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Summary. For a class of self-correspondences C called weakly hyperbolic, we give
a computable formula for the contribution of a fixed point component to the
Lefschetz number of C. The formula applies to Lefschetz numbers of cohomology
with coefficients in a constructible complex of sheaves (such as intersection homology).

1 Introduction

(1.1) Local contributions to Lefschetz numbers. Suppose that we are given a com-
pact stratified space X and a self map f: X — X. The Lefschetz number L(f) is
defined by

L(f) =Z(—— 1) trace(f*: H(X) — H!(X)).

i

The fixed point set of f'is {xe X | f(x) = x}. A fixed point component F is a con-
nected component of the fixed point set. The Lefschetz fixed point theorem states,

Theorem [Lef] There is a canonical way to associate to each fixed point component
F a local contribution, which is a number n(F), so that

2. n(F) = L(f).
F
The object of this paper is to give computable formulas for the local contribu-
tions n(F), in terms of local data collected near F.
As an example, consider a graph (or 1-complex) with two vertices a and b and
k edges going from a to b. Let fbe a self map that fixes a and b and moves each edge
along itself from a to b.
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Fqa
b F b
The 1-complex X The self map f: X - X

Since f is homotopic to the identity, the Lefschetz number L(f) is the Euler
characteristic of X which is 2 — k. There are two fixed point components F, = {a}
and F, = {b). It turns out that n(F,) =1 — k and n(F,) = 1.

There are already several known explicit formulas for n( F). Perhaps the most
beautiful one for ordinary cohomology is the degree formula [D1, D2] which is
analogous to the Hopf index theorem: Embed X in R¢. Take a regular neighbor-
hood N of F in R% Construct a retraction r: N - N n X. Let m be the map
m: 0N — $%~1 of the boundary of N to the (n — 1)-sphere obtained by taking the
direction of the vector v(y) from y to for(y). Then n(F) is the degree of the map m.
The reader can check visually that this procedure gives the right answer for F, and
F, from the following picture, which shows the vectors v(y).

Degree formula for n(F,) Degree formula for n(F,)

Because it requires an embedding, this procedure is impractical for most
applications. Another formula, which applies to sheaf cohomology as well, is the
product formula due to Grothendieck, Illusie, and Verdier [GI, V]. This constructs
n(F) as a product in a sheaf cohomology group; it is analogous to the original
formula of Lefschetz, which defined n(F) as an intersection product of the graph of
f with the diagonal. However, only in special cases has this formula been used to
produce computable numbers [I].

(1.2) Expanding and contracting maps. The formula for n( f) that we present here
is a trace formula, i.e. a formula that expresses n(F) as an alternating sum of traces,
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in a way that resembles the definition of L(f). The simplest case is when the map
fis either contracting or expanding near F. We choose a regular neighborhood N of
Fin X.

If fis contracting near F, then

n(F) =Z(—— 1) trace(f*: H'(N) —» H(N))

= Z(— 1) trace(f*: H'(N, ) » H'(N, ¢)).
If fis expanding near F, then

n(F)=Y (— 1) trace(f*: H(X, X — N) > H'(X, X — N))

= Y (— i trace(f*: H'(N, N) - H'(N, 6N).

If f is contracting near F, then N is mapped to itself; and if f'is expanding near F,
then X — N is mapped to itself. Therefore, the expressions above make sense.

Let’s apply the formula to the case of our 1-complex. The map f'is expanding at
F, and contracting at F,. In each case, the local contribution is the alternating
trace of maps induced by f on the homology of a particular pair of spaces. The
following picture shows this pair:

a

Expanding. (N,, dN,) = ( )
w %) = (AN Sii

Contracting. (\)), @ ) = (W, ¢ )

Fp

The fixed point contributions are
n(F,) =Y (— 1) trace(f*:H'(N,, dN,) - H'(N,, dN,))
=(—1°%x0+ (= D)ixtk—1)=1—k

n(Fy) = Y. (= 1) trace(f*: H' (Ny) > H'(N,))

3

=(—1)°x1+(—=1)'x0=1
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(1.3) Weakly hyperbolic maps. The most general class of maps for which we are
able to give a trace formula for n(F) is the class of weakly hyperbolic maps. These
are maps all of whose fixed point components are weakly hyperbolic in the
following sense:

Definition (See §3.1) A fixed point component F is called weakly hyperbolic fif,
for some neighborhood W < X of F, there exists an “indicator map”
t:W->RsoxRys, such that t71(0,0) = F, t; f(x) 2 t,(x), and ¢, f(x) < t5 (x).
Pictorially,

If t(s)
15 here > ¢——
then ((f(s))
is here
The definition An example

The figure on the right is an example that justifies the name: Here W is
R xRy, itself, and ¢ is the identity. A contracting fixed point set F is weakly
hyperbolic: it suffices to take t,(x) = 0 and take ,(x) to be the distance from F.
Similarly, an expanding fixed point set is weakly hyperbolic taking ¢,(x) = 0 and
t,(x) as the distance from F. Now, consider a small rectangle R and its right-hand
edge Rg:

The basic formula is,

Theorem (See §4.7, case j = 1) If F is a weakly hyerbolic fixed point component for f,
then finduces a map f*: H'(t " *R,t " Rg)> H'(t ' R,t ™! Rg) and

n(F)=>Y (— 1)trace(f*:H'(t™* R,t"' Rg) > H'(t ' R, ™' Rg)).

i

Perhaps the most familiar case of this formula arises from the negative gradient
flow of a Morse function on a compact manifold, for which the local contribution
at an isolated fixed point is (— 1)?, where d (the Morse index) is the dimension of the
expanding space.
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In our example, suppose that our 1-complex has a self map that moves some of
the edges up and moves the others down. Then at each fixed point component
F = F,or Fy, the indicator map t, or t, sends the edges moving out away from F to
the t, axis and sends the edges moving in towards F to the t, axis. So the pair
(t"' R, t~! Rg) looks like this:

(. k. R, ) - (A i /
‘ y °

-1 .y \

Then n(F,) =) ,(— 1) trace(f*:H (t " R, t ' Rg) > H'(t ' R, t ' Rg)) =
1 — I where [ is the number of edges going down. Similarly, n(F,) =1 — (k — 1),
where k — [ is the number of edges going up.

(1.4) Dependence on the choices. Suppose that the self map is neither strictly
expanding nor strictly contracting, but instead preserves distances to F. For
example, let X be the round 2-sphere and let f be a rigid rotation. Then the two
intersections of the axis of rotation with X are the two fixed point components. We
may treat them either as expanding or as contracting. (That is, the indicator map
can go to the ¢, axis or to the t, axis.) The individual groups H'(t ™! R, t~* Rg) will
be different in these two cases, as may already be seen from the 2-sphere example.
However the alternating sum ) ,(— 1) trace(f*: H'(t"' R, t ' Rg) > H'(t ' R,
t~! Rg)) will be the same.

Also, there is more than one small rectangle R. Different choices will actually
lead to different cohomology groups H'(t~! R, t™! Rg). However, again the alter-
nating sum is independent of the choice.

The basic formula has been presented in its simplest form for expositional
purposes. For most applications, various generalizations and extensions of it are
needed:

(1.5) Other cohomology theories. The Lefschetz number L(f) exists not only in
ordinary cohomology, but also in cohomology with coefficients in a constructible
complex of sheaves S°, so long as f has a lift ® to S° (see §2). One example is
intersection cohomology. The basic formula holds for such cohomology theories.

(1.6) A sheaf theoretic version. Consider the inclusions,
ho 4 Ju
Fst ™" R.G W,

where R, is the left hand edge of the rectangle R, (i.e. the t, axis). Then, for an
appropriate choice of rectangle R, we have

Hi(t 'R, t™* Rg;S") = H{(F; h}ji S°).
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So we get an alternative formula using the sheaf A = h} ji(S").

Theorem (see §4.7, case j = 4) Suppose F is a connected component of the fixed point
set of a weakly hyperbolic endomorphism f: X — X. Then the local contribution to the
Lefschetz number n(F) is

n(F) = Z (— 1) trace(f*: H'(F; Ay) —» H'(F; A})).

1

The advantage of this formulation is that the set t ' Ry is natural: it has the
interpretation as the set on which the map f'is contracting towards F. For example,
if fis a complex algebraic map, ¢~ R, will often be a complex analytic subspace
of W.

There is a dual version of this with the expanding and contracting directions
reversed. Let Ry denote the right hand edge of the rectangle and consider the
inclusion

F&t 1 (Ry)E W

Then the complex of sheaves A§ = hyj%S® may be used in place of A . The
complexes of sheaves Aj and A% will generally have different cohomology groups
although they will give the same local contribution n(F) (see Theorem 4.7, case

j=5).

(1.7) A version that is local on F. When F is larger than a point, it may be useful to
write n(F) as a sum over strata of F. The action of f* on H'(F; h* j' S*) is induced
by a self map called ®* on the sheaf h* j' S°* . For x € F, define the alternating sum
of traces on the stalk cohomology groups,

n(x) =Y (— 1) trace(®*: Hi(x; h* j' S*) —» H'(x; h* j' S*)).

Then n(x) is a constructible function on F. Suppose F=F, UF,u ... UF, is
a stratification of F so that n(x) is constant on each stratum.

Theorem (See §10.3) Suppose F is a connected component of the fixed point set of
a weakly hyperbolic endomorphism f: X — X, as above. Then the local contribution to
the Lefschetz number n(F) can be written as a sum over the strata of F as follows:

n(F)= ¥ 1 (F)ntx;),

J
where x;€ F;, and x. denotes the Euler characteristic with compact supports.

(1.8) Correspondences. A self correspondence of X is a diagram C = X whose two
maps are the “source map” ¢; and the “target map” ¢, . A fixed point is a point p on
C (not on X) such that c,(p) = c,(p). Two fixed point components in C may have
the same image in X. The whole theory that we have been discussing goes through
for correspondences. A lot of the complexity of this paper stems from the care that
must be taken in choosing the neighborhoods W in this context.

(1.9) Applications and examples. There will probably never be an “ultimate”
Lefschetz fixed point formula. There is always a trade-off between generality of the
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situation covered and computability of the formula for n(F). Therefore, which
formula is the most useful depends on the intended application. See §13 and §14 for
a number of interesting special cases and examples.

The main application that we have in mind is to a Hecke correspondence
operating on an appropriate compactification of a modular variety. The cohomol-
ogy theory of interest is either the intersection cohomology of the compactification
or the ordinary cohomology of the variety. For this application, the formula given
above is general enough: the Hecke correspondences are weakly hyperbolic (al-
though they are neither expanding nor contracting, they cannot, even locally, be
written as the graph of an endomorphism, and the fixed point set of Hecke
correspondence may be a very complicated subvariety). This formula for the local
contribution n(F) to the Lefschetz number of a Hecke correspondence is quite
computable, and it can be evaluated in terms of roots and weights (see [GM4]
where this calculation is carried out explicitly).

(1.10) Remarks on the proof. The ideas in the proof are very simple and are best
illustrated by considering the case of a (weakly hyperbolic) endomorphism
f:X — X, rather than a correspondence. Let us suppose that X is a compact
stratified subanalytic space, S° is a complex of (cohomologically constructible)
sheaves on X, and that ®:f*(S°) - S° is a lift of f to the sheaf level. Let F = X be
a connected component of the fixed point set of f, and let U = X be a weakly
hyperbolic neighborhood of F with indicator map t:U - Ryo xRz . Assume
that U contains no fixed points other than those in F. Choose a (closed) rectangle

R = R(x¢, y0) € R3¢ xRy,

whose upper right hand corner is at the point (xq, yo), and let Ry, Ry, Rg,
R; denote the top, bottom, right, and left sides of this rectangle, respectively. We
assume that xo and y, are chosen so small that t }(R) = U.

The first observation is that the self map f induces an endomorphism on the
cohomology groups

A1(xXo, yo) = H'(t'(R), t ' (Rg);S").

Suppose ¢ is a cocycle in ¢~ *(R) which is compactly supported near ¢t~ !(Ry), i.e.
€]t~ (Rg) = 0. Then f*(&) is a cocycle in f~1(t"1(R)). Let & be the cochain
which is obtained first by restricting & to f (¢ " !(R)) nt~!(R) and then extending
(by 0) to t™!(R). Extending a cocycle by 0 in this way does not normally give
a cocycle: ¢ could have boundary along the pre-image of the top,
7Yt Y (Ry)nt™Y(R) or right hand side, f~! ¢t (Rg) Nt~ *(R) of the rectangle.
However, because of the hyperbolic assumption on f; the top part f ~!(t " !(R1)) has
empty intersection with the interior of ¢ ~!(R). And although the right hand side,
S ™'t 1(Rg) may intersect the interior of ¢t~ (R), the cocycle f*(&) is compactly
supported near this part of the boundary. Thus the hyperbolic assumptions on
f together with the support assumptions on ¢ are precisely what is needed to
guarantee that & is a cocycle in t~*(R). Furthermore, ¢ is again compactly
supported near t"1(Rg). So f* gives an endomorphism of the local group
AII(XO’ yO)

This whole procedure actually works on the sheaf level. It is possible to restrict
the sheaf S* to the region ¢t ~*(R) so as to have compact supports near ¢t~ ! (Rg). This
restricted sheaf is called A ] (xo, yo) in §4.5. It coincides with S° near the fixed point
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component F, it vanishes outside ¢ ~!(R), and its cohomology is precisely the local
group, i.e.

H'(X; Al (x0, yo)) = A (x0, Yo).

Furthermore, the lift ®:f* S* — S* determines a unique lift ®:f* A% (xo, yo) =
A7 (X0, yo) which agrees with @ near the fixed point component F and which gives
the above endomorphism f* on cohomology. The existence of the lift @ is just the
argument given above, although it is made rigorous using the formal (derived
category) properties of h* and j'. In this way, we have isolated the fixed point
component F along with “part” of the sheaf S*, from the rest of the space.

Now apply the Grothendieck—Verdier-Illusie Lefschetz fixed point formula to
the sheaf A1 (xo, yo). Since this sheaf agrees with S* near the fixed point component

F (and since the lifts ® and ® also agree near F), they have the same local
contribution to the Lefschetz formula. But in the case of the sheaf A} , there is only
one term in the Lefschetz formula and it is precisely the Lefschetz number on the
global cohomology of A} . In summary, we have shown that the local contribution
from the fixed point component F to the global Lefschetz number of
(f, ®):(X,S)>(X,S")is

L (= D Tr(f*: H'(X, A}) > H'(X, A}))

i

Z -1y Tr(f* i1(xo, Vo) = Aix(xo, Vo)),
which is Theorem 4.7 for the case j = 1.
In the final sheaf theoretic version of our formulation of the local contribution,
we consider the endomorphism f* induced on the group

Ay =H'(F;htjiLS")

and show that the local contribution is
= ¥ (= 1 Tr(f*: 45 > 4i).

The key observation in comparing this group with the local group A4'(x, yo)
above is the formula

Ay = lim lim 4% (xo, o),
x0—0 yo—0
which follows directly from the definition of h¥ and of j} . In fact, because of the
subanalytic stratifiable nature of the space X and the indicator map t, the limits are
attained for sufficiently small, finite values of x, and y,, corresponding to a rec-
tangle which is small but very thin, i.e. y, < xo < 1. The rest of the proof consists of
showing that the endomorphism f*: A4} — A% agrees with the homomorphism
induced on cohomology by a lift ®: A — A} of the self map, to the sheaf level.

(1.11) Historical comments. As discussed above, our theorem relies on the
Grothendieck-Illusie-Verdier version [GI] of the Lefschetz fixed point theorem
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(which was preceded by work of Artin and Verdier [ V]). Computations of the local
terms were made in [I] for special cases, including the case of algebraic curves. See
also [D1, D2].

The literature on Lefschetz fixed point theorems contains a number of articles
in which attention has been directed, either implicitly or explicitly, towards
expanding and contracting behavior of self maps. In [L] (Proposition 7.12),
Langlands indicated that the local contribution at the origin for the one dimen-
sional correspondence f(z) = z¥ (on C€) has two different answers, depending on
whether a > b or a < b. A detailed proof was furnished in [1, p. 144]. Expanding
and contracting maps are considered also in [GM2, BS], and probably in other
places as well. The sets ¢~ (R) are closely related to the “isolating blocks” of Conley
and Easton [CE]. The local complex of sheaves Ay = hj j% S® arises in Kirwan’s
paper [K].

Kashiwara and Schapira have recently published very important work on
the Lefschetz fixed point theorem in [K] and [KS] (the latter of which we
received after this paper was submitted). Their techniques (which are quite
different from ours) apply to a correspondence C 2 X which is embedded
in a correspondence of smooth manifolds C = X. They get both an intersection
formula, involving intersections of Lagrangian submanifolds of T* C, and a trace
formula, in the same spirit as ours, for the local contributions. See also the
discussion in §13.

(1.12) Open problems. We do not know to what extent the local contributions
n(F) are uniquely determined. This issue is elegantly addressed in [D1, D2] for the
case of ordinary cohomology.

We have conjectured [GM2] that for any algebraic endomorphism f: X — X of
a complex algebraic variety X, and for each fixed point component F < X, there
exists a locally defined constructible function n(x) on F such that the local
contribution n(F) is equal to the Euler characteristic y(F; n) with coefficients in
this constructible function. Theorem 10.3 verifies this conjecture for the case of
a weakly hyperbolic self map (or correspondence).

2 Notation and terminology

In this section we summarize the main results from [V] and [GI] but trans-
lated into the subanalytic category. By “space” we will mean “subanalytic set”
and by “map” we will mean “subanalytic map”. Many of the results in this
paper are valid for arbitrary continuous maps between paracompact Haus-
dorff spaces, however the proofs become much more technical in this general-
ity and, so far as we know, the main applications will be in the subanalytic
category.

Let R denote a commutative Noetherian ring of finite cohomological dimen-
sion. (We will be mainly concerned with the case R = Q or R = Z.) By a “sheaf” S*
on a space X, we will mean a bounded complex of sheaves of R-modules which are
cohomologically constructible with respect to some subanalytic Whitney stratifica-
tion [GM1, B, GM3, KS]. The hypercohomology of such a complex of sheaves will
be denoted simply H*(X;S*) and its stalk cohomology at a point xe X will be
denoted H*(S"). The derived category D(X) of (cohomologically) constructible
sheaves on X supports the standard operations listed in §1 of [GM1] (see also [B]).
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We will write fix instead of R fx to denote the induced functor on the derived
category. We shall often use the identifications

(2.1a) Homp,(f* B, A") = Hompy, (B, fx A®),

(2.1b) Hompy,(fi A®, B) = Hompx, (A%, f* B°),

[B,V,§10.3,10.4] whenever f: X — Yis a map, and A* and B® are sheaves on X and
Y respectively. By taking A* = f*B* (resp. A°=f'B",B° =fx A, B' =/, A*) we
obtain natural “adjunction” morphisms in D(Y),

(2.2) B >fuf*B’, f, fB->B°
and
(2.3) f*fHA>A" A SffA°

in D(X). Throughout this paper we will label any of these four morphisms by “Ad”.
If

w 4. x
(*) bl Lr
Y — Z

[4

is a fibre square, and if A*e D (X), then there are canonical isomorphisms in D(Y)
[B, §V, 10.7]

(2.4a) bxa A® g!f* A°,
(2.4b) bia* A* > g*f, A"

The adjunction morphisms (2.3) and the identifications (2.1) give rise to natural
morphisms in D(Y).

(2.5a) g*fu A" > bea* A",
(2.5b) bdA —gfiA"

which are isomorphisms if (*) is a fiber square and if f is proper (in which case
Jfx =frand bx = b, ). If (*) is a fiber square then the adjunction morphism (2.2) when
combined with the canonical isomorphism (2.4) gives natural morphisms in D( W)
and D(Z),

(2.6a) a*f'B* - b' g* B’
(2.6b) fiax C* > gx b C°,
and by symmetry we obtain morphisms

(2.7a) b*g'B' - d f*B°,
(2.7) g1 bx C" > fia C".

A correspondence C from a space X to a space Y is a space C together with
a proper map

c=(c1,¢,):C>XxY.
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If S* is a complex of sheaves on X and T" is a complex of sheaves on Y, we define
a lift @ of the correspondence C to the sheaf level to be a sheaf morphism,

(2.8) D:cX(T) - (S

By applying the functor s, c,, = sy 7,4 ¢, and adjunction, we see that the lift
® determines an element of Homp,, (s, T®, s, S°) (where s denotes the constant
map to a point) [GI, §3.4.1 and Corollary 3.5] and therefore gives a (“pullback”)
homomorphism

(2.9 @ HI(Y;T)->H(X;S")
Now suppose that X = Y and S°* = T*. A point peC is fixed if ¢,(p) = c,(p).

(2.10) Theorem [GI, V] Suppose X is compact and R is a field. Then the Lefschetz
number

L(C,®,8°) =Y (— 1) Tr(®: H (X; S°) » H(X;S"))

can be expressed as a sum over the connected components F; = C of the set of fixed
points,

L(C, ®,8%) =} n(F;)

of local contributions n(F;)eR.

The local contributions n(F;) are locally defined in the following sense: suppose
that T* is another complex of sheaves on X, and W:c% (T*) — ¢} (T*) is a lift of the
correspondence C to the sheaf T*. Let F; = C denote a connected component of the
fixed point set, and let F; = ¢,(F;) = c,(F;) denote its image in X. Choose open
neighborhoods U = Cof Fjand U’ = X of Fjsuchthat U = ¢ ' (U')ne; * (U').

Theorem (continued) Suppose h:S*|U — T*|U is a quasi-isomorphism, and suppose
that the resulting diagram

. OIU ! .
3@V — i8IV

2.11) ek | Leit
* . W|U ! .
(THU — i (T)U
commute (in the constructible bounded derived category of sheaves on U). Then
n(F;,8*)=n(F;, T").

(2.12) Remarks. A construction of the local contributions n(F;) is given in [GI]
but it is quite complicated and difficult to compute in particular examples. In order
to prove that our formula for the local contribution agrees with the construction in
[GI], it is not necessary to follow their construction: it suffices to know that the
terms are locally defined in the above sense. Although this is not explicitly stated in
[GI] it follows immediately from the fact that all their constructions are given on
the level of sheaves.

(2.13) The assumption that R is a field is not strictly necessary, however the trace
of an endormorphism ® of an R-module M is usually defined only when M is a free



12 M. Goresky and R. MacPherson

R-module. (See also [D1, D2, Proposition 6.3, p. 208.) This assumption may be
replaced by the hypothesis that R is an integral domain, in which case the trace of
®: M — M is defined to be the trace of the induced homomorphism on M/Tor(M)
or (equivalently) by tensoring with the field of fractions of R.

3 Hyperbolic fixed points

Let c: C — X x X be a correspondence. Take a connected component F < C of the
set of fixed points of C. Let W < C be a neighborhood of F which contains no fixed
points except those in F.

(3.1) Definition. The neighborhood W < C of F is called weakly hyperbolic if there
exists a neighborhood W’ < X of F' = ¢ (F) = c¢,(F) and a subanalytic map
t: W - R, x Ry, (called the indicator map) such that

@ Weer!(W)ne H(W)
(b) F' =t~1(0,0)
(c) For all we W we have

(1) ty ci(w) Sty c2(w),

(i) 5 ¢ (W) < £z c2(w).
(3.2) Examples. If f:M — M has a weakly hyperbolic fixed point set F, and if
X < M s preserved by f, then F n X is a hyperbolic fixed set in X because the same
indicator map ¢t may be used. Many examples of weakly hyperbolic self maps arise

this way, especially when M is a smooth manifold and fis a smooth map.
Suppose f,: C" — C" is the time A flow of a “linear” C* action, say

filxy, X2, o0, X)) = (A% xq, A% x5, ..., A% X))
Then f; is a weakly hyperbolic self map. The fixed point set is the span of the vectors
{eila; = 0} (where ey, e, . . ., e, are the standard basis vectors of €"). Fix le €

with |A] = 1. An indicator map for f; given by
= Z {Ix:* | la;] = 1},
I, = Z {Ix:? | la;l < 13,

although the coordinates for which |g;| = 1 could be mapped either to the t, axis or
to the t, axis.

More generally, if M = IR" and if f is a linear self-map with no generalized
eigenvalues equal to 1, then fis weakly hyperbolic and the Jordan normal form for
S may be used to define the indicator map in a similar manner.

Suppose C = {(x,f(x))|xe X} is the graph of a self map f: X — X, and let
F denote a connected component of the fixed point set. Consider the contracting
and expanding sets associated to F,

F'={xeX|f"(x)>F as n—> w0},
F™={xeX|f"(x)>F as n—> o }.

Proposition. For any indicator map t: W' — R ¢ x IR ;o which is defined on a neigh-
borhood W' of the fixed point component F, we have t,(F* nW')=0 and
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t2(F~ n W) =0sothe t; and t; axes in IRz o x IR » ¢ represent the contracting and
expanding directions of the self map f.

Proof. This follows immediately from the equations t¢,(x)<t,f(x) and
t(x) 2t f(x). O

§4. The local groups and sheaves

(4.1) Parts of the rectangle. Fix xo > 0 and yo > 0 and let R = R(x,, yo) denote
the half open rectangle,

R={(x,)eR*|0 < x < x0,0=y<yol,
with partial closure
0 ={(xyeR?[0=<x=x,0=<y<yo}.

Let R denote the closure of R and define Ry, R;, and Ry to be the bottom, left and
right sides,

Rp = {(x,0)]0 < x < xo},
Ry = {(x0, V0= y <o},
Rg={(x0, »)|0 =y <yo}.
We will also make use of the bottom right corner of the rectangle, Rgr = {(xo, 0)}.

(4.2) Diagram

Ry, R Rp Q

Ry

Suppose F is a connected component of the fixed point set of a correspondence
C— X xX, with indicator map t:W - R,;oxIR;, and suppose that
t"'(R) = W'. Let F' = ¢,(F) =t~ (0, 0) be the image in X of the fixed point set.
These parts of the rectangle give rise to subsets of the space X:

YRy — X
(4.3) h 1 Tis

F' == t7'(Rg)
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and
-1 * -1 k
tT(R)— 7 (Q)— X

(4.4) Definition. We define the five local groups, for S* € D(X),

Al = A} (X0, o) = H'(t7 (Q),t ' (Rg); S")
Ay = A5 (yo) = H'(t 7' (RL);j1L(S"))

AS = A5 (xo) = H'(t ™" (Rp), t* (Rpr); j3 (S*))
Ay =H(F';hEjL(S"))

A5 =H'(F'; hpj§(S*)).
(4.5) Proposition. If X is compact then each of these groups is finite dimensional and
is the cohomology of X with coefficients in a corresponding local sheaf,
A} =A% (X0, ¥0) = kya (S* [t (R)),
which is supported on t~* (R);
A5 =A% (yo) =jL*j!L (S%).
which is supported on t~'(Ry);
AS=A5(x0) =jmifS"),
which is supported on t~! (Rp);
A:t = JLx hL* th!L (S%),
which is supported on F’, and
A% = jby My W3 j5 (S°),
which is supported on F'. Furthermore, there are canonical sheaf morphisms
4.5.1) W,1:A5% (¥o) = AT (X0, Yo),

which, for sufficiently small x, induce isomorphisms A’ (yo) = A' (xo, yo) on hyper-
cohomology;

(4.52) W¥31:A5(x0) > AT (X0, Yo)

which, for sufficiently small y,, induce isomorphisms A% (xo) = A’ (xo, yo) on hyper-
cohomology;,

(4.5.3) Waui A% (o) > AL,

which, for sufficiently small y,, induce isomorphisms A% (y,) = A’ on hypercohomol-
gy,

(4.54) W3a:A% (x0) > AL,

which, for sufficiently small x,, induces isomorphisms A% (xo)= A on hyper-
cohomology.

Proof. The finite dimensionality of the local groups follows from the sub-
analytic constructibility of the sheaves and the fact that the closed rectangle R is a
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subanalytic set (see [B, V, 10.3 p. 164]). The proof of the “furthermore” part will be
delayed until §6.1, §7.1, and §8.1. O

(4.6) Remarks. Although we are primarily interested in the (complex of ) sheaves
A7 and Aj . there is no canonical sheaf map between them. It is for this reason that
we have introduced the intermediate complex of sheaves A3 , which maps to both.
Similarly A} is intermediate between A] and A} .

The main technical problem which is addressed in §5-8 is the construction of
a lift of the correspondence C to each of these sheaves A{, A%, A}, A}, and A%,
which is “compatible” with the given lift ® of the correspondence C to the sheaf S°.
Rather than discourage the reader by starting with these involved constructions we
will formalize the existence of the lifts here, and then refer to this proposition in
§5—-8 where the constructions are actually given.

(4.7) Theorem. Suppose X is compact, C is a correspondence on X and F is a
connected component of the fixed point set, having a weakly hyperbolic neighborhood
W (which contains no fixed points other than those in F), and indicator map
t:W > RsoxRyo. Suppose ® is a lift of this correspondence to a complex of
sheaves S°* on X. If xo and y, are chosen sufficiently small then for each
J=1,2,3,4,5, the lift ®:c%(S")— ¢} (S*) induces a lift

®D;:cx (A3l (A})

of the local sheaf A7 to the correspondence, with the following properties:

(a) The lift ®; zs the zero morphism outside the open neighborhood W.

(b) The lifts (I) are compatible with the four morphisms ¥;; described above, in the
sense that the following diagrams commute:

:Dl ! .
c; (A1) — ci(A})
crer)l leyw)
5 (A}) o ci(A})

(c) The morphism ®, agrees with the morphism ® in the neighborhood
Wanci(R)ncs (R) of F, and is zero outside W.

(d) The lift ®; induces a homomorphism on cohomology, ®', : A} — A’ and the
local contribution n(F) to the Lefschetz number L(C, ®; S°*) is equal to the alternat-
ing sum of the traces of these homomorphisms on the local groups,

n(F) =Y (= 1) Tr(®}y ).

In particular, this number is independent of j (i.e. is independent of which of the local
groups is used), and is also independent of the choice of (xq, Yo )-

(4.8) Remarks. If the rectangle R is chosen sufficiently small, then the partially
closed box Q may be replaced with the closed box, R in the definition of the groups
%, in other words,

Hi(t™'(Q),t ™ (Re);S*) = H' (17 (R),t ™" (Rg); S* ).

The local groups may also be described as the cohomology groups (with appropri-
ate supports) of the complex of sheaves T* =1, (S;|W’') on Ry, xRy,o. For



16 M. Goresky and R. MacPherson

example, A% = H(Q, Rg; T*). The local groups and sheaves are determined from
data on X and the indicator map, and do not otherwise involve the correspondence
C. The purpose of the correspondence is to determine an endomorphsim of each
local group. The local groups are usually different even though the alternating sum
of the traces on each is the same. In fact, the local groups A¥ (x,, yo) may even vary
as (xo, yo) changes (but see §9). In §10 we will decompose n(F ) into a sum over the
strata of F'.

5 The local group A4,

(5.1) In this section we prove Theorem 4.7 for the case j = 1. We refer to §3 and
4 for the definitions of C, R, Q, A;, ®, and W. The local group A} is the
hypercohomology of the local sheaf, A} = k, «, (S° |R), i.e.

Ay =H't"1(Q), t7 ' (Rg);8%) = H'(X; AY).

Part (d) of Theorem 4.7 follows from parts (a) and (c) by applying the Lefschetz
fixed point theorem to the local sheaf A} Accordmg to part (a), the correspond-
ence C has a lift @, to the sheaf A}, Wthh is the zero morphism outside W.
Applying the fixed point theorem of Grothendieck and Verdier to this lift @, , we
see that the Lefschetz number L(C, ®, A7 )is equal to the single local contribution

n(F; AY) since W contains no fixed pomts other than F. According to part (c), this
lift @, agrees with the original lift @ in a neighborhood of F. Thus the fixed point
theorem of Grothendieck and Verdier (continued) says that the local contributions
are the same: n(F; A1) = n(F; S*). In summary,

n(F;S*)=n(F;A})=L(C,®; AL ) =Y (= 1) Tr (D, : A} > 4%).

Thus we must prove parts (a) and (c), i.e. we must construct a lift @, of the
correspondence to the local sheaf A}, which is compatible with the original lift
® and which vanishes outside W.

(5.2) We will use the notation R; = Wne;7't" ' (R)and Q; = Wncitt™1(Q)
(for i = 1, 2). The “weakly hyperbolic” assumption (§3(c) (ii)) implies Q; = @, so
we obtain the following commutative diagram of subsets and inclusions:

(5-3) 0, — Q.
ho ) Taz
R1 <a——R1 f\Rz—a—> Rz

The hyperbolic assumption §3.1(c)(i) implies R; N R, = Q; N R, so the lower right
hand corner of this diagram is a fibre square. Using the adjunction morphisms (§1)
it is now possible to define a natural morphism,

Q:kyy g1 Aoy B*)—~ iy oy ay (B*)

for any sheaf B* on Ry " R, , as follows:
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(5.4) Definition. The morphsim Q is the composition
. Ad sk . * .
kZ* Olgy Aoy (B )—_’kZ* b* b Olay Aoy (B ) = k2* b* 6! Ay Aoy (B )

=kyy 0, B*)= k1* oy aq (BY).

(5.5) Introducing the further notation, Ii,- =c;'t""(R) and Q~,~ =c;tt7'(Q)
(for j = 1, 2), we have a diagram of inclusions (for j = 1 or 2),
(56) i l i}' l i! l i! l

RinRy, — R, — g, - ¢

a! al J

where each box is a fiber square since the top row is obtained from the bottom row
by intersecting with W.

(5.7) Proposition. If R = R(xq, yo) is chosen sufficiently small, then for any sheaf B*
on Ry N R,, and for j = 1 or 2, the morphism

inojay(B*)—>ij, aya;(B°)
is a quasi-isomorphism.
(5.8) Proof. The proof will be delayed until Sect. 5.13.

(5.9) Proof of Theorem 4.7 The desired morphism @, may be obtained as the
following composition, the intuition for which is described in §1.10 of the introduc-
tion:

Ehya (81 R)-ZL Ky e oS 17 R) iy dyy e (STt R)

(2.
= By Gy (28" 1c5 1 171 R) 220k, Bay iny a2y (XS [R1 A Ry)

(2.6) .
“—"kz* lz* Ay Ay 4 (C S iRl N R ) kz* 0oy Aoy (C;S IleRz)

Q ® e
——kqy 0qy Ay (C; S*|Ry "Ry )——kyy ayyay,(c; ST|Ry N Ry)

~ . 5N~ .
=Ky iy Op 611!(6'!15 [Ry nRZ)zkl*lllal!all(C!lS IR; " R;)
=]Z1* 07110111'1!(0!1 S.IRmez)=’;1*071!(%111'1:1'!1(0!1 S'Ijil ﬁﬁz)

(22)
—"ku dyy Ay, (C1 S* |R1 r\Rz) = k1* &y, dyy a1 ((71 S* lR )

D (s STIRD) LR, ¢ o 8T 1 R e ky oy (87 (67 R).
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This composition agrees with @ in a neighborhood of F because each of the
above morphisms (except for @) is the identity in a neighborhood of F. In fact
these morphisms only change the supports of the sheaf S°* at the edges
of the rectangle and at the edges of the intersections of rectangles. The
composition @ vanishes outside W Dbecause it factors through
c3S'|(RinRy). O

The remainder of this section is devoted to the proof of Proposition 5.7. In
general, even by choosing R = R(xo, yo) very small, we cannot guarantee that
ciltT Y (R)ncstt™Y(R) = W because there may be several different fixed point
components in the correspondence C which project to F’, and which may have
different expanding-contracting behavior. This difficulty may be overcome using
the following result:

(5.10) Lemma. If R = R(xq, yo) is chosen sufficiently small then there is a unique
connected_component Ry, of ci 't ' (R)ncz ' t™'(R) which contains F, and its
closure Ry, is contained in W. (Hence Ry, = R{ "R, )

(5.11) Proof. 1t suffices to find a single value of (xq, yo ) with the desired proper-
ties because they are clearly inherited by subsets. We have the following arrange-
ment of sets and maps:

c ::; X
|V U

(5.12) w w s R, xR,
v v v
F F’ 0, 0)

By choosing W’ sufficiently small, we may assume that the indicator
map t: W' - R;oxR;, extends to the closure W’. Hence t|W’ is proper.
Now suppose such an R(xq, yo) does not exist. Then there is a sequence
R > R? > ... of rectangles so that t~!(R’) converge to F’, in other words,
so that

ﬂt‘l(Rf)=F’

and so that the closure Rj, is not contained in W. (Here RY, denotes the
unique component of ci!'t"'(R/)ncy;'t 1 (R/) which contains F.)
Let z;e R{, — W. Since c is proper, the sequence {z;} contains a convergent
subsequence. Thus we may assume the z; converge to some z, and hence
zoeci ' (F')ncy ' (F'). However the z; were chosen to be in the component
which contains F, so in fact zoeF. This contradicts the assumption that
z;gW. O

(5.13) Proof of Proposition 5.7. We now assume that (x,, yo) has been chosen
as in Lemma 5.10. The idea is that the sheaf of i;, a; a; B® is supported on
the closure R AR, nQ~,- which coincides with R;nR,nQ; by the
Lemma 5.10. The inclusion of this closure into Q; is proper, so ij, = i;. Here
are the details:




Local contribution to the Lefschetz fixed point formula 19

By intersecting with W we obtain a fibre square (for each j = 1, 2) of inclusions,

RlﬁRz L leRzﬁQJ -ri-‘) Qj

i 4 i

R1ﬁRzmQ~j — Q~j

Here, r; and 7; are closed embeddings, and the left vertical arrow i; is the identity
(by Lemma 5.10). Furthermore the composition r; m; = «; a; is just the inclusion
into Q; . Therefore for any sheaf B* on R; n R, , we have

o a(B*)=ijrjmy(B*)=Fyiymy(B*)=Fiym;B")

= ij* Vg Mj (B. ) = ij* rjymj (B.) = éj* Xy Ajy (B. ) O

6 The local group 4,

(6.1) In this section we prove Theorem 4.7 in the case j = 2. We will (1) construct
a sheaf map W,;:A’ (yo) = A (X0, yo) which, for sufficiently small x,, induces
isomorphisms on cohomology, and (2) find a lift ®, of the correspondence (C, ®) to
the sheaf A3 (which is the zero morphism outside the neighborhood W of the fixed
point component F), which commutes with the lift to Aj .

By taking x, sufficiently small, we conclude that the Lefschetz number L(C, @,
A7) is equal to the Lefschetz number L(C, ®, A3) so Theorem 4.7 (case j = 2)
follows from Theorem 4.7 (case j=1). O

(6.2) Corollary. The alternating sum of the traces of the action of the correspondence
(C, ®) on the cohomology of the sheaf A, is independent of the choice of xo and y .

Here are the details for step (1) and step (2). We refer to §3 and §4 for the
definitions of R, Q, W, t, A,, and A4, .

(6.3) Step (1) Since the indicator map ¢t is subanalytic, it may be stratified. The
resultmg stratifications of R > o X IR > o and of X may be chosen so that the sheaf S*
is cohomologically locally constant on each stratum and so that the restriction of
t to each stratum of X is a smooth submersion to a stratum of Ry xR, . The
strata in R;o xR, are subanalytic and consist of finitely many points (0-
dimensional strata) and finitely many analytic curves (1-dimensional strata).

(6.4) Lemma. Suppose x, is chosen so that

(1) the region R contains no 0-dimensional strata except those in Ry,

(2) the top Ry of the box does not intersect any 1-dimensional strata except Ry ,
and

(3) for each 0 < x < xq the vertical segment {x} x (0, yo] is transverse to the
1-dimensional strata. (This may be achieved by making x, sufficiently small).

Then for any x < x, the inclusion R(x, yo) = R(xq, yo) induces an isomorphism
on the cohomology groups

Al (x, yo) = Al (x0, o).
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(6.5) Diagram.

cal

Stratification of R, XIR,,

(6.6) Proof of Lemma 6.4 Let T® =1t,(S*|W) denote the pushforward to
R0 xR of the sheaf S°. Since the map ¢t was stratified and since S° is (co-
homologically) constructible with respect to the stratification of X, the sheaf T" is
(cohomologically) constructible with respect to the stratification of R xR .
Furthermore the local group

At =HY(Q,Rg;T")

is the cohomology of T*® with appropriate supports in the rectangle R. It follows
from “moving the wall” [GM3, (§4.4)] that this group does not change as
Xo shrinks. For completeness we also give the following direct argument: The
bottom Rp of the box is the closed interval [0, x, ] which is canonically stratified by
its endpoints. Assumptions (a), (b), and (c) on the stratification of the box R guaran-
tee that the projection to the x axis,
F . R— g R_B
is a stratified map. Therefore the sheaf T* = F « (T* (R — Ry))is (cohomologically)
constructible on [0, x,]. The local group
Af = H([0, %03, {xo}; T*) = H{([0, x0); T*)

is now the cohomology of an interval. The E, term of the spectral sequence for this
hypercohomology is E5* = H2([0, xo); H 9(T*)) which is independent of x, since
the cohomology sheaf HY(T* ) is constant on the open interval (0, x,). The spectral
sequence comparison theorem implies that the hypercohomology is also indepen-
dent of xo,. O

(6.7) The inclusion j, :t~!(R.) — X factors as
Ry o (R (@ X,

where f is a closed embedding and « is an open inclusion.

(6.8) Proposition. For x, > 0 sufficiently small, the adjunction map

0 BB (S|t R)—s 0 (S° |17 (R))
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extends to a map on the local sheaves, A%, (yo) = A (xo, yo) and induces an isomor-
phism on the cohomology groups,

5 =H'(t"'Q; 0 f (S IR) > H(t™ Qs (S"|R)) = 4] .

(6.9) Proof. Since f is a closed embedding, o is an open embedding, and
t™' (RL)NnQ =t (R)n Q, we have B, = i, a* = o', and o, B = o f . Applying
k, to the above morphism we obtain

A.z =]L*fL S*'= k* Oy ﬂ* ﬂ! a k'S = k* Oy ﬁ* ﬂ! (S. |R)
= key oty B B (ST |R) = ky oy B B (S* |R) s key 2, (S | R)

A},

We now show the induced map on cohomology is an isomorphism. The functor
k, does not change the cohomology of the sheaves so it suffices to compute the
induced map on the cohomology of the sheaves o B, B'(S*|t™! R)—
a, (S|t~ ! (R)). The first group is just A5 = H(t~*(R.); B (S* | R)) which equals the
cohomology of S* with supports in t~*(R.), i.e.

5= lim H'(t™! Q;0 (S"|R))

x0—0

(see [B, V§1.8 p. 51 and VI §3.11 p. 204]). By Lemma 6.4, this limit stabilizes for
sufficiently small x,. O

(6.10) Step (2) We will denote the inclusion R x = Wncy 't ' (R.)— C by
ji (for k = 1, 2). In the following fibre square,
Rii 0 Ry, = Ry,

(6.11) a (A

RLI _‘j—‘) w _“—’ C

the inclusion a, is open and the inclusion a, is closed, by the expanding-con-
tracting hypothesis (§3(c)). For any complex of sheaves B® supported on W, we
obtain a quasi-isomorphism (which is the analogue of the map Q of §5.4),

Q:jZ* a2* a;]'Z (B. gj1=|< a a'I]'l (B.)
as the composition
J2x Q24 a;j!z (B*) =24 G24 ayjs(B*) = J1x G1x aiji(B*) =J1x A1 aiji (B*).

We will also make use of the fibre squares, (for k = 1, 2)

RLl ﬂRLz — RLk - w

ak Jk
Li Lid Li
(612) R~L1 mﬁbz T ELk —;—) C
l Ck l Cx

t'Ry) — X
j
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where Ry, = ci 't~ '(Ry,). The following proposition is the analogue of Proposi-
tion 5.7.

(6.13) Proposition. For any complex of sheaves B* on Ry, n Ry, the morphism
I Qi (B) = gy @ (B*)

is a quasi-isomorphism.
The proof is the same as that in §5.13. [

(6.14) Definition. The lift ®, of (C, ®) to the sheaf A% = jxJj'S"is obtained as the
composition

. Cee @ = L 26 &~ .
A AL =3 ]S = 'S =) jh xS

22 ~ > . o ke @Ik Lo %
—Jaxj2ix 13 S = oy ingj2i* ¢3S =iy jayjri*c3 S’

22 .ol Q
PO 1ok Rk Qe .. I
—> 1y Jox Q25 A5 ]2 1 Czs = 1y J1x 11 a1 j1l CZS

LI 1.!.158._2". !.!’."!!S-
>l J1x A1 d1J1 1 Cy =Jixhixdnailyji €y

~ ~,

63~ tar T ! . 22) 7 il 1 .
=jiginanaiiij1 1S —ji,j1¢18

(24) . .1 . 1 .
=clijej'S" =ci(A%).

The morphism ®, vanishes outside W because it factors through R;; N Ry,. It is
a straightforward exercise in diagram chasing to verify that the induced map on
cohomology is compatible with the homomorphism A - AY. O

7 The local group A,

(7.1) In this section we prove Theorem 4.7 for the case j = 4. We will

(1) construct a sheaf map W,4:Aj5 (yo) = Ay which, for sufficiently small y,,
induces an isomorphism on cohomology, and

(2) find a lift @, of the correspondence (C, @) to the sheaf A} which vanishes
outside a neighborhood W of the fixed point set F, and which commutes with the
map from A5 .

By choosing y, sufficiently small we conclude that the Lefschetz number
L(C,®, A’) is equal to the Lefschetz number L(C, ®, A} ), so Theorem 4.7 (case
j =4) follows from Theorem 4.7 (case j =2). O

Here are the details for steps 1 and 2. As in §4.3 we have inclusions

£ 1(0)—s 1~ (Ry) 2 X,



Local contribution to the Lefschetz fixed point formula 23

(7.2) Step 1. Since j'S*® is supported on t~*(R,) we have
Ay =jLahia hEJLS® =jra hia hY T jreir S’
= (Jjr h)(jr hL)*(jL*j!L S*)
= h)s UL h)* A5

Thus the natural map A’ — A} is simply the adjunction map. Now consider the
induced map on cohomology. The group A} is

Al = Hi(t™' () h}j4S°) = lim H'(t™" Ry3j,S°).
yo—0
But as in § 6, this limit stabilizes for sufficiently small y,, using the fact that the map
t may be stratified so that S* is cohomologically locally constant on each stratum.
In fact, it suffices to choose y, so small that R;, = R, (y,) contains no 0-dimensional
strata other than {0}. In summary, for y, > 0 sufficiently small, the above adjunc-
tion map induces isomorphisms on cohomology, 45 = A}.

(7.3) Step2. Let F = cy't~1(0)nc;* t~1(0) denote the set of fixed points which
map to F' = ¢y (F) = c,(F). We have a diagram of fibre squares:

F o™ R, 2w
il il al
Pl R Inoc
al ol al

Frot iRjy) S x
Since F’ is fixed under the correspondence C, we have
1?1:1 Em =]12 ELZZF - C.

The correspondence (C, @) then lifts to A} as follows:
e e 1D . L waey @29 =~ S e kA
c3 Ay = c3(Jrho)sx (o ho)* (A%)— (Jr2 hea)s (Jra he2)* c5 A5

6.14)  ~ =~ nd r~ 1 . ind r~ I 1 .
——(Jrz h2)s Girz he2)* €1 A = (jo1 he)s (Lg hri)* ¢y A%

26 , . . . (72) .
—ci (b« G h)* Ay = ci AL
It is a straightforward exercise to check that this lift is compatible with the lift

toAS. O
8 The local groups A; and A5

In this section we prove Theorem 4.7 for the cases j = 3 and S. This section is dual
to §6 and §7 so we will only sketch the procedure. The analogy to lemma 6.4 is:
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(8.1) Lemma. Suppose y, is chosen so that B
(1) R(xg, yo) contains no O-dimensional strata except those in Rg;
(2) the region Ry does not intersect any 1-dimensional strata except Rg;
(3) for each y < yq the horizontal segment (0, xo] X {y} is transverse to every
1-dimensional stratum in R. (This may be achieved by choosing y, sufficiently small.)
Then the inclusion R(xq, y) = R(xo, yo) induces an isomorphism

A1 (%o, y) = A} (X0, Vo)
Jorall y < y,.

(8.2) Proof. The proof is the same as that in §6. O

In summary, there are natural maps obtained from adjunction,
A} = Aj (x0,50)—— A} = A3 (xo)——A}

such that @ induces an isomorphism on cohomology for sufficiently small y,, and
7 induces isomorphisms on cohomology for sufficiently small x,. The correspond-
ence (C, @) lifts to the sheaves A5 and A§ in a way which is compatible with the
maps w and t and the lift of (C, @) to A{ . Since the Lefschetz number L(C, @, A} )
(ie. the alternating sum of the traces of the induced map on cohomology) is
independent of x, and y,, we conclude that it is equal to the Lefschetz number
L(C, @, AY), which is hence also independent of x,. We conclude again that this
same number is equal to L(C, ®,A%). O

9 Equality of the local groups

(9.1) In this section we give a sufficient condition for equality among the local
groups. As in § 3 we suppose W’ is an open subset of X and t: W’ - R xR is
an indicator map for a certain hyperbolic component of the fixed point set of
a correspondence c: C —» X x X. It is possible to choose Whitney stratifications of
W’ and of R x R, so that ¢ is a stratified map, i.e. it takes each stratum of W’
submersively onto a stratum of R o x R > ¢. The “singular” strata in the target will
consist of finitely many points and curves.

(9.2) Proposition. Suppose the stratification of R > o X R ;o contains no 0 or 1 dimen-
sional strata in the region [0, ¢] x [0, ¢] except for the origin, the x-axis and the
y-axis. Let 0 < Xo, yo <¢&. Then the local groups A’(xo,yo) are independent of
(x0, Yo) and they are all canonically isomorphic.

(9.3) Proof. 1t suffices to show that A} (xo, yo) does not depend on the point
(x0, yo) since the other groups are obtained from A, by various limit procedures.
Hypothesis (3) of lemma 6.4 is satisfied because there are no 1-dimensional strata.
Thus A% (xo, yo) does not depend on x,. The hypotheses of lemma 8.1 are similarly
satisfied, so A’ (xo, yo) does not depend on y,. [

10 The local contribution is a sum over strata

(10.1) We assume R is a field. Suppose c¢:C — X x X is a correspondence, S° is
a complex of sheaves of R-modules on X, and ®:¢%(S*) — ¢} (S°) is a lift of the
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correspondence to S°. Let F = C be a connected component of the fixed point set
and suppose that F has a weakly hyperbolic neighborhood W with indicator map ¢.
Let F' = c¢;(F) = c¢,(F) = t~*(0) be the image in X of the fixed component and let

AT= AL =ijLS")
denote the sheaf on F’ whose cohomology is the local group
Al = H'(F';A*).
By Theorem 4.7, the correspondence (C, ®) induces a self map ®% on A% whose
Lefschetz number is the local contribution,
n(F)=Y (= 1y Tr(®,: A} - AL)eR.

In this section we will show that if F is compact then n(F) is the Euler
characteristic of a constructible function [M] on F’ and hence can be written as
a sum over the strata of F'.

(10.2) The sheaf A* is supported on F’. By §9 the correspondence @ lifts to a sheaf
map

D:ctA° Sl A
which is the zero morphism outside the neighborhood W of F. Since F is compact

we have my,c, = ¢,, = ¢;; when restricted to F. Applying this functor to D we
obtain a sheaf map ®':A° — A°* as the composition

C2e®
A* 5 3 ATy ¢t AT S A°

Lemma. The local contribution n(F) to the Lefschetz number L(C, ®; S*) is equal
to the alternating sum of traces,

n(F) = Z (— 1)'Tr(®,:H(F';A°)> H(F';A"))

1

Proof. The proof follows immediately from 4.7(d), 4.5 and 29. O

For each fixed point xe€ F’' let n(x) = n(x, ®)e R denote the local Lefschetz
number at x, i.e. the alternating sum of traces of the induced homomorphism on the
stalk cohomology at x:

n(x, @) =3 (= 1y Tr(®,: Hi(A") > HL(A")).

Suppose that F' = F{UF% U ... U F,is a stratification of F’ such that the local
Lefschetz number n(x) is constant along each stratum F’; and denote this number
by n;. Thus,

nj =3 (= 1) Tr(®: Hi(}jiS") - H(F jiS")),
where xe F;.

(10.3) Theorem. The local contribution n(F) = L(®’) is equal to the Euler charac-
teristic (see [M1]) of the constructible function n(x), in other words,

n(F) = 2(F;n()) = 3 %(F})ny,
=1
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where y. denotes the Euler characteristic with compact supports. Furthermore if
dim(F’;) is even, or if F'; is a locally symmetric space then y.(F}) = y(F?).

(10.4) Proof. The proof will appear in § 11.6.

(10.5) Remarks. Theorem 10.3 is also valid if we replace A* = A} by the sheaf
A5 =ik j%S* whose cohomology is the local group As. The Euler characteristic of
the resulting constructible function n(x) will be the same.

11 Remarks on the Euler characteristic

Throughout this section we assume that R is an integral domain. (Note as in §2.13
that the trace of an endomorphism of R-modules is defined by tensoring with the
field of fractions, so we may as well assume that R is a field.) We also assume that
Yis alocally compact union of strata in a compact stratified space. This guarantees
that the cohomology of Y is finite dimensional.

(11.1) It follows from the universal coefficient theorem that the Euler character-
istic of ¥ may be computed using either homology or cohomology, and with
coefficients in any field.

(11.2) If Y is a (not necessarily compact) manifold of dimension n, then by
Poincaré duality, H:(Y; Z/(2)) =~ H,_;(Y; Z/(2)) and hence 3.(Y) = (— 1)* 3(Y)
where y. denotes the Euler characteristic with compact supports. If ¥ can be
compactified by adding a compact boundary manifold 0Y then by the resulting
long exact sequence on cohomology,

x(Y) = x(Y) + x(3Y).

For example, if Y is a locally symmetric space then the Euler characteristic of its
Borel-Serre boundary is O (since it can be piecewise fibered by nilmanifolds [BS]),
hence x.(Y) = x(Y). If Y is also odd dimensional then (YY) = — y.(Y) so they
both vanish.

(11.3) The Euler characteristic with compact supports is additive: Let Y be a
(compactifiable) stratified space with strata Y, Y,, ..., Y,. Let S be a construct-
ible sheaf (concentrated in degree 0) on 7Y, i.e. for each j, the restriction S|Y; is
locally constant with finite rank F;. Then the Euler characteristic with compact
supports is a sum over strata,

x(Y;8) =Y (= 1)rank H{(Y;S) =) 1.(Y;) F;eZ.
i J
This follows from induction and the long exact cohomology sequence for the pair
HY(Y,Y - Yy;8) = H(Yy;9),
where Y, is a stratum in Y.

Remark. The Euler characteristic with compact supports yx.( Y; S) depends only on
the constructible function F: Y — Z which is given by F(y) = F;for any ye ¥;. Itis
therefore called the Euler characteristic (with compact supports) of the construct-
ible function F, and is denoted x.(Y; F).
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(11.4) If Y has only odd dimensional strata and if it has a compactification
Y consisting of odd dimensional strata then x(Y; F) =0 for any constructible
function F, and in particular x(Y;) = 0 for each j.

This may be seen as follows: We have y(Y) =0 [Su] as may be seen by
calculating the Euler characteristic of the suspension of Y, which has even dimen-
sional strata. Now observe that the function F can be written as a linear combina-
tion of characteristic functions of closures of strata, and use induction.

(11.5) Suppose S is a sheaf of R-modules, concentrated in degree 0, on the
(compactifiable) locally compact stratified space Y, which is constructible with
respect to the stratification Y= Y;u Y, u ... uY,. Suppose ®:S — S is a (con-
structible) sheaf map such that the trace on the stalks,

F(x) = Tr(®,:S, » S,)eR

is constant on each stratum. Then the Lefschetz number (with compact supports)
of @,

L(®) =) (= 1) Tr(®@,: H(Y;S) > H(Y;S))eR

is equal to the Euler characteristic (with compact supports) y.(Y; F) of the
constructible function F:

L(®) = 7(Y;F)= Y F; 7. (Y)eR
j

The proof uses the long exact sequences of § 11.3 to reduce to the case that S is
a locally constant sheaf and F is a constant function, then uses the Mayer—Vietoris
theorem as applied to an open covering of Y which trivializes S.

(11.6) Suppose A° is a constructible complex of sheaves of R-modules on a com-
pact stratified space Y=Y, 0 Y, U ... uUY,, and that ®:A°* — A" s a self map
(which covers the identity on Y). Suppose the local Lefschetz number,

Fx)=Y (—1)Tr(®L:H.(A*)>HL(A*))eR
is constant along each stratum. Theorem 10.3 now reduces to a special case of the
following result:

Proposition. The Lefschetz number of (®, A*) is equal to the Euler characteristic
of Y with coefficients in the constructible function F, i.e.

L@®) = y(Y;F) =Y z(Y)F;eR

(where F; denotes the value of F on any point in Y;). By § 11.2 the Euler characteristic
with compact supports, x.(Y;) may be replaced by the Euler characteristic y(Y;) if
Y; is even dimensional or if it is a locally symmetric space.

(11.7) Proof. Consider the E, term of the spectral sequence for hypercohomol-
ogy,

E¥=H(Y;HY(A')=H'"(Y;A")
Since the alternating sum of traces behaves properly with respect to exact se-
quences and since ® induces sheaf automorphisms ®?: H(A*)— H%(A"*), the
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Lefschetz number of @ is equal to the Lefschetz number of its action on E,, in other
words,
(11.8) L(®) =) (—1)2Y (= 1)) Tr(H (®9): H'(Y; HY(A®)) > H(Y; HY(A"))).

q 1

By refining the stratification if necessary (and using the additivity of the Euler
characteristic with compact supports), we may assume that the local cohomology
sheaves H(A*) are locally constant on each stratum Y; of Y and that the
alternating sum of traces,
Fi(x) =Y (= Iy Tr(@%: HY(A*) > Hi(A"))

is constant on the strata of Y. Thus F?is a constructible function. The inner sum in
(11.8) is the Lefschetz number of the sheaf morphism ®?: HY(A*) —» H%(A") which
may be evaluated by (11.5) so we obtain

L@®@) =) (= D) x(Y; F) = x(Y; F). O

q

12 Contracting fixed points

(12.1) Suppose c:C — X x X is a correspondence with a fixed point component
F < C. The component F is weakly contracting if there is a neighborhood W’ < X
of F' = ¢{(F) = ¢,(F) and a real valued function (to be thought of as the distance
from F'), t: W — R, such that t~*(0) = F’ and so that for all we C, sufficiently
close to F we have, tc;(w) = tc,(w). Thus F is weakly hyperbolic and the indicator
map t sends the neighborhood W to the y-axis only. Let S® be a complex of sheaves
on X and let

®:c¥S*)>ci(S%)
be a lift of ¢ to the sheaf S*.
(12.2) Proposition. The lift ® induces a self map of the restriction,
D :S*|F->S°|F
and the local contribution to the Lefschetz number is
n(F)=Y (— 1) Tr(®,:H(F';S*)—> H'(F';S")).

If F' is stratified F' = F1 O F3 . ..U F, so that the local trace L (®') is constant
on each stratum, set L; = L. (®") for any x€F;. Then we have

n(F) = x(F'; Ly) =}, L; 1. (F})*

(12.3) Proof. The local sheaves A} and A} are both canonically isomorphic to
S* |F'. Apply Theorem 4.7 and Theorem 10.3.

(12.4) Remark. If F is an expanding fixed point component then the local contri-
bution is the Euler characteristic of F’ with coefficients in the constructible function
M whose value M, at a point x € F' is the alternating sum of the traces of @ on the
compactly supported stalk cohomology of S* at x.
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13 The case of a complex analytic endomorphism

(13.1) When the correspondence is the graph of a complex analytic function,
much more explicit results can be obtained: under very general circumstances the
local Lefschetz number is equal to the local trace [K, KS]. Unfortunately this
pleasant state of affairs does not carry over to correspondences (see § 14.4).

(13.2) If S° is a complex of sheaves on a subanalytic space X and T* is a complex
of sheaves on a subanalytic space Y, and if f: X — Y'is a function, then the graph of
f1s a correspondence,

C={(X,f(x)|xeX}>XxY
and a lift of C to the sheaf level,
@:cXT")-cy (T)

is the same as a sheaf morphism f* T* —> S* (see [V]). Apply ¢, (or f) to obtain
a map
To —’f* So

which induces the pullback homomorphism on cohomology, H (Y;T*) -
H'(X;S*). Now suppose f'is a self map, i.e. X = Yand S* = T*. Then we obtain
a self map on the stalk,

D.:S; -S;

for each fixed point x € X. The number

Z(— 1) Tr(®5:H'(SS) — H'(SY))
is called the local trace. (If S* is self dual or if f ~*(x) consists of finitely many
points, then it is also possible to define a local trace on the compactly supported
stalk cohomology at a fixed point x.) The following beautiful result has been
proven by Kashiwara and Schapira [KS]:

(13.3) Proposition. Suppose X is a complex manifold, f: X — X is a holomorphic self
map, S* is a complex analytically constructible complex of sheaves on S°, and
D f*S*)—>S isalift of ®toS°*. Let xe X be an isolated fixed point and suppose
that the linear map df (x) has no eigenvalue equal to 1. Then the local contribution at
X to the Lefschetz number is equal to the alternating sum of the traces of @' on the
stalk cohomology HL(S").

(13.4) Remarks. This result appears to disagree with Theorem 4.7 which says that
the local contribution is equal to the alternating sum of traces on the local groups
A'. These apparently conflicting results do, in fact, give the same number. This
may be seen by first considering the following “conical” special case: Stratify X so
that the complex of sheaves is constructible with respect to the stratification and
suppose there exists a coordinate chart near the fixed point x such that this
stratification is conical (i.e. invariant under C*) and the self map is linear. Then
composing the self map with the time ¢ flow of the vectorfield \/ — 1 dr, (where
r denotes the distance from x) one obtains a homotopic self map with no real
eigenvalues. Thus if we further compose this with a contraction we will create no
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new fixed points. However a contracting self map has local contribution given by
the local trace. The general case can be reduced to this special case by deformation
to the normal cone [BFM, F].

This argument also shows (by composing with an expansion instead of a con-
traction) that if the differential df (x) has no kernel, then the local contribution may
also obtained by taking the alternating sum of traces on the local compactly
supported stalk cohomology.

14 Examples and counterexamples

(14.1) Cohomology. If f: X — Y is a map between subanalytic spaces then the
graph of fis a correspondence c¢:G(f) — X x Y which has a natural lift

C;‘(ZY) g Cvl(Zx) = ZG(f)'
Apply c;, to obtain maps
Zy-)Cz* C;‘ Zy > Coy Cll ZX =f* (Zx),
which gives the usual map on cohomology, H*(Y) » H*(X).

(14.2) Homology. If f: X — Y is a map between compact subanalytic spaces we
may view the graph of f as a reverse correspondence, d:G(f)—> YxX. If
D3 denotes the dualizing sheaf on Y, we obtain a canonical lift,

Dy 2 diDy—di DS.
Apply d,, to obtain maps
RfiDy =dy d3 Dy —dyd; Dy - D3,
which gives the usual map on homology, H,(X) — H,(Y).

(14.3) Placid correspondences. A map f:Y — X between subanalytic pseudo-
manifolds is placid [GM2] if there exists a stratification of X such that for each
stratum S = X we have

codimy(f = (S)) < codimy(S).

A correspondence ¢: C — X x X is placid if each component is placid. It is shown
[GM2] that a placid correspondence has a canonical lift to the intersection
cohomology sheaf S* = IC* (with any perversity, including homology and co-
homology). This can be obtained as the composition

c3(ICx)~ ICE i (ICY),

with the first map given by pullback of transverse cycles, and the second map given
by pushforward of cycles. A special case is when each component of the corres-
pondence is a finite map: this happens, for example, when C is a Hecke correspond-
ence and X is a Satake compactification of a locally symmetric space.

(14.4) The local trace. For a general correspondence c: C — X x X and a lift to
a complex of sheaves,
@:c¥S°)-ci(S)
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we do not, in general, obtain an induced map on the stalk cohomology of S* at
a fixed point. Even in the cases where there is a natural map induced on the stalk
cohomology, and even when the correspondence is complex algebraic, the alternat-
ing sum of its traces may not be equal to the local contribution to the Lefschetz
number.

Consider the graph of the “function” y = x” i.e. the correspondence c: C 3 €
given by c;(x) = x* and c,(x) = x’. Since c is a finite map we obtain canonical
morphisms on the pullback of the constant sheaf Z,

b/a

C;(Z) i d Zg(f) bd C!l (Z)
This induces the “pullback” homomorphism on the stalk cohomology at the origin,
Z =H}(@) -~ H(O) =1Z,

which is multiplication by a. It also induces a (pullback) homomorphism on the
stalk cohomology with compact support at the origin,

Z=H ()~ Hfy(C) =Z,

which is multiplication by b. However the local contribution to the Lefschetz
number is min(a, b) which can be seen in two interesting ways:

(1) It is the intersection number of the diagonal with the plane curve y* = x°.

(2) If b = a the correspondence is weakly contracting so by Theorem 4.7 or by
§ 12 the local Lefschetz number is equal to the local trace on the stalk cohomology,
which is multiplication by a. If b < a the correspondence is weakly expanding so
the local Lefschetz number is the local trace on the compactly supported cohomol-
ogy, which is multiplication by b.

An even more striking example is given by the correspondence on €2
with ¢, (x5, x,) = (x4, x%) and c,(xq, x;) = (x%', x%2). The trace on the stalk
cohomology at the origin is a; a, while the local Lefschetz number is
min(a,, b,)* min(a,, b,).

Remark. The above example arises naturally in the study of modular curves.
Suppose X is a modular curve and X is the compactification which is obtained by
adding a point for each cusp. Such a point x, has a neighborhood which is locally
parametrized by the complex numbers C. If x, is an isolated fixed point of a Hecke
correspondence, then the correspondence may be locally described by the equation
y = x*. As mentioned in the introduction, this case was previously analyzed by
Langlands [L, Proposition 7.12], and Illusie [I, p. 144].

(14.5) Nonhyperbolic fixed points. The complex algebraic function f(z) =z + 1
extends to a self map of the Riemann sphere CP?, which has a single fixed point
which is not weakly hyperbolic at z ={ o} and Lefschetz number equal to
x(CP!) = 2. The differential df (o) is 1 and the induced homomorphism on the
stalk cohomology has trace equal to 1 at the fixed point.

(14.6) Noncompact spaces. The function f:IR — IR given by f(x) = x + 1 has no
fixed points, but the Lefschetz number

Y (= ' Tr (f*: H'(R) > H' (R))

13
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is 1, while the Lefschetz number with compact supports,

2 (=D Tr(f*:H:(R) > H (R))

i

is — 1. This simple example illustrates the principle that the Lefschetz number of
an endomorphism on a noncompact space X depends on the behavior of the
endomorphism at infinity, and is best studied by extending the endomorphism to
some compactification X of the space X. In many naturally occurring examples,
including those of Hecke correspondences, the space X may be a smooth manifold
but the space X will have singularities, and it may even fail to have a natural
embedding in a smooth manifold.
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