
Univalent Foundations Project
(a modified version of an NSF grant application)

Vladimir Voevodsky
October 1, 2010

1 General outline of the proposed project

While working on the completion of the proof of the Bloch-Kato conjecture I have thought a lot
about what to do next. Eventually I became convinced that the most interesting and important
directions in current mathematics are the ones related to the transition into a new era which will
be characterized by the widespread use of automated tools for proof construction and verification.

I have started to actively learn about the related subjects around 2003/04. A few years ago I
have come up with an idea for a new semantics for dependent type theories - the class of formal
systems which are widely used in the theory of programming languages. Unlike the usual semantics
which interpret types as sets this ”univalent semantics” interprets types as homotopy types. The
key property of the univalent interpretation is that it satisfies the univalence axiom a new axiom
which makes it possible to automatically transport constructions and proofs between types which
are connected by appropriately defined weak equivalences. In 2009/2010 I made a number of
presentations on the univalent interpretation which were received with great interest by the type
theoretic community. As of today two special events have been planned for the further discussion
of the related ideas - a workshop in Oberwolfach in March 2011 and a year long special program
at the Institute for Advanced Study in 2012-2013.

Eventually it became clear to me that the univalent semantics is just a first step and that
I am really working on new foundations of mathematics. The key features of these ”univalent
foundations” are as follows:

1. Univalent foundations naturally include ”axiomatization” of the categorical and higher cate-
gorical thinking.

2. Univalent foundations can be conveniently formalized using the class of languages called
dependent type systems.

3. Univalent foundations are based on direct axiomatization of the ”world” of homotopy types
instead of the world of sets.

4. Univalent foundations can be used both for constructive and for non-constructive mathemat-
ics.

To see what homotopy theory has to do with foundations of mathematics consider the following
definitions which take place in the usual homotopy category:

A (homotopy) type T is said to be of h-level 0 if it is contractible,

A (homotopy) type T is said to be of h-level 1 if for any two points of T the space of paths between
these two points is contractible,

A (homotopy) type T is said to be of h-level n+1 if for any two points of T the space of paths
between these two points is of h-level n.

Then we have:

1

There is only one (up to a homotopy equivalence) type of h-level 0 - the one point type pt.

There are exactly two types of h-level 1, pt and ∅ i.e. types of h-level 1 are the truth values.

Types of h-level 2 are types such that the space of paths between any two points is either empty
or contractible. Such a type is a disjoint union of contractible components i.e. (up to an
equivalence) types of h-level 2 are sets.

Types of h-level 3 are (homotopy types of nerves of) groupoids.

More generally, types of h-level n+2 can be seen as equivalence classes of n-groupoids.

We can now reason as follows:

Set-level mathematics works with structures on sets i.e. on types of h-level 2, the collection of all
sets with a given kind of structure in a universe u0 forms a groupoid i.e. a type of h-level 3
in any universe u1 which contains u0 as a member,

Category-level mathematics works with structures on groupoids i.e. on types of h-level 3 (it is easy
to see that a category is a groupoid level analog of a partially ordered set). The collection of
all groupoids with a given kind of structure in a universe u0 forms a 2-groupoid i.e. a type
of h-level 4 in any universe u1 which contains u0 as a member etc.

Through this correspondence mathematics of all levels can be seen as dealing with structures
on homotopy types.

I believe that this point of view has been known to many mathematicians but until now it has
not been very useful because there was no way to axiomatize the world of homotopy types directly
without reducing everything to sets. The key point which makes the present day situation different
is that we now understand that

it is possible to directly formalize the world of homotopy types using the class of languages called
dependent type systems and in particular Martin-Lof type systems.

As far as I know this was first understood by myself and, independently and from a somewhat
different perspective by Steve Awodey, in around 2005.

One of the flavors of Martin-Lof type systems has been implemented in a proof assistant called
Coq. It’s development was mostly influenced by its role as a tool for the verification of programs.
At the moment it is probably the leader among the the general purpose proof assistants and is being
taught in the context of the program verification to a large number of computer science students
every year.

I am developing the univalent foundations directly in Coq. The actual ”foundations” is a body
of definitions, theorems and proofs written in the formal language of Coq and, of course, verified
by it. These Coq files can be found at http://github.com/vladimirias/Foundations/.

In my view, developments in the following three areas are most needed to ensure the adoption
of the univalent foundations (with the associated type-theoretic formalization) by mathematicians
and the adoption of the univalent semantics by the type-theorists:

1. The univalent foundations are connected with the commonly accepted language of current
mathematics through the univalent model of type theory. Most of the work on this model has
already been done but some more will be required to prepare the corresponding publications.

2

http://github.com/vladimirias/Foundations/

2. Basic mathematics has to be developed in univalent foundations (in Coq) up to a level when
other people can start to build on the provided platform.

3. In order to prove that the univalence axiom does not compromise the constructive character
of the Coq system one has to prove that this axiom is ”constructive”. The precise meaning
of this statement is discussed below.

2 Type systems and their semantics

The approach to type systems and their semantics outlined below is new. I have developed it in
2009 in order to give a rigorous construction of the univalent model for Martin-Lof type theory. It
was influenced by the approach of [6]. For another approach see e.g. [3, Ch. 11].

Type systems are syntactic objects which are specified in several steps. First one chooses a formal
language L which allows the use of variables and substitution. Then one chooses a collection of
relations on the sets of L-expressions with a given set of free variables which is stable under the
substitutions. These relations are called the reduction rules and the equivalence relation generated
by the reduction rules is called the conversion relation.

A pre-context in L is defined as a sequence of pairs (xi, Ti)i=1,...,n where xi’s are names of variables
and Ti is an expression in L with free variables from the set {x1, . . . , xi−1}. One conventionally
writes such a sequence in the form (x1 : T1, . . . , xn : Tn). A pre-sequent in L is defined as a pair
which consists of a pre-context (x1 : T1, . . . , xn : Tn) together with a pair of expressions (t, T) in
L with free variables from the set {x1, . . . , xn}. A type system based on L is defined as a pair of

subsets BB and B̃B in the sets of pre-contexts and pre-sequents respectively which satisfy a number
of conditions with respect to reduction and substitution. Elements of BB are called the (valid)

contexts of a type system and elements of B̃B the (valid) sequents of the type system. They are
conventionally written in the form x1 : T1, . . . , xn : Tn for contexts and x1 : T1, . . . , xn : Tn ` t : T
for sequents. The capital Greek letters Γ,∆ etc. are often used to denote a general (valid) context.
A sequent of the form x1 : T1, . . . , xn : Tn ` t : T is ”translated” into the natural language as the
sentence ”if x1 is a variable of type T1, x2 is a variable of type T2 etc. then T = T (x1, . . . , xn) is a
valid type expressions and t = t(x1, . . . , xn) is a valid term expression of type T”.

The conversion relation together with the relation defined by the re-naming of the context vari-
ables produce equivalence relations on BB and B̃B. Let B and B̃ be the corresponding quotients.
Let ∂ : B̃ → B be the map which sends a sequent x1 : T1, . . . , xn : Tn ` t : T to the context
x1 : T1, . . . , xn : Tn, xn+1 : Tn+1 and ft : B → B the map which sends a context x1 : T1, . . . , xn : Tn
to the context x1 : T1, . . . , xn−1 : Tn and sends the empty context (n = 0) to itself.

A model of a type system (B, B̃) with values in a category C is defined by a mapping which sends
a context Γ to an object M(Γ) together with a morphism pΓ : M(Γ)→M(ft(Γ)) and a sequent S
to a section of p∂(S) i.e. to a morphism s(S) : M(ft(∂(S)))→M(∂(S)) such that p∂(S) ◦s(S) = Id.
To define a model this mapping should satisfy some additional conditions, in particular it should
send the empty context to a final object pt of the target category. A rigorous construction of a
model of realistic type theory is usually a complex undertaking. The idea outlined below allows
to subdivide such constructions into two independent parts which require different techniques and
can be independently adapted to the changes in the type theory or in the target category of the
model.

In practice, the setsBB and B̃B are usually defined as the sets generated by some finite collection
of rules which are specific to a given type system. The rules are often written using ”above the

3

line/below the line” notation. For example

Γ, x : T

Γ, x : T ` x : T

expresses the rule which says that if Γ, x : T is a valid context then Γ, x : T ` x : T is a valid
sequent. Good examples of definitions of type systems can be found in [1] (see in particular, p.
205).

From the algebraic perspective the context and sequent formation rules may be considered as
partially defined operations on the sets B and B̃. From this perspective a type system can be seen
as model of a quasi-algebraic theory (see [5]) with two sorts B and B̃ and a set of partially defined
operations satisfying equational conditions. The notations of the underlying system of expressions
and the reduction rules are usually chosen in such a way as to ensure that this is the initial model
for a particular theory i.e. the free object with no generators.

The first part of the construction of models of a type system looks as follows. First one has
to write down a specification of the quasi-algebraic theory underlying the type system in the form
of a set of operations, equations specifying the domains of definition of these operations and the
equations specifying the properties of these operations. Then one has to prove that the type
system realizes the initial model of this theory. An example of such a proof (which does not use
the terminology introduced above) can be found in [6, pp. 181-220]. These proofs can be very long
and tedious but they are quite elementary and can be formalized and computer-verified using a
proof assistant with very simple underlying type system. In addition, the quasi-algebraic theories
which appear in the theory of type systems form an hierarchy by being combinations of different
”conservative” extensions of the core theory of contextual structures and in practice adapting a
fully formalized proof of this kind for one type system to another one can be quite easy.

Once the correspondence between a type system and a particular quasi-algebraic theory has been
established construction of models of the type system becomes equivalent to the construction of
models of the quasi-equational theory. Since one wants to obtain a model with values in a category
it means that one need to construct a model of a quasi-algebraic theory, which is an object defined
up to an isomorphism, from a category with some additional structures, which is an object defined
up to an equivalence. One technique for doing this which I found very useful is based on the notion
of a universe structure in a category. Let C be a category. By a universe structure on C we will
mean a collection of data of the following form:

1. a final object pt in C,

2. a morphism p : Ũ → U ,

3. for any morphism f : X → U a choice of a pull-back square

(X, f)
Q(f)−−−→ Ũ

p(X,f)

y yp
X

f−−−→ U

No conditions on the ”coherence” of the choices are required. Let us write (X, f1, . . . , fn) for
(. . . ((X, f1), f2) . . . , fn). Let now B be the set of sequences of the form (pt, f1, . . . , fn) (for all n ≥ 0)
and B̃ be the set of pairs (pt, f1, . . . , fn+1), s where s is a section of the morphism p(pt,f1,...,fn+1).
These two sets can be equipped with the contextual structure in a canonical way such that an

4

equivalence between categories with universe structures defines an isomorphism between the cor-
responding contextual structures. Since changing the choice of the pull-back squares or of the
final object creates an equivalent category with universe structure the contextual structure is well
defined up to a canonical isomorphism by the pair (C, p).

When C is an lccc - a locally cartesian closed category, then many important for type theory
structures on (B, B̃) correspond to structures on the pair (C, p). In particular this applies to
the structures corresponding to such type theoretic constructions as dependent products (with
evaluation, abstraction and βη-reduction), dependent sums, universes and, most importantly for
us, Martin-Lof identity types.

Combining the two parts one can prove that to construct a model of a given type system in a
given lccc C it is sufficient to construct a morphism p : Ũ → U in C together with some additional
structures on this morphism. For example, in order to interpret dependent products one needs to
choose two horizontal arrows P̃ and P in the diagram below which make it into a pull-back square:

HomU (Ũ , U × Ũ)
P̃−−−→ Ũy y

HomU (Ũ , U × U)
P−−−→ U

3 Univalent semantics of Martin-Lof type systems

The approach outlined in the previous section reduces the problem of constructing a model for a
given type system to the construction of a locally cartesian closed category C, a morphism p : Ũ → U
and some additional structures on p which depend on the particular type system. To define C and
p which correspond to the univalent model of Martin-Lof type systems we have to assume the
consistency of ZFC with at least one unreachable cardinal α. Depending on the particular rules for
the existence of universes and for the behavior of the eliminators for inductive definitions relative to
these universes in the type system we may have to assume the existence of a more or less extended
system of large cardinals which are less than α in the set theory.

As was mentioned above the univalent model takes values in the homotopy category H associated
with a given set theory. To construct this model one first chooses a locally cartesian closed model
category (in the sense of homotopy theory) for H, constructs a model with values in this category
and then projects it to H itself. I prefer to use the category of simplicial sets as the model one.

Let me recall some basic definitions. The simplicial category ∆ is the category whose objects
are natural numbers (denoted [n]) and morphisms from [m] to [n] are order preserving maps from
the finite set {0, . . . ,m} to the finite set {0, . . . , n}. A simplicial set is a contravariant functor from
∆ to Sets. The category of simplicial sets is denoted ∆opSets. It is a Grothendieck topos and in
particular an lccc. For a classic introduction to the homotopy theory of simplicial sets see [4]. The
key definitions which are needed for the formulation of the main Theorem 3.1 given below are as
follows.

One defines ∆n as the functor represented by [n]. Let Λnk , k = 0, . . . , n be the smallest simplicial
subset of ∆n which contains all simplexes of dimension n− 1 except for the k-th one.

One defines Kan fibrations as morphisms q : E → B such that for any n and k and any
commutative square of the form

Λnk −−−→ Ey yq
∆n −−−→ B

5

where the left had side vertical arrow is the natural inclusion, there exists a morphism ∆n → E
which makes both triangles commutative. A simplicial set whose morphism to the point is a Kan
fibration is called a Kan simplicial set.

A morphism i : A→ X is called an anodyne morphism if for any Kan fibration q : E → B and
any commutative square of the form

A −−−→ E

i

y yq
X −−−→ B

there exists a morphism X → E which makes both triangles commutative. Clearly, the inclusions
Λnk → ∆n are anodyne but there are actually many more anodyne morphisms. A morphism which
becomes an isomorphism if one inverts all anodyne morphisms is called a weak equivalence. A
simplicial set whose projection to the point is a weak equivalence is called (weakly) contractible.

The localization of ∆opSets with respect to the class of weak equivalences (or, equivalently the
class of anodyne morphisms) is equivalent to the usual homotopy category defined in terms of
sufficiently ”nice” topological spaces and homotopy equivalences.

By a well-ordered simplicial set I will mean a simplicial set X together with well orderings on
all of the sets Xn = X([n]) (the well orderings need not be compatible with maps between Xn’s
defined by the morphisms of ∆). Let us say that an ordered morphism f : X → Y between two
simplicial sets is a morphism together with well-orderings of all its fibers.

Since there is at most one isomorphism between two well ordered sets there is at most one
codomain fixing, order preserving isomorphism between two ordered morphisms. This makes it
possible to consider the universal ordered morphism Ṽ<α → V<α with fibers of cardinality < α such
that any ordered morphism f : Y → X with such fibers can be included into a unique, up to a
unique isomorphism, pull-back square of the form

Y −−−→ Ṽαy y
X −−−→ V<α

Since the class of Kan fibrations is closed under pull-backs (this is obvious from their definition)
there is a sub-morphism p<α : Ũ<α → U<α in Ṽ<α → V<α which is the universal ordered Kan
fibration with fibers of cardinality < α.

Theorem 3.1 [2010.2.2.th1] For a sufficiently large α there are structures on p<α corresponding
to the products of families of types, dependent sums, impredicative Prop, universes, Martin-Lof
identity types and strictly positive inductive types. Moreover, in a well defined sense, the space of
such structures on p<α is contractible.

Note that the second half of the theorem asserts that these structures on p<α are essentially
unique. The interpretations of the main constructions of the type system which arise from these
structures on p<α are as follows:

Contexts are interpreted as Kan simplicial sets and the ”display maps” M(Γ)→M(ft(Γ)) as Kan
fibrations.

Prop is interpreted as {0, 1} (note that it is not the sub-object classifier of the topos structure on
∆opSets).

6

Universes are interpreted as sub-objects of U<α classifying Kan fibrations with fibers of the size
bounded by large cardinals < α.

Dependent sum Γ, y :
∑
x : X,P (x) is interpreted as M(Γ, x : X, y : P) with the projection to

M(Γ) being the composition M(Γ, x : X, y : P)→M(Γ, x : X)→M(Γ).

Dependent product Γ, f :
∏
x : X.P (x) is interpreted as the simplicial sets of sections of the

fibration q : M(Γ, x : X, y : P) → M(Γ, x : X) over M(Γ) i.e. M(Γ, y :
∏
x : X,P (x)) is

defined by the pull-back square

M(Γ, y :
∏
x : X,P (x)) −−−→ M(Γ)y yId

HomM(Γ)(M(Γ, x : X),M(Γ, x : X, y : P))
◦ q−−−→ HomM(Γ)(M(Γ, x : X),M(Γ, x : X))

The Martin-Lof identity type IdX xx′ is interpreted as the simplicial paths space from x to x′ in
X.

To describe the interpretation of the general strictly-positive inductive types used in Coq some
additional explanations are required. However, the usual inductive types such as natural
numbers, trees etc. are interpreted as they would in any set-theoretic semantics.

Definition 3.2 The models of type theory which correspond to the pair (∆opSets, p<α) are called
standard univalent models.

These models were foreseen to some extend by Hofmann and Streicher in [2]. They have also
foreseen in that paper some of the implications which this view of the semantics will have on the
formalization of mathematics.

Two properties of p<α are of the key importance for proving Theorem 3.1. Both are proved
using the theory of so called minimal fibrations. The first one is simple:

Theorem 3.3 For any infinite α the simplicial set U<α is a Kan simplicial set.

The second one requires an additional definition which plays a key role in the whole picture.
For any morphism q : E → B consider the simplicial set HomB×B(E × B,B × E). If q is a

fibration then it contains, as a union of connected components, a simplicial subset weq(E×B,B×E)
which corresponds to morphisms which are weak equivalencies. The obvious morphism from the
diagonal δ : B → B × B to HomB×B(E × B,B × E) over B × B factors uniquely through a
morphism

mq : B → weq(E ×B,B × E)

Definition 3.4 A fibration q is called univalent if mq is a weak equivalence.

Theorem 3.5 For any infinite α, the fibration p<α is univalent.

While the univalence property of p = p<α is used to show that there are structures on p which
are required for the construction of models of Martin-Lof type systems it itself is not required for
the construction of such models. However the condition which makes it necessary for the universe
structure p to be univalent in order to support models of a given type system can be expressed

7

in the language this type system if it has a sufficiently rich universe structure (e.g. if any type is
a member of a universe which is itself a member of another universe). The corresponding formal
statement is called the univalence axiom. I will discuss this axiom in more detail below but first I
need to explain how to express the fundamental concepts of the univalent foundations in Martin-Lof
type systems. I will be using the syntax of Coq proof assistant for my constructions but one can
easily see that they can be repeated in any other Martin-Lof type system.

4 Formalization of the basic concepts of the univalent foundations in Coq

The last pages of the proposal reproduce the actual Coq code which contains the formulation
of the univalence axiom for a particular universe UU0 as well as some other constructions. As
explained in the comment at the beginning of the code the current ”universe management” in Coq
is somewhat maladapted to our purpose and as a result we need to repeat some code twice. If we
ignore this technical complication we get a sequence of definitions and constructions which leads
to the formulation of the univalence axiom and looks as follows.

First we re-define the Martin-Lof identity types under the notation ”paths”. Then, for con-
venience, we re-define the dependent sums under the notation ”total2” which reminds that it is
a total space of a fibration (the standard Coq notation for dependent sums is ”sigT”). Then we
define the notion of contractibility. Then the notion of a homotopy fiber of a function over a term.
Then we define a weak equivalence as a function such that all its homotopy fibers are contractible.
Then we prove that the identity function is a homotopy equivalence which allows us to define the
map eqweqmap whose model is md. Finally, we formulate the univalence axiom as the condition
that eqweqmap is a weak equivalence.

We also define two structures which are corollaries of the univalence axiom - the mapping
weqtopaths from the type of weak equivalences between X and Y to the type of paths between the
corresponding points of the universe and the family of paths weqpathsweq which essentially shows
that the weqtopaths is the left inverse to eqweqmap. As far as I understand the combination of
these two corollaries is equivalent to the axiom itself but I have not checked it yet.

One of the important type-theoretic corollaries of the univalence axiom is that it implies both
functional and dependent extensionality i.e. using the univalence axiom one can prove that a family
of paths betweens the values of two functions (or, more generally, sections of families) defines a
path between the functions. The proof can be found in the Coq files on my web page.

The next page of code contains the formalization of the concept of h-level for types and func-
tions which is central to the univalent ”worldview”. As was mentioned above, types of h-level 1
correspond to the truth values. In type theory truth values are usually considered to be members
of a special universe denoted Prop. Univalent approach suggests that there is no need for a special
universe called Prop and that one can should use types of h-level 1 instead. Such types, by defi-
nition, satisfy an analog of the proof irrelevance principle as well as ”local impredicativity” - the
dependent product of a family of types of h-level 1 with both the base and the fibers being in a
universe UU is again a type of h-level 1 in UU .

When one adapts this point of view one should make sure that the types which appear in the
definitions which are supposed to express conditions as opposed to structures are indeed of h-level
1. For example, to support the assertion that the key definition iscontr expresses the condition
on a type to be contractible one has to prove that for any type X the type iscontr X is indeed of
h-level 1. The proof (using the univalence axiom) can be also be found in the Coq files on my web
page. Once it is shown that iscontr is of h-level 1 it is relatively easy to show that other definitions
such as isweq or isofhlevel are of h-level 1.

According to the general univalent point of view sets in a given universe are defined as types of

8

level 2 in this universe. The property of being of level 2 is somewhat stronger then the so called
Axiom K and in particular all the Coq developments which require this axiom can be reformulated
as unconditional constructions on types of level 2.

The concept of h-levels extends from types to functions through the simple definition saying
that f : X → Y is of h-level n if all its homotopy fibers are of h-level n. In particular, f is of
h-level 0 if and only if it is a weak equivalence and of h-level 1 if and only if it is ”injective”. This
concept of h-levels of functions can be used in particular to create some order on the forgetting
”functors” which connect the moduli types of algebraic structures. For example, the fact that the
field structure is actually a property of the underlying ring structure is expressible as the assertion
that the corresponding forgetting map is of h-level 1.

5 Constructiveness of the univalence axiom

The type system of Coq is constructive. While the general definition of constructiveness is not
so easy to produce this property is well illustrated by the following fact: any term of the type
nat (natural numbers) which is in the normal form is of the form S(S(. . . (S O) . . .)) i.e. it is the
standard representation of a particular natural number n. Together with a theorem which says
that the normalization algorithm terminates and therefore each term has a normal form (which is
conditional on the consistency of something like set theory) this implies for example that if one
constructs (without the use of any axioms) any term f of the type T− > nat then by typing
eval compute (ft) for a particular t : T and waiting for a while one will obtain a concrete natural
number.

To be even more specific consider the following scenario. Suppose we have defined what a group
is, what a field is, what a finite set is and constructed a function numberofelements : FSets− >
nat. Suppose further that we have defined what GLn(k) is for a field k and n : nat and what
the finite fields Fq are. Finally suppose that we have proved that the underlying set of a general
linear group over a finite field is finite. Combining these proofs and definitions together we will
define a function primes− > nat− > nat− > nat which sends (p,m, n) to the number of elements
in GLn(Fpm). Applying the previous comment to this function we see that for each (p,m, n) the
system will compute the number of elements of GLn(Fpm) using nothing but the definitions and
the proofs of finiteness of this group.

If we add to the system the axiom of excluded middle (forall P:Prop, P∨ ¬ P) then this con-
structiveness will disappear - now there will be terms in the normal form of type nat which are
not of the form S(S(. . . (S O) . . .)) and whose ”value” as a natural number may be impossible to
determine. This shows that the axiom of excluded middle is not constructive.

I expect that the univalence axiom is constructive. In particular, I conjecture the following:

Conjecture 1 There is a terminating algorithm which for any term nn of type nat constructed
with the use of the univalence axiom outputs a pair (nn′, pf) where nn′ is a term of type nat
constructed without the use of the univalence axiom and pf is a term of type paths nat nnnn′ (i.e.
a proof that nn′ = nn). The term pf may use the univalence axiom.

This conjecture seems to be highly non-trivial. The only way to approach it which I can see
involves detailed analysis of the structure of terms of different types in the Coq system. It might
be easier to start with a more elementary type system especially in relation to the structure of
inductive definitions and the universe structure. In any event I find this conjecture to be both very
important for the univalent foundations and very interesting.

9

(* What follows is an example of Coq 8.2 code written using the Proof-general interface for Coq based on
emacs. The code consists of three modules u0, u1 and u01. The need for such an organization in this case
arises from the current state of "universe management" in Coq. While there is a mechanism for automatic
universe level assignment to occurrences
of "Type" expression this mechanism does not allow for a possibility of universe polymorphic constructions.
Since to formulate the equivalence axiom properly we need to define paths spaces for types on at least two
universe levels we have to use "manual" universe management. This is done by the creation of two modules u0
and u1 which are identical except for their names. Each starts with a definition UU:=Type which fixes a
universe named UU. When both are imported into the module u01 we find ourselves in the possession of two
universes u0.UU and u1.UU with all the results and definitions of the modules u0, u1 for each of the
universes. When Coq sees a reference to an identifier from u0 or u1 which is used without the explicit use of
"u0." or "u1." as a prefix it assigns to it prefix "u0." since u0 was imported after u1. As a result UU now
refers to u0.UU etc.

In the first four lines of u01 we rename u0.UU into UU0 and u1.UU into UU1. We also use these two universes
as parts of definitions which force Coq to introduce constrains on the corresponding universe variables which
correspond to the conditions that UU0 is both a member and a sub-universe of UU1. After these constrains have
been established any attempt to use these universes which is incompatible with the constraints e.g. to
consider UU1 as a member of UU0 will generate an error message 'Universe inconsistency". *)

Module u0.

Definition UU:=Type.

Inductive paths (X:UU)(x:X): X -> UU := idpath: paths X x x.

Inductive total2 (X:UU) (P:X -> UU) : UU := tpair: forall x:X, forall p: P x, total2 X P.
Definition pr21 (X:UU) (P:X -> UU) (z: total2 X P) : X :=
match z with tpair x p => x end.
Definition pr22 (X:UU) (P:X -> UU) (z: total2 X P) : P (pr21 _ _ z):=
match z with tpair x p => p end.

Definition iscontr (X:UU) : UU := total2 X (fun cntr:X => forall x:X, paths X x cntr).
Definition iscontrpair (X:UU) (cntr: X) (e: forall x:X, paths X x cntr) : iscontr X :=
tpair X (fun cntr:X => forall x:X, paths X x cntr) cntr e.

Definition hfiber (X:UU)(Y:UU)(f:X -> Y)(y:Y) : UU := total2 X (fun pointover:X => paths Y (f pointover) y).
Definition hfiberpair (X:UU)(Y:UU)(f:X -> Y)(y:Y) (x:X) (e: paths Y (f x) y): hfiber _ _ f y :=
tpair X (fun pointover:X => paths Y (f pointover) y) x e.

Definition isweq (X:UU)(Y:UU)(F:X -> Y) : UU := forall y:Y, iscontr (hfiber X Y F y) .

Lemma idisweq (X:UU) : isweq X X (fun t:X => t).
Proof. intros. unfold isweq. intros. assert (y0: hfiber X X (fun t : X => t) y).
apply (tpair X (fun pointover:X => paths X ((fun t:X => t) pointover) y) y (idpath X y)). split with y0.
intros.
destruct y0. destruct x. induction p. induction p0. apply idpath. Defined.

Definition weq (X:UU)(Y:UU) : UU := total2 (X -> Y) (fun f:X->Y => isweq X Y f) .
Definition weqpair (X:UU)(Y:UU)(f:X-> Y)(is: isweq X Y f) : weq X Y :=
tpair (X -> Y) (fun f:X->Y => isweq X Y f) f is.
Definition idweq (X:UU) : weq X X := tpair (X-> X) (fun f:X->X => isweq X X f) (fun x:X => x) (idisweq X) .

Definition invmap (X:UU) (Y:UU) (f:X-> Y) (isw: isweq X Y f): Y->X.
Proof. intros. unfold isweq in isw. apply (pr21 _ _ (pr21 _ _ (isw X0))). Defined.

Definition weqfg (X:UU) (Y:UU) (f:X-> Y) (is1: isweq _ _ f): forall t2:Y, paths Y (f ((invmap _ _ f is1) t2))
t2.
Proof. intros. unfold invmap. simpl. unfold isweq in is1. apply (pr22 _ _ (pr21 _ _ (is1 t2))). Defined.

End u0.

10

Module u1.

Definition UU:=Type.

Inductive paths (X:UU)(x:X): X -> UU := idpath: paths X x x.

Inductive total2 (X:UU) (P:X -> UU) : UU := tpair: forall x:X, forall p: P x, total2 X P.
Definition pr21 (X:UU) (P:X -> UU) (z: total2 X P) : X :=
match z with tpair x p => x end.
Definition pr22 (X:UU) (P:X -> UU) (z: total2 X P) : P (pr21 _ _ z):=
match z with tpair x p => p end.

Definition iscontr (X:UU) : UU := total2 X (fun cntr:X => forall x:X, paths X x cntr).
Definition iscontrpair (X:UU) (cntr: X) (e: forall x:X, paths X x cntr) : iscontr X :=
tpair X (fun cntr:X => forall x:X, paths X x cntr) cntr e.

Definition hfiber (X:UU)(Y:UU)(f:X -> Y)(y:Y) : UU := total2 X (fun pointover:X => paths Y (f pointover) y).
Definition hfiberpair (X:UU)(Y:UU)(f:X -> Y)(y:Y) (x:X) (e: paths Y (f x) y): hfiber _ _ f y :=
tpair X (fun pointover:X => paths Y (f pointover) y) x e.

Definition isweq (X:UU)(Y:UU)(F:X -> Y) : UU := forall y:Y, iscontr (hfiber X Y F y) .

Lemma idisweq (X:UU) : isweq X X (fun t:X => t).
Proof. intros. unfold isweq. intros. assert (y0: hfiber X X (fun t : X => t) y).
apply (tpair X (fun pointover:X => paths X ((fun t:X => t) pointover) y) y (idpath X y)). split with y0.
intros.
destruct y0. destruct x. induction p. induction p0. apply idpath. Defined.

Definition weq (X:UU)(Y:UU) : UU := total2 (X -> Y) (fun f:X->Y => isweq X Y f) .
Definition weqpair (X:UU)(Y:UU)(f:X-> Y)(is: isweq X Y f) : weq X Y :=
tpair (X -> Y) (fun f:X->Y => isweq X Y f) f is.
Definition idweq (X:UU) : weq X X := tpair (X-> X) (fun f:X->X => isweq X X f) (fun x:X => x) (idisweq X) .

Definition invmap (X:UU) (Y:UU) (f:X-> Y) (isw: isweq X Y f): Y->X.
Proof. intros. unfold isweq in isw. apply (pr21 _ _ (pr21 _ _ (isw X0))). Defined.

Definition weqfg (X:UU) (Y:UU) (f:X-> Y) (is1: isweq _ _ f): forall t2:Y, paths Y (f ((invmap _ _ f is1) t2))
t2.
Proof. intros. unfold invmap. simpl. unfold isweq in is1. apply (pr22 _ _ (pr21 _ _ (is1 t2))). Defined.

End u1.

Module u01.
Import u1 u0.

Definition j01:UU -> u1.UU:= fun T:UU => T.
Definition j11:u1.UU -> u1.UU:=fun T:u1.UU => T.

Definition UU0:=j11 UU.
Definition UU1:=u1.UU.

Definition eqweqmap (X:UU0) (Y:UU0) : (u1.paths _ X Y) -> (weq X Y).
Proof. intros. induction X0. apply idweq. Defined.

Axiom univalenceaxiom: forall X:UU0, forall Y:UU0, u1.isweq (u1.paths Type X Y) (weq X Y) (eqweqmap X Y).

Definition weqtopaths (X:UU0)(Y:UU0)(f:X -> Y)(is:isweq _ _ f): u1.paths _ X Y :=
u1.invmap _ _ (eqweqmap X Y) (univalenceaxiom X Y) (weqpair _ _ f is).

Definition weqpathsweq (X:UU0)(Y:UU0)(f:X -> Y)(is:isweq _ _ f): u1.paths _ (eqweqmap _ _ (weqtopaths _ _ f
is))
(weqpair _ _ f is) := u1.weqfg _ _ (eqweqmap X Y) (univalenceaxiom X Y) (weqpair _ _ f is).

End u01.

11

Inductive empty:UU := .
Inductive unit:UU := tt:unit.
Inductive bool:UU := true:bool | false:bool.
Inductive nat:UU := O:nat | S: nat -> nat.

Fixpoint isofhlevel (n:nat) (X:UU): UU:=
match n with
O => iscontr X |
S m => forall x:X, forall x':X, (isofhlevel m (paths _ x x'))
end.

Theorem hlevelsincl (n:nat) (T:UU) : isofhlevel n T -> isofhlevel (S n) T.

Definition isaprop (X:UU): UU := isofhlevel (S O) X.

Theorem isapropempty: isaprop empty.

Theorem isapropunit: isaprop unit.

Theorem isapropiscontr (X:UU0): isaprop (iscontr X).

Theorem isapropisweq (X:UU0)(Y:UU0)(f:X-> Y) : isaprop (isweq _ _ f).

Theorem isapropisofhlevel (n:nat)(X:UU0): isaprop (isofhlevel n X).

Definition isaset (X:UU): UU := isofhlevel (S (S O)) X.

Theorem impred (n:nat)(T:UU0)(P:T -> UU0): (forall t:T, isofhlevel n (P t)) -> (isofhlevel n (forall t:T, P
t)).

Theorem isasetifdec (X:UU): (forall (x x':X), coprod (paths _ x x') (paths _ x x' -> empty)) -> isaset X.

Theorem isasetbool: isaset bool.

Theorem isasetnat: isaset nat.

Definition isofhlevelf (n:nat)(X:UU)(Y:UU)(f:X -> Y): UU := forall y:Y, isofhlevel n (hfiber _ _ f y).

12

References

[1] H. P. Barendregt. Lambda calculi with types. In Handbook of logic in computer science, Vol.
2, volume 2 of Handb. Log. Comput. Sci., pages 117–309. Oxford Univ. Press, New York, 1992.

[2] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Twenty-
five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides, pages
83–111. Oxford Univ. Press, New York, 1998.

[3] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the Founda-
tions of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.

[4] Peter May. Simplicial objects in algebraic topology. Van Nostrand, 1968.

[5] E. Palmgren and S. J. Vickers. Partial horn logic and Cartesian categories. Ann. Pure Appl.
Logic, 145(3):314–353, 2007.

[6] Thomas Streicher. Semantics of type theory. Progress in Theoretical Computer Science.
Birkhäuser Boston Inc., Boston, MA, 1991. Correctness, completeness and independence results,
With a foreword by Martin Wirsing.

13

	General outline of the proposed project
	Type systems and their semantics
	Univalent semantics of Martin-Lof type systems
	Formalization of the basic concepts of the univalent foundations in Coq
	Constructiveness of the univalence axiom

