges so that each number appears at least once.
Now we have one instance on O(n/+/m 4+ m?) nodes created in
O(n?/m + m*) time. By setting m = n?/®
O

we obtain the result.

4.2 Multivariate Quadratic Equations

Finally, we show that faster algorithms for finding edge-weighted
triangles would also imply faster algorithms for NP-hard prob-
lems. In particular, a better algorithm for exact edge-weighted
triangle over finite fields could be used to solve MULTIVARIATE
QUADRATIC EQUATIONS (abbreviated as MQs) faster than exhaus-
tive search. An instance of MQS consists of a set of m equations
over n variables that take values from a finite field F', where each
equation is of the form

p(z1,...,2n) =0

for a degree-two polynomial p. The task is to find an assignment
(z1,...,Tn) € F™ that satisfies all equations.

Several very important cryptosystems have been designed under
the assumption that MQS is intractable even in the average case
(e.g. [28[32])). A faster algorithm for MQs would help attack these.

To our knowledge, there are no known algorithms for MQs that
improve significantly on exhaustive search in the worst case, though
some practical algorithms suggest that MQS may have such an al-
gorithm [26} |15]. We show that an better worst-case algorithm for
MQS does exist, it edge-weighted triangle (or even k-clique) can be
solved faster. More precisely, in the F'-WEIGHT k-CLIQUE prob-
lem, we are given an edge-weighted undirected graph with weights
drawn from a finite field F' of 29 elements, and are asked if
there is a k-clique whose total sum of edge weights is zero over F'.
We consider the hypothesis that this problem can be solved faster
than brute-force search. Observe the trivial algorithm can be im-
plemented to run in O(b - n*) time.

HYPOTHESIS 4.2. Thereisa é € (0,1) and some k > 3 such
that F-WEIGHT k-CLIQUE is in O(poly(b) - n°%) time over a field
Fof 2°0) elements.

THEOREM 4.3. Hypothesis implies that MQS over a field
F on n variables has an algorithm running in O(|F|°™) time, for
some § < 1.

In the following paragraphs we establish Theorem.3] The idea
is to reduce MQS to the problem of determining whether a sum

of degree-two polynomials has a zero solution, then reduce that
problem to edge-weighted k-clique. Our reduction is very similar
to known algorithms for MAX CUT and MAX 2-SAT [42], so we
only describe it briefly here.

Let p1 = 0,...,pm = O be an instance of MQS. Let F' =
GF(p*) for some prime p and positive integer £. Let K be the
field GF(p®™). Treat K as an m-dimensional vector space over
F. Letey,...,em be abasis for this space. Define a polynomial
P:F" — K as

P(x1,...,%n) = Zeipi($17~~~,$n)-
i=1

The following is immediate from the representation of K as a vec-
tor space over F. Let (a1,...,a,) € F".

CLAIM 44. P(a1,...,an) = 0 (over K) <= foralli =
1,...,m, pi(ai,...,an) = 0 (over F).

Hence we have reduced the original problem to that of finding
an assignment a € F™ satisfying P(a) = 0 over K. It remains to
show that this problem can be reduced to F'-WEIGHT k-CLIQUE so
that an O(poly(b)n°*) algorithm for F-WEIGHT k-CLIQUE trans-
lates to an O(poly(m, n)|F|°™) algorithm for MQs. Briefly, the
reduction works by

e splitting the set of variables into k parts and listing the | F|"/*
partial assignments for each part,

e building a complete k-partite graph on k| F|"/* nodes, where

the nodes correspond to partial assignments, and

e putting weights (from the field K) on edges {u,v} corre-
sponding to the sum of those monomials in P whose vari-
able are assigned by the partial assignments v and v. Here
we need to assign degree-one terms via some convention so
that we do not overcount the degree-one terms of P.

Find a k-clique with O edge weight, when evaluated over K. Note
|K| < |F|™ poly(n), so the hypothesis entails that this clique
problem is in O(poly(m, n)|F|°™) time.

S. OPEN PROBLEMS

We conclude with three interesting open problems related to this
work.

o Is there a f(k) - n®/279) poly(n) time algorithm for the
#k-MATCHING problem for some constant € > 0 and some
function f only depending on k?

e Can one use a fast distance product algorithm to obtain a fast
algorithm for finding a 0-edge-weight triangle?

e Is there any way to find triangles fast without recourse to
matrix multiplication?

6. ACKNOWLEDGEMENTS

We thank Yiannis Koutis for calling our attention to the refer-
ence [25]. We are also grateful to Noga Alon for some helpful
discussions.

7. REFERENCES
[1] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C.
Sahinalp. Biomolecular network motif counting and
discovery by color coding. Bioinformatics, 24(13):241-249,
2008.

[2] N. Alon and S. Gutner. Balanced families of perfect hash
functions and their applications. In Proc. ICALP, pages
435-446, 2007.

[3] N. Alon and M. Naor. Derandomization, witnesses for
boolean matrix multiplication and construction of perfect
hash functions. Algorithmica, 16:434-449, 1996.

[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. JACM,
42(4):844-856, 1995.

[5] N. Alon, R. Yuster, and U. Zwick. Finding and counting
given length cycles. Algorithmica, 17:209-223, 1997.

[6] V. Arvind and V. Raman. Approximation algorithms for
some parameterized counting problems. In Proc. ISAAC,
pages 453-464, 2002.

[7] L. Baran, E. Demaine, and M. Patrascu. Subquadratic
algorithms for 3SUM. Algorithmica, 50(4):584-596, 2008.

[8] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
semi-streaming algorithms for local triangle counting in
massive graphs. In Proc. ACM SIGKDD, pages 16-24, 2008.

[9] A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto. Fourier
meets Mobius: fast subset convolution. In Proc. STOC, pages
67-74, 2007.

[10] A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto. The
fast intersection transform with applications to counting
paths. CoRR, abs/0809.2489, 2008.

[11] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party
protocols. In Proc. STOC, pages 94-99, 1983.

[12] S.S. Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,

J. Hoagl, K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS - a
graph based intrusion detection system for large networks. In
Proc. 19th National Information Systems Security
Conference, pages 361-371, 1996.

[13] N. Chiba and L. Nishizeki. Arboricity and subgraph listing
algorithms. SIAM Journal on Computing, 14:210-223, 1985.

[14] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symbolic Computation,
9(3):251-280, 1990.

[15] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient
algorithms for solving overdefined systems of multivariate
polynomial equations. In Proc. EUROCRYPT, pages
392-407, 2000.

[16] A.Czumaj and A. Lingas. Finding a heaviest triangle is not
harder than matrix multiplication. In Proc. SODA, pages
986-994, 2007.

[17] M. Dietzfelbinger. Universal hashing and k-wise
independent random variables via integer arithmetic without
primes. In Proc. STACS, pages 569-580, 1996.

[18] J. Flum and M. Grohe. The parameterized complexity of
counting problems. SIAM J. Comput., 33(4):892-922, 2004.

[19] J. Flum and M. Grohe. Parameterized Complexity Theory.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[20] M. L. Fredman. On the decision tree complexity of the
shortest path problems. In Proc. FOCS, pages 98-99, 1975.

[21] A. Gajentaan and M. Overmars. On a class of O(n?)
problems in computational geometry. Computational
Geometry, 5(3):165-185, 1995.

[22] B. Gelbord. Graphical techniques in intrusion detection
systems. In Proc. 15th International Conference on
Information Networks, pages 253-238, 2001.

[23] Y. Gurevich and S. Shelah. Expected computation time for
hamiltonian path problem. SIAM J. Comput., 16(3):486-502,
1987.

[24] A. Itai and M. Rodeh. Finding a minimum circuit in a graph.
SIAM J. Computing, 7(4):413-423, 1978.

[25] T. Kawabata and J. Tarui. On complexity of computing the
permanent of a rectangular matrix. [ECIE Trans. on
Fundamentals of Electronics, 82(5):741-744, 1999.

[26] A. Kipnis and A. Shamir. Cryptanalysis of the HFE public
key cryptosystem by relinearization. In Proc. CRYPTO,
volume 1666, pages 19-30, 1999.

[27] T. Kloks, D. Kratsch, and H. Miiller. Finding and counting
small induced subgraphs efficiently. Inf. Proc. Letters,
74(3-4):115-121, 2000.

[28] S. Landau. Polynomials in the nation’s service: using algebra
to design the advanced encryption standard. American
Mathematical Monthly, 111:89-117, 2004.

[29] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,

D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science,
298(5594):824-827, 2002.

[30] H. Minc. Permanents. Cambridge University Press, New
York, NY, USA, 1984.

[31] J. Nesetfil and S. Poljak. On the complexity of the subgraph
problem. Commentationes Math. Universitatis Carolinae,
26(2):415-419, 1985.

[32] J. Patarin. Cryptoanalysis of the matsumoto and imai public
key scheme of eurocrypt’88. In Proc. Annual Cryptology
Conference (CRYPTO), pages 248-261, 1995.

[33] M. Patrascu. Personal communication.

[34] F. Romani. Shortest-path problem is not harder than matrix
multiplication. Information Processing Letters, 11:134—136,
1980.

[35] H. Ryser. Combinatorial mathematics. Wiley & Math.
Assoc. Amer., 1963.

[36] T. Schank and D. Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. In
Experimental and Efficient Algorithms, pages 606—609,
2008.

[37] V. Sekar, Y. Xie, D. A. Maltz, M. K. Reiter, and H. Zhang.
Toward a framework for internet forensic analysis. In Third
Workshop on Hot Topics in Networking (HotNets-111), 2004.

[38] G. Sundaram and S. S. Skiena. Recognizing small subgraphs.
Networks, 25:183-191, 1995.

[39] C.E. Tsourakakis. Fast counting of triangles in large real
networks, without counting: Algorithms and laws. In Proc.
IEEE ICDM, volume 14, 2008.

[40] V. Vassilevska and R. Williams. Finding a maximum weight
triangle in n®~° time, with applications. In Proc. STOC,
pages 225-231, 2006.

[41] V. Vassilevska, R. Williams, and R. Yuster. Finding the
smallest H-subgraph in real weighted graphs and related
problems. In Proc. ICALP, volume 4051, pages 262-273,
2006.

[42] R. Williams. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theor. Comput. Sci.,
348(2-3):357-365, 2005.

[43] G. Yuval. An algorithm for finding all shortest paths using
N?2-8L infinite-precision multiplications. Inf. Proc. Letters,
4:155-156, 1976.

	Introduction
	Algorithms From Permanents
	Computing Rectangular Permanents

	Counting Weighted Patterns
	Hardness for Finding Subgraphs With Edge Weights
	3SUM
	Multivariate Quadratic Equations

	Open Problems
	Acknowledgements
	References

