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The homotopy A-calculus is a hypothetical (at the moment) type system. To some extent one may
say that H\ is an attempt to bridge the gap between the ”classical” type systems such as the ones
of PVS or HOL Light and polymorphic type systems such as the one of Cog. The main problem
with the polymorphic type systems lies in the properties of the equality types. As soon as we have
a universe U of which Prop is a member we are in trouble. In the Boolean case, Prop has an
automorphism of order 2 (the negation) and it is clear that this automorphism should correspond
to a member of Eq(U; Prop, Prop). However, as far as I understand there is no way to produce
such a member in, say, Coq. A related problem looks as follows. Suppose T, T’ : U are two type
expressions and there exists an isomorphism 7' — T” (the later notion of course requires the notion
of equality for members of T and T”). Clearly, any proposition which is true for 7" should be true for
T" i.e. for all functions P : U — Prop one should have P(T) = P(T"). Again as far as I understand
this can not be proved in Cog no matter what notion of equality for members of T and T" we use.

Here is the general picture as I understand it at the moment. Let us consider the type system T'S
which is generated by the sequents
FU; Ui

(for : = —1,0,1,...) and the rules:

reT:U; reT:U;
F'ET:Ujsq I'ET:Type

2. The usual dependent [[-rules (inside each Uy,)

3. The usual dependent Y -rules with strong elimination (inside each U, )!

The system H\ is supposed to be an extension of T'S. In H\, U_; becomes the empty type 0 and
Uy becomes Prop. The natural numbers are defined (see (1) below) in terms of Uj.

Let C'C be the contexts category of T'S. By a model of T'S with values in a category D, I mean a
functor CC — D which ”preserves the relevant structures”. The main observation is that there is a
canonical model M of T'S with values in the usual homotopy category H provided that we consider
homotopy types based on a sufficiently large universe of sets. To define this model one starts with
a not-so-canonical model N of T'S with values in the category of spaces (actually simplicial sets,
but I will speak of spaces since they provide a more familiar model for homotopy types) and then
sets M to be the composition of N with the projection Spc — H. The main properties of N are
are follows.

We may also consider systems T'Sx where X is any ”recursive” partially ordered set such that U, is defined for
any x € X and the rules are modified accordingly. If X is just a finite set with the trivial ordering then it seems that
T'Sx will be just the usual typed A-calculus with products generated by n primitive types. The first system with real
dependencies is T'Sx where X = {0, 1} with the usual ordering.



1. By definition N takes a context I' to a space N(I).

2. A sequent of the form I' - T : Type (where T is an expression) defines a morphism
T,z:T)—-T
in CC. Morphisms of this type go to fibrations

N(I;T): NI,z : T) — N(I),

3. A sequent of the form I' ¢ : T' (where T" and t are expressions) defines a morphism
' - (T,z:T)
in CC'. Morphisms of this type go to sections
NT;T,t): N(T) - N(I,z : T)

of N(I'; T

Given I' F P : Type and I,z : P+ Q : Type we can form I' - [[z : P.Q and '+ ) 2z : P.QQ. On
the model level our data defines two fibrations

NI,z:Py:Q) > N(,z:P)L NT)

The fibration
N, z:[[=: PQ) — N(I)

is the "p.(q)”. Its fiber over x € N(T') is the space of sections (continuous ones!) of the fiber of ¢
over .

The fibration
N, z: Zx :P.Q)— N(I)

is the "pi(q)”. It is simply the composition of p and q. The meaning of term constructors associated
with > and [] is the obvious one. If we took a model with values in Sets where all maps are
fibrations we would get the usual rules for interpretation of »_ and [] but formulated in a slightly
unusual way.

The rigorous description of the value of N on U,’s is complicated. Up to homotopy equivalence,
the space N(U,) is the nerve of the n-groupoid of (n — 1)-groupoids in the ZF with n — 2 universes
(see below for the explicit form in the case n < 1). Alternatively, one may say that U, is the base
of the universal fibration whose fibers are (n — 1)-types which lie in ZF with n — 2 universes (so
that itself it lies in the ZF with n — 1 universe. The equivalence of these two points of view follows
from the fact that n-groupoids are the same as n-homotopy types.

In particular,
MU-1)=10

and
M(Uy) ={0,1}.



We further have
M(Uy) =[] BSn

n>0

where BS,, is the classifying space of the permutation group on n elements (BSy is empty, BS; is
one point and BSs is homotopy equivalent to RP* = BZ/2). In particular, mo(M (U;)) = N and
one uses U; to define the type of natural numbers in HA. As far as I understand at the moment
M(Uz) is [1xey, BAut(X) where uz is the set of equivalence classes of all groupoids with sets of
morphisms and objects being Z F-sets. Starting with Us one needs ZF with universes in order for
the model to be defined. The model of Us is the nerve of the 3-groupoid of 2-groupoids in ZF with
one universe.

This model is very ”incomplete” in the sense that there are many type expressions 7T such that
M (T') is non-empty while T has no terms in 7'S. This is of course unavoidable because of the
Goedel’s theorem. However, some of these incompletenesses are of a special kind. For example
M(U_1) = () hence we may add the empty type rule

I'kFe:U_y TET:Type
', T): T

which expresses the fact that if the empty type is inhabited in a context then any other type is. It
does not look provable in T'S.

Other examples of such rules involve the equality types. Given a valid type expression 1" : U,, and
two term expressions t1,¢2 : T' we get on the level of models a space X = M (T') (up to homotopy)
and two points 1,22 € X. One of the most important observations concerning the picture outlined
so far is that it is possible to define equality (equivalence) types Eq(T;¢1,t2) in T'S such that the
model of Eq(T;t1,t2) is (homotopy equivalent to) the space P(X;z1,22) of paths from z1 to 22
in X.

The definition proceeds in the following steps:

Define the contractibility on the level of T'S. Set
true = (U_1 - U_1) : Uy

false =U_1 : Up.

For T, T" : Uy set
Equiv(T,T") = (T —T') x (T' = T).

For T : U, set
Contr(T) = HF : Uy, — Up.Equiv(F(T), F(true))

then M (Contr(T)) # 0 iff M(T) belongs to the same connected component of M (U,,) as
M (true) i.e. if M(T) is a contractible space. In that case M (Contr(T)) is itself contractible.

Define representable functors on the level of T'S. Suppose T : U,4; is a type (expression).
I want to think of its model X = M (T) as of the nerve of some n-groupoid in U,41. The
members of T' correspond to objects. For T' = U,, we get the n-groupoid of all n— 1-groupoids.
Functions T' — U, correspond to functors from T to the groupoid of all groupoids. Among



these functors there are representable ones i.e. we have the homotopy type Rep(T") which
maps to I' — U,. For F : T — U, set

rep(F) = Contr(Zt : T.F(T)).
One verifies that on the level of models rep(F) # () iff F' is representable. Set

Rep(T ZF T — Uy.rep(F).

then the model of Rep(T') is the space of representable functors on 7. By abuse of notation
I will write F'(t) : Uy, instead of the formal (7F')(t) for F': Rep(T) and ¢ : T

Define the equality types. For T : U, and T'1,t2 : T one sets:
Eq(T;t1,12) = [ [ F : Rep(T).F(t1) — F(t2)

where I write F'(¢) for F': Rep(T') instead of the correct but long (7F')(t).

Theorem 1 There is a homotopy equivalence

M(Bq(T;t1,12)) = P(M(T); M(t1), M(£2)).

Once the equality types (path spaces) are defined many other constructions familiar on the model
level can be formulated on the level of the type system. The first thing to define is the level
"filtration” on type expressions or, equivalently on the types U,. The model of U, has a natural
filtration by subspaces U, k, k = 0,...,n where Uy, is (the nerve of) the k-groupoid of (k — 1)-
groupoids in the universe U,. In particular U, ; is the (nerve of) the usual groupoid of sets in U,
and their isomorphisms. We define a (—1)-groupoid as a set where any two elements are equal
i.e. one of the two sets ) and pt. Hence for any n > 0 the model of U, is the two point set
{0,1} = {true, false}.

Uoo Uip Uz Uso
Uig —— Uz Us 1
Uz Us,2

Ugz —— ...

All the arrows are inclusions with the image being a disjoint union of some of the connected
components of the target and the usual arguments a-la Russell’s paradox imply that except for the
ones marked as equalities the arrows are proper inclusions e.g. U (which is responsible for sets
in Us) is strictly larger than U; ; (which is responsible for sets in U;) etc.



To get U, 1’s as type expressions we first define type expressions Lvy(T) : Uy for T : U, which are
"indicator functions” for U, ; setting:

Lv_1(T) = Contr(T)
and for £ >0
Lug(T) = [[t1: T. [ [ 12 : T-Lvg—1(Eq(T; 1, 12)).

Then
Unjk =Y T : Up.Lvg(T).

One verifies easily that this definition is consistent with the model level definition given above. We
will also use the following notations. For F': 7" — T and t : T set

Hfiber(F,t) =Y t': T'.Eq(T;t,F(t'))
one verifies easily that the model of H fiber is the homotopy fiber of F' over t. Set further
isheq(F) = Ht : T.Contr(hfiber(F,t)).

This is a truth value and the model of isheq(f) is true iff the model of f is a homotopy equivalence.
Set further
Heq(T',T) =Y F:T — T.sheq(F)

then M(Heq(T',T)) is the space of homotopy equivalences from 7" to T. For a type expression T
set:
N(T)=(T—-U-1) > U

it is a truth value and on the model level II_1(T") = true iff T is not empty. For F: 7' — T set
Im(F) = t:T.IL(H fiber(F,t)).
The model of I'm(F) is the union of connected components of T' whose pre-image under F' is
non-empty. Set
ev(T'\T)=X:TAF:T' -T.Ft): T — (T'—=T)—T)
IIy(T') = Im(ev(T, Up)).
The model of IIp(7T) is the set of connected components of T'.

We can now give more examples of things which hold on the model level but (probably) can not
be proved on the level of T'S or even T'S with the empty type rule.

1. The natural maps U, o — U,+1,0 are equivalences on the model level for n > 0. It seems to
be unprovable in T'S. To fix it one may add the rule
ET:Type Tt a: Lvy(T)
T : U ’

Alternatively one can impose stabilization together with the Boolean rule by adding a term

constructor
P'ET:Type T'Fa: Luy(T)

I'kboo(T,a): (T —0)—0)—T




2. Set
N = o (Uy). (1)

The model of N is of course N — the set of natural numbers. It is not clear however to what
extend N is a natural numbers object in the sense of type theory.

3. For T : U, we may consider T also as a member of U,;. Thus we have two definitions of
Rep(T') one using U,, and another one using U,+1. They should agree i.e. any F : T — U,41
such that rep(F') = true should factor through U,,. More precisely there are two expressions
Rep,(T) and Rep,+1(T) and it should be possible to construct a function Rep,.1(F) —
Rep,,(F) which is ”inverse” to the obvious one going in the opposite direction.

4. Given T, T’ : U, there are two different expressions which both model to the space of equiva-
lences from T” to T'. One is Eq(U,;T',T) and another one is Heq(T',T). So we should have
an equivalence

Heq(T',T) — Eq(U,; T',T).

Again it is unclear how to construct it on the level of the type system.

A subtle thing about imposing all these properties on T'S' is that while they all hold for M it is not
clear which ones one may get on the level of N. In particular the stabilization of Up;’s does not
hold for the version of N which I have been considering. For example N (Up2) is much smaller as a
space then N(Up3) since there are many more one point sets in ZF with a universe then there are
in "pure” ZF.

The context category CHA of HA has a structure reminiscent of a Quillen model structure or
rather of the structure of a category with fibrations and weak equivalences considered by Baues in
” Algebraic Homotopy”. The associated homotopy category H H is some sort of a free homotopy
category.

Originally, I was considering a different approach to HX where the equality types where introduced
as ”primitives” along with > and [ and the universes where ”defined” but it seems to me now that
it is nicer to start with ), [ and universes and define the equality types later. What is left from this
earlier stage is certain understanding of which properties of/structures on the equality types might
be sufficient to ensure that they behave nicely (e.g. that for any ¢ : T, m1(T';t) = Ilo(Eq(T;t,t)) is
a group or that there is a long exact sequence of "homotopy groups” associated to a fibration).

The advantage of H)\ and its homotopy-theoretic model over the less sophisticated type systems
is that it better reflects the way mathematicians envision ”types” corresponding to mathematical
structures of higher level. For example if we fix the size of the universe n and write in the usual
way the type expression for, say, the type Gr(U,) of groups in U,, then the model of Gr(U,,) will
be (the nerve of) the groupoid of groups in the universe U, and their isomorphisms. Similarly,
if we write down the definition of a category in a proper way then the model of Cat(U,) will be
(the nerve of) the 2-groupoid of categories in U,, their equivalences and natural isomorphisms
between equivalences. Moreover, any construction on categories described in the language of HA
is automatically ”invariant” under equivalences of categories. E.g. any function we can describe in
H\ from Cat(U,) to Gr(U,) will on the model level correspond to a construction which produces
a group from a category which maps equivalences between categories to isomorphisms between the



corresponding groups. In the usual type systems we can do something like that for types of ”level
17 i.e. sets with structures but not for higher levels (e.g. categories).

At the moment much of what I said above is at the level of conjectures. Even the definition of the
model of T'S in the homotopy category is non-trivial. Similarly, the definition of equality types in
terms of universes is rather involved and I am not sure which of the properties of these types have
to be imposed so that the rest will follow.



October 13, 2009 Thoughts about future automation/formalization of mathematical proofs.

The following structure is suggested for math assistants based on type systems. Such an assistant
should consist of the following components:

1. A type system - which may be inconsistent,

2. A subset of this type system T'Szr which need not be closed under any operation but which
comes together with an algorithm verifying that a given sequent belongs to T'SzF,

3. A formally constructed model of 'Sz ”with values in Zermelo-Fraenkel set theory” (see below).
Better yet a program (”compiler”) which transfers proofs which belong to this subsystem to ZF-
theorems.

4. Potentially, a machinery for the extension of the type system T'Szr which is built in such a way
that an attempt to extend the underlying T'S will generate a ”proof obligation” in ZF.

5. Provisions for the flavors of ZF.

October 18, 2009 We construct a type system HA which has an essentially unique model
My : FC(H)\) — H with values in the homotopy category H corresponding to a set theory with
large cardinals. Due to this uniqueness of the model, the types and terms of this system have an
intrinsic semantics. We suggest that this type system provides a natural starting point for the
formalization of contemporary mathematics.

We further suggest that it is important to consider not only HA and M but all quadruples of the
form (T'S, ¢rs, Mrs,rs) where T'S is a type system (or, strictly speaking any recursive set-level
category), Mrg : FC(TS) — H is a model of T'S in H, ¢rg a contextual functor FC(H\) —
FC(TS) and ¥pg a natural isomorphism Mpgy — Mrsors.

From this perspective H A provides an initial formalization and different quadruples as above provide
semantics-preserving enrichments of this formalization. Recognizing that the goal of constructing
convenient extensions of H\ over M is unlimited we concentrate here on the construction of the
back-bone structure (H\, Mp)).

November 4, 2009 Notes for the Munich talk.

Main message 1: I suggest that there is ”the” canonical model for polymorphic dependent type
systems with intensional equality.

Main message 2: an outline of the structure of the future ”proof environment”.
1. Cog-like proof assistant. 2. Formalized extension of the core model to the type system of the

proof assistant. An implementation of this extension in the form of a program which translates
proofs in that type system into (formal) proofs in extended ZFT. 3. A tool which allow to extend



and modify the underlying type system (including the introduction of new axioms and new rewriting
rules) which accepts only modifications which are supplied together with an ”authorization” code
which is essentially a formal (in ZFT) construction of an extension of the core model to the modified
type system.

What is to be done:
A. General algebraic theory of type systems.

1. Formal ”algebraic” definition of ”a type system”. 2. Notion of a type system defined by rules
with an easy proof that any rule system defines a type system. 3. Notion of a free rule system
(roughly corresponding to a rule system such that a sequent in the corresponding type system
carries with it a well defined up to a well defined equivalence sequence of rules which led to it), 4.
A theorem which shows that any system of pre-universes (in an lec?) with additional structures
directly corresponding to the rules defines a closed model of a free type system.

B. The core universe system in A°PSets.

1. Definition of univalent fibrations. Properties of such fibrations. 2. Construction of the universal
univalent fibration corresponding to an inaccesible cardinal. 3. Construction of the ”standard” II,
Y and Prop structures on this universe (straightforward).

C. Applications to pCIC-Coq.

1. Proof that pCIC is a type system defined by a free rule system. 2. Construction of the structures
corresponding to the induction rules of Coq on the core universes in A Sets.

D. Design and implementation of a seed Coq-like (Cog-based ?) system grounded through the core
model in the ZFT with tools for the addition after verification (in the sense of compatibility with

the core model) of new axioms and re-writing rules.

1. Several years ago I understood something new about how to construct models for dependent
type systems.

2. The precise formulation of my ideas about models is most conveniently achieved through the
use of Cartmell-Streicher contextual categories.

3. Pre-universe structure on a category. Category C'C(C,p). Notion of a closed model.



November 13, 2009. To Munich lecture.

Coq —— Type systems —— Universe maps —— Univalent fibrations.

Scenario:
1. Axiom cls : forall P : Prop, PV —P.
2. Theorem 100monkeys : exists n : nat,n = n + 1. Proof. .... Qed.

Why can we be sure that if such a thing happened it would mean that the
current foundations of mathematics are inconsistent?

3. Theorem (100monkeys edited) thl : False. Proof. .... Qed.
Why is this impossible?
The proof will be translated by Coq into a sentence of the form

cls : forall P : Prop, PV —P t thl : False

where thl will be an expression (possibly a very long one) with one free
variable named ”cls”.

Qed command gives instructions to a small independent sub-program called
a proof-checker to verify that the sentence

cls : forall P : Prop, PV =Pt thl : False

is correct. ”Correct” from the point of view of this program means ”well
formed” or ”grammatically correct” a condition which is very easy to verify.

To make sure that 100monkeys theorem would indeed mean that we have to
reconsider all of the contemporary mathematics we have to prove, using cur-
rent foundations of mathematics, that there does not exist any grammatically
well formed sentence of the form

cls: forall P: Prop, PV =Pt thl : False (2)

10



All well formed sentences are of one of the two types:
Cp=Ax1:T1;...;0,: Ty}
Jp=Axy:Ty;. .5z Tyt T}
where z1, ..., x, are names of variables and
T; € Expressions({xy,...,x;1}), t,T € Expressions({xy,...,x,})

They are called contexts and term sequents. Our main example is a term
sequent.

The only currently known approach to proving that a 100monkeys theorem
is 7impossible” is based on construction of a mapping which assigns to any

element {xy : T1;...;2, : T,,} of C), a sequence of maps of sets

M(xlle;...;xn:Tn)M ......... %M(mlle)ﬂpt
and to any element {z1 : T1;...;2, : T, -t : T} of J, a sequence of maps of
sets

pTl;..‘;Tn;T

M(xqy: Ty Ty T) M(xy: Ty .z T,) ————
together with a section
s(t): M(xy Ty .52y Ty) — My 2Ty ooy 2 T T)

of pry. .17 and such that

1. M(cls : forall P: Prop, PV —P) # )
2. for any {1 : T1;...;2, : T} in Gy, M(xy: Th;. .5y 2 Tyy; False) = ().

Then (2) would map to a sequence
M(cls : forall P : Prop, PN—P; False) 2 M(cls : forall P : Prop, PN—P)

— pt

together with a section of p which is impossible since M(cls : forall P :
Prop, PV —P; False) is empty and M (cls : forall P : Prop, PV —P) is not.

11



Formal languages whose valid sentences have the form as above are, somewhat
informally, called "type systems” and mappings of the form described above
are called (generalized, set-theoretic, classical) models of a type system.

In order to be sure that a proof of a 100monkeys theorem in a given proof as-
sistant should make us worried about the foundations of mathematics (which
is equivalent to saying that a theorem whose proof is accepted by this proof
assistant may be considered proved by the mathematical community) we
should know that:

1. There is a formal specification of the type system which underlies the
proof assistant,

2. There is an accepted mathematical proof that a set-theoretic model of
this type system exists,

3. There are several independent implementations of the type checker for
this type system.

I will add to this a strengthening of the second requirement which I think is
important

(*) There should be a formalized description of a set-theoretic model which
would allow one to formally verify the possibility of adding new axioms to
the basic context.

The current state in the case of Coq:
1. formal specification exists but is not easy to find,

2. a mathematically acceptable construction of set-theoretical model does
not exist (to the best of my knowledge),

3. independent proof checkers do not exist (to the best of my knowledge).

12



The Coq type system is very sophisticated. What is known about set-
theoretic models of less complex type systems?

Example: ECC (extended calculus of constructions) developed by Luo in the
late 80-ies early 90-ies.

This theory has constants Typey, Types, ..., (i.e. contexts of the form {z :
Type;} where x is any name of a variable, are valid) together with ”construc-
tors” II, A, ev, X3, w1, mo and pair.

It also has rules which allow one to consider members of the types Type; to
be types themselves. More precisely, for each ¢ > 0, {T : Type;,xz : T} is a
valid context (as always z,T are names of variables).

A set-theoretic model of ECC defines for each ¢ and any two variable names
x, T a map of sets

piTay : M(T : Type;,x :T) — M(T : Type;)

Since everything should be invariant under the re-naming of variables this
map actually depends only on i. Let us denote M(T : Type;,z : T) by Uj,
M (T : Type;) by U; and ths map by

pi - U; — U,.

If we assume that the model which we consider behaves well with respect to
variable substitution then it follows from the rules of ECC that there should
be pull-back squares of the form

~ ~

Uy — Uin Uy — Uin
l l l l
pt — Ui Uij — Uin

The maps p; are called the universe maps corresponding to a model.

13



We can now ask:

Q1. Does there exist a set-theoretic model of ECC such that for at least one
context {xy : T1;...;2, : T),} one has M(xy : Ty; ... 2, 2 Ty) = 07

Q2. Is there a natural choice for such a model?

The answer to the first question is known to be ”yes”. The answer to the
second is "no”. A model corresponds to the choice of the maps p; together
with some additional structures on these maps which are called II- and -
structures and while one may argue that there are natural candidates for
maps p; in Sets there are many non-equivalent choices of II and > structures
on these maps.

It turns out however that there are "universal” maps p; in the homotopy cat-
egory which carry canonical IT and X structures which allows one to construct
a very interesting model of ECC with values in this category.

We will use simplicial sets A?Sets = Funct(A, Sets) as a model for H.

The basics of simplicial homotopy theory:

1. A morphism p : F — B is called a Kan fibration if for any commutative

square of the form
Al — F

A" — B
there exists a morphism A" — E which makes the two triangles com-

mutative. A Kan simplicial set is a simplicial set X such that X — pt
is a Kan fibration.

2. A morphism 7 : A — X is called anodyne if for any commutative square

of the form
A — F

i| 7

X — B

14



such that p is a Kan fibration, there exists a morphism X — E which
makes the two triangles commutative,

3. Localization of A°?Sets by anodyne morphisms is called the homotopy
category H. Morphisms which become isomorphisms in H are called
weak equivalences.

There are two fundamental theorems:

1. Factorization theorem: for any f : X — Y there exists a factorization
X 5 X' L v such that i is anodyne and f’ is a Kan fibration,

2. Representation theorem: H is equivalent to the category of Kan simpli-

cial sets and homotopy classes of maps (where homotopy is h : X x Al —
Y).

Consider the diagonal X — X x X. We can factorize it as X — PX — X x X
where the first map is anodyne and the second a fibration. If X is Kan then
one can take the space of simplicial paths Hom(A!, X) as PX.

Let p: E — B be a (Kan) fibration. Then Fp: Homp, z(F x B,B x E) —
B x B is a Kan fibration whose fiber over (b1, b2) € B is the space of maps
Hom(Ey,, Ey,). There is a natural section of Fp over the diagonal which
extends (by the definition of an anodyne map) to a morphism

mm0(p) : PB — Hompg, 5(E x B, B X FE)
One can easily see that for any b1, by € B the map
mmO(by, b)) : P(B,by,bs) — Hom(Ey,, Ey,)
defined by mm0 takes values in the subspace
Heq(Ey,, Ey,) C Hom(Ey,, Ey,)
of maps which are weak equivalences and thus defines a map

mm(bl, bg) : P(B; bla b2) - HQQ(EbU Eb2)

15



Definition 2 A fibration p is called univalent if for any by,by € B the map
mm(by, be) is a weak equivalence.

Univalent fibrations have many interesting properties. Among them is the
property that the space of II and X structures on a univalent fibration is
always either empty or contractible.

Moreover, if we consider univalent fibrations which have a II structure and
at least one empty fiber it turns out that they are organized into a sequence
whose starting terms are

Uy — U — ...
| |
Uy Uy
where Uy = {0, 1} and Uy = I1,,50BS,.

Using these fibrations one obtains a canonical model of the ECC with values
in H which I call the univalent model.

Moreover, it is possible, at least in the ECC extended by the Martin-Lof
”intensional identity types” to formulate an axiom whose validity implies the
univalence of the universe maps p;. It appears that the ECC together with
identity types and this "equivalence axiom” has an essentially unique well
behaved model which necessarily takes vales in the homotopy category and
which provide unambiguous "meanings” to its sentences.

Next steps:
1. Formulate and proof the above assertions as mathematical theorems,

2. Try to extend it the univalent model to the type system of Coq (including
inductive types).
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Q2. Which maps p; can appear as universe maps of such a model?

Q3. Given a choice of the maps p;, is a model corresponding to this choice
unique (up to an equivalence)?

To explain the third question:

Definition 3 Two models M and N are called (logically) equivalent if for
any {x1 :1T1,...,x, : T,,} € C, one has

(M(Ty,...,T,) =0) < (N(Ty,...,T,) =0)
The answers to the questions Q1-Q3 are as follows:

1. Yes.

2. Assuming some natural additional conditions on the model, one can take
any sequence of p;’s such that all isomorphism classes of sets of cardinality
< «; appear as fibers of p; (where ay = 2, oy = ¥y and «; is the "i-th
inaccessible cardinal”).

3. No. Moreover, I believe that one can prove that for any choice of p;’s
such that there exist at least one model with these universe maps there
exist many non-equivalent ones.

The negative answer to Q3 and the fact that many non-equivalent choices
of p;’s are possible means that ECC is not rigid enough - there is no way to
unambiguously assign "meaning” to its sentences even after the sizes of the
type universes are choosen.

This is a well known issue in type theory to which I want to offer a solution:
1. A new axiom expressible in ECC which is called an equivalence axiom,
2. A (generalized) set-theoretic model satisfying this axiom,

3. A pre-theorem that suggests that any two models M;, M; of (ECC + the
equivalence axiom) such that the cardinality of M;(Type;) is equal to the
cardinality of My (T'ype;) are equivalent.
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The precise formulation of the equivalence axiom in the ECC is rather tech-
nical (see my ”Short note on homotopy A-calculus” from 2006. There is an
easier way to formulate this axiom if we first add to the ECC the (constructors
for) the Martin-Lof intensional identity type. See ....

Let me concentrate on the model which explains the axiom. This model, by
its nature, takes values in the homotopy category rather than in the category
of sets. The set theoretic model is obtained from

While I think it might be possible to express
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