
ADVANCES IN MATHEMATICS 63, 301-316 (1987) 

Combinatorial Geometries, Convex Polyhedra, 
and Schubert Cells 

I. M. GELFAND 

A. N. Belo~ersk~ Luhora~ory of‘ Molecular Biology and Bio-organic Chemistry. 

Building A, Mosco~~ Stale L;nil:ersitF, Moscow GSP-234. 119899, U.S.S.R. 

R. M. GORESKY 

Depurimcnc of Mathematics. Norrheaslern CJniaersity. Boston, Massachusetts 02115 

R. D. MACPHERSON 

Department of Mathemarics, Brown University. Providence Rhode Island 02912 

AND 

V.V. SERGANOVA 

A. N. Bekersk~, Lahorarory of Molecular Biology and Bio-organic Chemistry, 

Building A. Mosc~on~ State iJtziver.ri/y. Moscow GSP-234, 119899, U.S.S.R. 

INTRODUCTION 

This paper is a continuation of [GM] which was published in the same 
journal. We will explore a remarkable connection between the geometry of 
the Schubert cells in the Grassmann manifold, the theory of convex 
polyhedra, and the theory of combinatorial geometries in the sense of 
Crapo and Rota [CR]. The results in this paper were obtained 
simultaneously and independently by Gelfand and Serganova (in Moscow) 
and by Goresky and MacPherson (at the I.H.E.S. in Paris) as part of larger 
programs with different purposes (see below). The geometry of this simple 
example is so beautiful that we decided to publish it independently of the 
applications. We believe that combinatorial methods will play an increas- 
ing role in the future of geometry and topology. 

We consider the Grassmann manifold Gi-, of all (n -k)-dimensional 
subspaces of C”. By fixing the standard basis in C” we obtain an action of 
the torus H = (,*)‘I on G[ pk which is induced from stretching the coor- 
dinate axes in C” (see also Sect. 1). We will describe not only the trajec- 
tories, but also the “strata” of a new and interesting decomposition of the 
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Grassmanian (which is finer than the usual stratification by isotropy sub- 
group of H). Understanding the geometry of the strata and the quotient 
space of this action is useful in many situations, and this paper may be con- 
sidered as an introduction to these other situations: (1) for understanding 
the generalized hypergeometric functions and the Kostant partition 
function [G, GG, GZ], (2) for understanding the dilogarithm and the 
polylogarithms and their functional equations [GM, HM], (3) for the 
study of combinatorial geometries which are associated to other Lie groups 
and parabolic subgroups [GS], (4) for construction of combinatorial 
Chern and Pontrjagin classes [GGL, M], (5) for the study of he represen- 
tability of matroids [GoM], and (6) for the study of algebraic K-theory 
[BMS]. 

According to [GM] the trajectories of the action of (@*)‘I on the 
Grassmannian Gk x- correspond to projective configurations of n points in 
P’~ ‘(C). This torus action also gives rise to a moment map p: GE-, -+ R” 
(see [GM] for the case of the Grasmannian, and [A] or [GUS] for an 
important generalization) with the property that the image of each trajec- 
tory is a convex polyhedron. Our main result is that the following three dif- 
ferent decompositions of the Grassmannian into strata all coincide: 

( I ) The set of points in Gi-, such that the corresponding projective 
configuration represents a fixed combinatorial geometry (see Sect. 1). 

(2) The union of the orbits of (C*)” whose projection under p is a 
fixed convex polyhedron (see Sect. 2). 

(3) A multi-intersection of translates of Schubert cells which are 
obtained by permuting the coordinate axes (see Sect. 3). 

The equivalence of ( 1) and (2) establishes a one to one correspondence 
between representable (over C) combinatorial geometries (or matroids) 
and certain convex polyhedra. In Section 4 we extend this to a correspon- 
dence between all matroids and certain polyhedra which are characterized 
by a restriction on their vertices and edges (l-dimensional faces). This 
characterization is equivalent to the Steiner exchange axiom. The marriage 
of matroid theory and convex set theory should have interesting con- 
sequences. The polyhedron corresponding to the Fano plane is particularly 
beautiful. 

We would like to thank S. I. Gelfand for his valuable suggestions concer- 
ning this manuscript. 

1. THE GRASSMANN STRATA AND COMBINATORIAL GEOMETRIES 

1 .I. DEFINITIONS. Throughout this paper we fix the standard unit 
vectors e,, ez ,..., e,, of C” and let Gf: -k denote the Grassmann manifold of 



GEOMETRIES 303 

(n - k)-dimensional subspaces of C,,. For each plane P E Gtek the 
projection 

7Lp: C” -+ 67/P 

determines n vectors (some of which may be 0), rc,,(ei), rcP(e2),..., rc,,(e,,) in 
the quotient @“/Pr C”. We obtain in this way a (representable over C) 
matroid (or combinatorial geometry) of rank k on the set { 1, 2, 3,..., n}, i.e., 
a “rank function” defined on subsets Jc { 1, 2,..., n}, which is given by 

rank(J) = dim&span{ n,,(ei) lj~ J) ) 

and which satisfies the following matroid axions: [Wh, VW, CR, W]: 

(RI) rank(&)=O, 

(R2) ZCJ=> rank(Z) 6 rank(J), 

(R3) rank(luJ)+rank(lnJ)<rank(l)+rank(J). 

Remark. Given any k-dimensional complex vectorspace V and any n 
vectors U, , v2 ,..., v,, which span V, there is a plane PE Giek and an 
isomorphism F: C/P z V such that F(n,,(e,)) = ui (for i= 1, 2,..., n). In fact, 
F is induced by the surjective homomorphism F: C” + V which is defined 
by p(ei) = ui. 

1.2. Grassmann Strata 

DEFINITION. Two points P, , P, E Gi-, are said to lie in the same 
Grassmann stratum r of Gf: k if they give rise to the same matroid, i.e., if 
for each subset Jc { 1, 2 ,..., a} we have, 

dim,span(~,,(ei)IjEJ) =dim,span(n,,(e,)lj~J). 

I .3. Torus Action 

The algebraic torus H= (,*)‘I acts on C” by stretching the coordinate 
axes, i.e., if 3. = (i., , iz ,..., A,,) E H and if x E C” then 

1:x= (i,x,, &x2 ,..., &x,,). 

The action of each A E H is linear so it takes subspaces to subspaces and 
therefore induces an action on Ga -k. The fixed points of this action are 
easily described: for each k-element subset Jc { 1,2,..., n) there are coor- 
dinate k and n-k planes, 

R,=span{e,lj~J}, 

Ri = span { ej lj 4 J}. 
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It is easy to see that the fixed points of the action of H on Gf;-, are 
precisely the coordinate n - k planes Rf (for arbitrary k-element subsets J). 

Remark. The closure (in G:- c) of an orbit of H is a normal algebraic 
subvariety of G: k which is H-stable and consists of finitely many H-orbits, 
i.e. it is a toric variety [D]. 

1.4. LEMMA. Fi.\- P E G: /, and let @ denote the corresponding tnatroid. 
Let H. P denote the closure (in Ghlm k) oj’ the orbit of H bvhich contains P. 
T/WI flte ,fi.rccl poittts qf’ H which lie it1 H. P are preciseljr those coordinate 
tt - k plattes R,; such that J is a basis (i.e., a maximal independent subset) 
of CD. 

ProqfI First, suppose that J is a basis of @. This means that 
i rt,,(e,) 1.j~ J) are linearly independent in C”/P, i.e., that P n R, = {O), 
where 

R,,=span(e,I,j~ J). 

Thus the plane P can be realized as the graph of a linear transformation 

in the product space C” = Rj OR,. Now consider the action of C* c H on 
the Grassmannian Gi A, which is induced by the following action on C”: 

i. e, = 
E-e, if ,j~ J, 

e I if j$ J. 

It follows that for any plane PEG: A., the induced action satisfies 

2 . P = graph( 2f:f,, 

so 

lim (E:P)=graph(O)=Rf, 
I - 0 

i.e., the coordinate plane R: is in the closure of H. P. 
On the other hand, suppose that J is not a basis of @, but suppose there 

exists a sequence L, E H such that 2;. P -+ R:. Then for sufftciently large i 
we have 

2; Pn R,=O 

since any such n - k plane which is sufficiently close to R: will necessarily 
be transverse to R,. However, this implies that J must be an independent 
set of @: if it were dependent then (r~,,(e~)I,j~ J} would be linearly depen- 
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dent which would mean that Pn R,#O, and so the same would be true for 
i: Pn R,. 

1 S. Remarks on Projective Configurations 

For any r 3 k, we let C;( P”- ’ ) denote the set of maps c: S -+ P” ’ from 
an r-element subset SC ( 1, 2,..., n i to P” ‘, whose image c(S) spans Ph ‘. 
(Thus an element of C;( P/‘ ’ ) is r points, not necessarily distinct, and 
labelled by certain integers between 1 and n). The group PGI,(@) acts on 
the space C;(P’ ’ ). A projective corzfiguration is an element of the quotient 
space C;!( P’ ’ )/PC/, (@ ). 

Fix a plane P E Gf: k and let r denote the number of nonzero vectors in 
the collection i n,,(e,) I 1 6 i 6 n i c 4Z”/P. We thus obtain a configuration 
n(P) of r ordered points (which are labelled by r of the integers between 1 
and n) in the projective space p(UZ”/P) z P’ ‘. The following proposition 
indicates that we may transform questions involving the action of PGL,(@) 
on the space of ordered r-tuples of points in P” ’ into questions involving 
the action of the torus H = (@*)‘I on Gk k : 

PROPOSITION [GM 1. The association A induces a one-to-one correspon- 
dence between the firctor xpaces 

G:, AlH and 
( 

fi P;(P” 
r=h 

‘) /PGL,(@). 
1 

Remark. There is a natural (non-Hausdorff) topology on each of these 
spaces. 

Proqf’ qf’ Proposition. We repeat the essential idea behind the proof in 
[GM]. Choose an r-element subset Jc { 1, 2,..., nj.. Let 

c,,= (PEG: I,Ixp(ei)=O~,j~JI. 

It suffices to show that n induces a bijection 

A,,: c,,/H + C,(P” ‘)/PGL,(@), 

where C,( Ph ’ ) c C;( P” ’ ) denotes the set of r-tuples of points in PkP ’ 
which span P” ’ and are labelled by the integers in the set J. 

Any element P E G, is the kernel of a surjective linear map n: ‘IZ” -+ @” 
which is uniquely determined up to composition with elements of GL,(@) 
because the induced map c”/P -+ @” is an isomorphism. Thus P determines 
a unique CL,-equivalence class of r nonzero vectors in Ck. The action of H 
stretches these vectors but does not change their directions, so the 
corresponding points in P” ’ are well defined (modulo PGL, equivalence). 
Thus >,, is well defined and we have already remarked (Sect. 1.1) that it is 
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surjective. To see that 2, is injective, suppose that P,, P2 E cI$-~ are 
kernels of surjective homomorphisms 7c,, nz : @’ + Ck and that A,(P,) = 
A,( P2), i.e., there exists an invertible linear transformation F: Ck + Ck such 
that, for each ~EJ there exists I., E @* with Fn,(e,) = i,nz(ej). If d: C” -+ @“ 
is given by the diagonal matrix 

if jcJ, 
if j$J. 

then the following diagram commutes: 

and therefore A( Pz) = P, . 

2. MOMENT MAP 

2.1. DEFINITION OF THE MOMENT MAP. Associated to the torus action 
(Sect. 1.3) of H on the Grassmannian Gf; _ li, there is a moment map 

p: Gk ,, ~ k --t Iw” 

which was defined first (in this case of the Grassmannian) in [M] and 
[GM], and later, for arbitrary group actions on symplectic manifolds in 
[A] and [GUS]. In this section we will give an explicit expression for the 
moment map. 

A plane PEG~;_~ can be realized as the kernel of a surjective 
homomorphism F: C” -+ C” which corresponds to a matrix M with n 
columns and k rows. For any subset JC (1,2,..., IZ} of cardinality k, we 
obtain a k x k matrix M(J) consisting of the columns of A4 which are 
indexed by J. There are (y) such subsets. 

PROPOSITION. The coordinates p,: Gf: -k + R of the moment map are 
given h? 

P-(p) = IZicJ Wet WJ)12 
, 

CJ ldet MJ)12 ’ 

where the summation in the numerator is over ail k-element subsets J which 
contain the index i, and where the summation in the denominator is over all 
k-element subsets J. 
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Proof. The association P -+ { ldet M(J)1 } (where J varies over the k 
element subsets of { 1, 2,..., n}) gives rise to the Plucker embedding 

on which the moment map is computed as in [K]. 

2.2. The Hypersimplex 

For any PE G:_ k we have 

OQ/litP)< l and c ,ui(P)=k. 
i=l 

Thus the image of the moment map p is the hypersimplex At-k of [GGL] 
and [GM], i.e., the set of all points x E R” such that 0 6 xi< 1 and 
I;!=, .yi = k. The hypersimplex A:px. is the convex hull of the (;I) vectors 
e(J) E R” which are indexed by k-element subsets JC { 1, 2,..., n} and are 
given by 

if ~EJ 
if ,j$J 

2.3. CONVEXITY THEOREM. We recall the convexity theorem of [Gus], 
and [A]: Let H* P denote the closure in Gt -L of the orbit of the point P 
under the action qf H = (@* )I’. Then the image p( H ’ P) is the convex hull of 
the points p(Q) where Q varies over the,fixed points in the closure H. P. (In 
other word>s, p( H. P) is the convex hull of a certain subset of the vertices of 
the hypersimplex. ) 

LEMMA. The preimage qf each vertex of the hypersimplex is the H-fixed 
point u ‘(e(J)) = Ri. 

Proof By [A] the preimage pc’(e(J)) of any vertex of AL-k consists of 
a single fixed point. However the coordinate n-k plane R$ may be 
represented as the kernel of a matrix M: C” + Ck such that the minor M(J) 
is the identity and the remaining columns of M are all zero. Therefore, for 
any k-element subset Kc { 1, 2,..., n} we have 

det M(K) = i 
if K=J 
if K#J, 

so 
if icJ 

if i#J 

which shows that ,u(Rf ) = e(J). 
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2.4. SECOND DEFINITION OF THE STRATIFICATION. We shall say that two 
points P, Q E Gi k are in the same stratum of the second stratification of 
Gh /, if the image under the moment map of the closure of the H-trajectory 
of P coincides with the image under the moment map of the closure of the 
H-trajectory of Q, i.e. if 

THEOREM. The .second strattfication of’ Ci k coincides with the ,first 
strat~fkation of’ Gfr x which was dcfitled in Sect. 1.2. 

COROLLARY. WC> hare therejbre assigned, to each representable com- 
binatorial geometq* @, a unique comex po&hedron 

d(@)=closure(p(l‘)), 

wlrrre f’ is t/w stratifnt in Gf; k which corresponds to #. Moreover, (by 
Lemma 1.4 arzd Lemmu 2.3 ), the pol?#zedron A( @) has the simple description 
as thr conres hull of’ the vectors 

Proof’ of’ Theorem. If two points P, Q E Gi k lie in the same stratum f 
(as defined in Sect. 1.2) then they determine the same matroid so (by 
Lemma 1.4 and the convexity theorem) they have the same bases, so 
p( H. P) and p( H. Q) are the convex hulls of the same collection of vectors, 
so they coincide. On the other hand, suppose that P and Q have the 
property that p( H. P) = p( H. Q). Then the matroids corresponding to P 
and Q have the same bases. However the bases of a matroid determine the 
matroid [W] so P and Q are in the same stratum r of Gt- k. 

3. SCHUBERT CELLS AND STRATA IN THE GRASSMANNIAN 

3.1. Schubert Cells 

The standard ordering {e, , ez,..., e,, ) of the standard basis of C” gives 
rise to the standard flag 

F1 c F’ c . . . c R” = cc”, 

where F’=span{e,,e, ,..., e,}. 
A Schubert sgmhol is a sequence of k numbers, 

1 6 i, < iz < < ik d n 
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and determines the Schubert cell 
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i.e., the numbers ij label the subspaces for which the dimension of the inter- 
section with P jumps up. 

The Schubert cells form a decomposition of the Grassmannian into even- 
dimensional cells. [MS]. 

Now let CJ E C,, be a permutation on ( 1, 2,..., n i, and consider the new 
ordering (e,,,,, e,+..., e,,,,,J of the basis vectors of @‘I. This gives rise to a 
new flag 

FI, c I$ c . c F” = @“, 

where F:, = span{ err(, ), c’,,?) ,..., e (i(,,}. We obtain a new decomposition of the 
Grassmannian into Schubert cells, 

Q”[i,i,...i,] 

by replacing Fi with F; in the above definition. 

3.2. The Third Stratification of the Grassmunnian 

We define the third stratification of the Grassmannian to be the common 
refinement of the n! decompositions into Schubert cells Q”[i,i, ... ik]. 
where c is allowed to vary over all permutations and i, i, . . . i, is allowed to 
vary over all Schubert symbols. 

THEOREM. The third decomposition of the Grassmannian coincides with 
the decomposition of Gi ok into the strata of Section 1.2. 

Proof If PE CY[i, i, ... ik] then the rank function r of the 
corresponding matroid satisfies 

r(o( 1 ). a(2) ,..., o(m)) = m -j, 

where j is uniquely determined by 

i,<m<ii+, 

because dim( Fr/I$’ n P) = m - dim(c n P) = m -j. In other words, the 
rank function is not completely determined, however, its value on the par- 
ticular subsets 

id1 I), 141 1, 42)),..., (a(l), a(2),..., a(n)} 
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is determined. Now a stratum in the third decomposition of GiPk has the 
form 

where each L, is some Schubert symbol. (Most such intersections will be 
empty, of course, and a given stratum may have many such represen- 
tations.) Thus a point P E S corresponds to a matroid whose rank function 
is completely determined: if Jc { 1, 2,..., n} is any subset then we can find a 
permutation cr such that J = { a( 1 ), a(2),..., 6( IJJ ) }. If L, = [ii i2 . . . ik] then 
the value of the rank function is r(J) = IJI -j, where 

ii6 [.I[ <ii+,. 

(The permutation (r is not unique. However, if another permutation t is 
found such that J= {r(l), r(2),..., z( IJI )} and if the resulting computation 
for r(J) differs from the above, then this will imply S = 4.) This shows that 
the intersection S is contained in at most one stratum of the stratification 
from Section 1.2. 

On the other hand, suppose that f is a stratum of the stratification from 
Section 1.2. Fix a permutation c E C,, . For each P E r the ranks of the sets 

bJU))Y {41)? 42)),..., {fm, 42),..., 0)) 

are determined by the rank function r of the matroid associated to r. 
However, 

r(‘~( I), a(2),..., o(m)} = dim(c/Fy n P) = m - dim(c n P) 

so the dimensions dim(Z$‘n P) are also determined by IY This means that 
P is in a certain Schubert cell of type W[L,] and the Schubert symbol L, 
is determined by the matroid associated to I7 Thus Tc B”[L,]. If we 
allow the permutation e to vary, we conclude that each stratum r is 
contained in a unique intersection, 

I-c n Q”CL1 
OCT” 

which completes the proof. 

4. MATROIDS AND CONVEX POLYHEDRA 

4.1. Introduction. 

We can extend the correspondence (Corollary 2.4) between representable 
matroids and certain convex polyhedra, to all matroids. Thus, to any 
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matroid CD (of rank k, defined on the set { 1,2,..., n}), we associate the 
convex polyhedron A( @), 

A (0) = convex hull {e(Z) I Z is a basis of @ > 

In this section we will investigate which polyhedra can occur. 

DEFINITION. We will say that a convex polyhedron A which is contained 
in the hypersimplex Af: rc is a matroid polyhedron if the vertices of A are a 
subset of the vertices of the hypersimplex Atek and if each edge (i.e., 
l-dimensional face) of A is a translation of one of the vectors ei - ei 
(for i#j). 

4.1. THEOREM. Suppose A is a convex polyhedron which is contained in 
the h,i?persimplex A f: _ /;. Then there exists a matroid CD such that A = A( CD) iff 
A is a matroid pal-vhedron, and in this case the matroid @ is uniquely deter- 
mined. 

Remarks. (1) The vectors ei-eei are the “roots” of the group GL,(@). 

(2) Isomorphic matroids determine congruent polyhedra. 

(3) This theorem implies, for example, that if @, and CD? are 
matroids such that A(@,)c A(@,) then the edges (and the vertices) of 
A(@,) are a subset of the edges (and the vertices) in A(Q2). 

(4) The essential observation in the proof is that an edge which is a 
translate of e, - ei joins two bases which are related by a Steiner exchange. 

4.3. Proof of (*) 

Fix a matroid @. For each basis B c { 1, 2,..., n} of @ we denote the 
corresponding vertex of AL _ k by e(B), i.e., 

if iEB 
if i# B. 

Now suppose that Z and J are bases of the matroid @, and that the 
vertices e(Z) and e(J) are joined by an edge in the convex set A(@). By 
reordering the elements of the matroid, we may suppose that the vectors 
e(Z) and e(f) differ only in the first 2p coordinates and that 

e(Z) = (1, l,..., 1, 0, 0 ,..., 0, other), 

e(J) = (0, 0 ,..., 0, 1, l,..., 1, other) 

(there are p ones and p zeroes in each case). We will show that unless p = 1, 
the midpoint 

m = (f, 4 ,..., $, other) 

607/63/3-7 
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of the segment joining e(Z) and e(J) is a nontrivial convex combination of 
other vertices of d(Q) and therefore this segment is not an edge of d(Q). 
For this discussion we can ignore the “other” coordinates, i.e., we may take 
I= { 1, 2, 3 ,..., p} and J= { p + 1, p + l,..., 2~). We will repeatedly apply the 
Steiner exchange axiom to these two bases. 

Srep 1 = Step 1 b. Exchange the element 1 E I with the basis J, obtaining 
a new basis B, of @ which, by reordering the elements in J, can be assumed 
to be 

B,=B,,=Z-(lj+{p+l). 

Step 2a. Exchange the element p + 1 E J with the basis Z, obtaining one 
of two possibilities (up to a reordering of the elements (2, 3,..., p}): 
B,,,=J-Ip+l}+(l)orelseJ-(p+l)+{2).Inthefirstcasewehave 

m = X4&,) + 4BIh)1 

so we are finished. Thus, we can assume 

Bz<,=J-.(p+1)+{2} 

is a basis of @. 

Step 2b. Exchange 2 E I with the basis J, obtaining one of two possible 
bases (up to a reordering of the elements {p + 2, p + 3,..., 2~)): 
BZh=Z-{2}+jp+l) or I- (2) + {p+2}. In the first case, 

m=f[e(&,)+e(B,,)l 

so we are finished. Thus, we can assume 

BZh=Z- {2} + {p+2) 

is a basis of @. 
Continuing in this way, we either prove that m does not lie on an edge, 

or else we construct a sequence of bases B,,, BzU, B,,, B3,,,..., of 0. At the 
kth step (part a) we exchange p + k - 1 E J with the basis 1, obtaining one 
of k possibilities (up to a reordering of the elements { ek, ek + , ,..., eP > ), 

Bku=J-{p+k-l}+{i}, 

where 1 < i< k. However, one checks (by a straightforward but messy com- 
putation) that if i # k then 
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and so m does not lie on an edge. This leaves only the possibility that 

Bku=J-(P+k+l}-jk) 

is a basis of CD. 
Similarly the kth step (part b) gives a basis 

B,,=Z- (k}+ {p+k}. 

This process terminates after p steps when we exchange (in step (p + 1) 
part (a)) the element 2p E J with the basis I. There are one of p possible 
results, 

B ip+ I)u =J-{p)+oneof (1,2,3 ,..., p} 

and in each case the point m can be written as a nontrivial convex com- 
bination of previous vertices, as above. This completes the proof that the 
edges of any A(@) must be translates of vectors e; - ej. 

4.4. Proqf qf (* ) 

Suppose that A is a convex hull of some vertices in the hypersimplex 
At- kr and that each edge of A is a translation of some vector e, - e,. We 
must show that the vertices of A constitute the bases of a matroid. By [W] 
this is equivalent to verifying the Steiner exchange axiom: if I and J are k- 
element subsets of { 1, 2,..., n > such that e(Z) and e(J) are vertices of A, and 
if mel- J, then there exists IE J-Z such that the vector e(Z- {m> + {I}) 
is a vertex of A. By relabelling the coordinate axes in R”, we may assume 
that e(Z) and e(J) differ only in the first 2p positions, and that 

e(Z) = (1, l,..., 1, 0, 0 ,..., 0, other), 
e(J) = (0, 0 ,..., 0, 1, l,..., 1, other). 

We may further assume that the “other” coordinates are arranged so that 
all the l’s appear before the 0’s. In this way we have divided the set 
{ I, 2...., H) into four intervals: 

A={l,2 ,...) p), B= (p+ l,p+2 ,..., 2p), 

C= {2p+ 1, 2p+2 ,..., p+k), D= {p+k+ l,p+k+2,...,n} 

such that Z=AvC, J=BvC, and mEA. 
Since A is convex, the line segment joining e(Z) to e(J) is completely con- 

tained in A, which is in turn contained in the convex cone which is spanned 
by the edges E,, E, ,..., E, which emanate from the vertex e(Z). Thus there 
are nonnegative real numbers a,, a,,..., a, such that 

e(J)-e(Z)= (- 1, - l,..., - 1; 1, l,..., 1; 0, 0 ,..., 0; 0, 0 ,..., O)= C a,E, (*) 
i= I 
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(where the semicolons are used to separate the coordinates which are in A, 
B, C, and D). By assumption, each such edge vector E which emanates 
from the vertex e(Z) is of the form e, - ek, for some I and k in the set 
{ 1, L., n}. Since the vertex e(l) + E lies in the hypersimplex, which is con- 
tained in the region 0 < /xi1 < 1 (for 1 < i < n), we must have 

l$AuC and k$BvD (**) 

Furthermore, if such an edge vector E = e, - ek appears with nonzero coef- 
ficient in the above sum (*), then i$ D: otherwise this would give a positive 
value to the coordinate x,, which could not be cancelled by any other 
terms in the sum, because of the condition (**). Similarly, we must have 
k I$ C. In conclusion, each of the vectors E = e, - ek which appear with non- 
zero coefficient in the sum (*), must satisfy f~ B and ke A. 

Now consider the particular coordinate m E A. Since (e(J) - e(Z)),, = - 1, 
at least one of the vectors (say, E,,) in the sum (*) has - 1 in the mth coor- 
dinate. For this particular vector we have 

E., = el - e,,, and IEB~J-I. 

Thus, the vertex of A which is given by 

e(Z) + E,, =e(Z- {m} + (I}) 

verifies the desired Steiner exchange. 

4.5. The Fano Polyhedron 

Associated to the Fano configuration (which is not representable over 
Cl, 

we obtain a beautiful, highly symmetric 6-dimensional convex polyhedron 
with 28 vertices, 126 edges, 245 2-dimensional faces, 238 3-dimensional 
faces, 112 four-dimensional faces and 21 5-dimensional faces. The full sym- 
metry group of this polyhedron is the finite simple group PGL,(lF,). This 
example has obvious generalizations to other finite projective spaces. 
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5. REMARKS 

5.1. Topology of the Strata 

We do not know whether each stratum Tc Gt-, is nonsingular. We do 
not know whether each stratum f is a K(Tc, 1) space. 

5.2. Degeneration of Matroids 

If f c GiPk is a stratum and if PE r- f, we shall say that the matroid 
corresponding to I- degenerates to the matroid corresponding to P. In this 
case, we have for any subset Jc { 1, 2 ,..., n} the following relation on their 
corresponding rank functions: 

However, the closure of the stratum r is not necessarily a union of strata 
f’, and may for example contain a proper subset of a stratum r’, as the 
following example shows 

A theorem in projective geometry [HC] states that the four points A, B, C, 
and D are harmonic, i.e., the cross ratio of (A, C; B, D) is - 1. However, it 
is possible to degenerate the above configuration to the following con- 
figuration: 

l 

but in doing so we will only obtain 8-tuples of points such that A, B, C, 
and D are harmonic. 
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5.3. Other Lie Groups and Parabolics 

For any complex algebraic Lie group G and parabolic subgroup P, the 
moment map associated to the torus action, ,u:G/P -+ g* gives rise to new 
combinatorial geometries and interesting convex polyhedra. These will be 
explored in [GS]. 
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