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1. Introduction

1.1. Suppose X is a compact n-dimensional complex manifold. Each par-
tition I = {i1, i2, . . . , ir} of n corresponds to a Chern number cI (X) =
ε(ci1(X) ∪ ci2(X) ∪ . . . ∪ cir (X) ∩ [X]) ∈ Z where ck(X) ∈ H2k(X;Z)
are the Chern classes of the tangent bundle, [X] ∈ H2n(X;Z) is the funda-
mental class, and ε : H0(X;Z)→ Z is the augmentation. Many invariants
of X (such as its complex cobordism class) may be expressed in terms
of its Chern numbers ([Mi], [St]). During the last 25 years, characteris-
tic classes of singular spaces have been defined in a variety of contexts:
Whitney classes of Euler spaces [Su], [H-T], [Ak], Todd classes of sin-
gular varieties [BFM], Chern classes of singular algebraic varieties [Mac],
L-classes of stratified spaces with even codimension strata [GM1],
Wu classes of singular spaces [Go2], [GP] (to name a few). However, these
characteristic classes are invariably homology classes and as such, they can-
not be multiplied with each other. In some cases it has been found possible to
“lift” these classes from homology to intersection homology, where (some)
characteristic numbers may be formed ([BBF], [BW], [Go2], [GP], [T]).

The case of locally symmetric spaces is particularly interesting. Suppose
Γ is a torsion-free arithmetic group acting on a complex n-dimensional
Hermitian symmetric domain D = G/K , where G is the group of real
points of a semisimple algebraic group G defined over Q with Γ ⊂ G(Q),
and where K ⊂ G is a maximal compact subgroup. Then X = Γ\D is
a Hermitian locally symmetric space. When X is compact, Hirzebruch’s
proportionality theorem [Hr1] says that there is a number v(Γ) ∈ Q so
that for every partition I = {i1, i2, . . . , ir} of n, the Chern number satisfies
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cI (X) = v(Γ)cI (Ď), where Ď = Gu/K is the compact dual symmetric
space (and Gu is a compact real form of G(C) containing K ).

If X = Γ\D is noncompact, it has a canonical Baily-Borel (Satake)
compactification, X. This is a (usually highly singular) complex projective
algebraic variety. To formulate a proportionality theorem in the noncompact
case, one might hope that the tangent bundle TX extends as a complex vector
bundle over X, but this is false. In [Mu1], D. Mumford showed that TX has
a particular extension EΣ → XΣ over any toroidal resolution τ : XΣ → X
of the Baily-Borel compactification and that for any partition I of n, the
resulting Chern numbers

cI (EΣ) = ε(ci1(EΣ) ∪ ci2(EΣ) ∪ . . . ∪ cir (EΣ) ∩ [XΣ]) (1.1.1)

satisfy the same equation, cI (EΣ) = v(Γ)cI (Ď). (The toroidal resolution
XΣ is constructed in [AMRT]; it depends on a choice Σ of polyhedral cone
decompositions of certain self-adjoint homogeneous cones.) Mumford also
showed that if Σ′ is a refinement of Σ then there is a natural morphism
f : XΣ′ → XΣ and that f ∗(EΣ) ∼= EΣ′ (hence f ∗ci(EΣ) = ci(EΣ′)).
Moreover, it is proven in [Har3] that the coherent sheaf τ∗EΣ is independent
of the choice of Σ. One is therefore led to suspect the existence of a closer
relationship between the characteristic classes of the vector bundles EΣ and
the topology of the Baily-Borel compactification X. In Theorem 11.8 and
Theorem 13.2 we show that, at least for the variety X, the original goal of
constructing Chern numbers can be completely realized:

Theorem. Every Chern class ci(X) has a canonical lift ci ∈ H2i(X;C) to
the cohomology of the Baily-Borel compactification. Moreover, if τ : XΣ→X
is any toroidal resolution of singularities then

τ∗(ci) = ci(EΣ) ∈ H2i(XΣ;C).

It follows (§13.3) that the lifts ci satisfy (1.1.1). In §15 we show that the
homology image c̄∗ ∩ [X̄] ∈ H∗(X̄) lies in integral homology and coincides
with (MacPherson’s) Chern class [Mac] of the constructible function which
is 1 on X and is 0 on X − X.

1.2. Moreover, a similar result holds for any automorphic vector bundle.
Let λ : K → GL(V ) be a representation of K on some finite dimen-
sional complex vector space V . By [Mu1], the automorphic vector bundle
E ′ = (Γ\G) ×K V on X has a particular extension E

′
Σ over any toroidal

resolution XΣ. We show that each Chern class ci(EΓ) has a canonical lift
c̄i(E ′) ∈ H2i(X;C) and that these lifts also satisfy the proportionality for-
mula. Moreover, τ∗(c̄i(E ′)) = ci(E

′
Σ) and the image of c̄i(E ′) in GrW

2i (X;C)
(the top graded piece of the weight filtration) is uniquely determined by this
formula.
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1.3. In §16 we consider the subalgebra H∗Chern(X;C) of the cohomology
of the Baily-Borel compactification that is generated by the (above defined
lifts of) Chern classes of certain “universal” automorphic vector bundles,
and show that

Theorem. Suppose the Hermitian symmetric domain D is a product of
irreducible factors Gi/Ki (where Ki is a maximal compact subgroup of Gi),
and that each Gi is one of the following: Spn(R), U(p, q), SO(2n), or
SO(2, p) with p odd or p = 2. Then there is a (naturally defined) surjection
h : H∗Chern(X;C)→ H∗(Ď;C) from this subalgebra to the cohomology of
the compact dual symmetric space.

This result is compatible with the few known facts about the cohomo-
logy of the Baily-Borel compactification. Charney and Lee [CL] have
shown, when D = Spn(R)/U(n) is the Siegel upper half space, and when
Γ = Spn(Z) that the “stable” cohomology of X contains a polynomial al-
gebra which coincides with the “stable” cohomology of the compact dual
symmetric space Ď (which is the complex Lagrangian Grassmannian). It
is a general fact (cf. §16) that the intersection cohomology IH∗(X;C)

contains a copy of H∗(Ď;C).

1.4. Here are the main ideas behind the proof of Theorem 11.8. In [Hr2],
Hirzebruch shows that the Chern classes of Hilbert modular varieties have
lifts to the cohomology of the Baily-Borel compactification because the
tangent bundle has a trivialization in a neighborhood of each of the finitely
many cusp points, cf. [ADS]. If X = Γ\D is a Q-rank 1 locally symmetric
space such that X is obtained from X by adding finitely many cusps, then
the tangent bundle is not necessarily trivial near each cusp, but it admits
a connection which is flat near each cusp, and so the Chern forms vanish
near each cusp, hence the Chern classes lift to the cohomology of the Baily-
Borel compactification. A similar argument applies to arbitrary automorphic
vector bundles (cf. [HZ1] §3.3.9).

In the general Q-rank 1 case, the singular set of the Baily-Borel com-
pactification X consists of finitely many disjoint smooth compact manifolds
(rather than finitely many cusp points). If Y denotes such a singular stra-
tum, then it admits a neighborhood πY : NY → Y such that every slice
π−1

Y (y) ∩ X is diffeomorphic to a neighborhood of a cusp similar to the
kind described above. It is then possible to construct a connection ∇ (on
the tangent bundle) which is “flat along each fiber π−1

Y (y)”. (We call this
the “parabolic connection”; it is constructed in Sect. 10.) Moreover, within
the neighborhood NY , each Chern form σ i(∇) is the pullback π∗Y (σ i

Y) of
a certain differential form σ i

Y on Y . Differential forms with this “π-fiber” or
“control” property form a complex whose cohomology is the cohomology
of X, as discussed in Sect. 4. So the Chern form σ i(∇) determines a class
ci(∇) ∈ H2i(X;C). (In fact, even the curvature form is “controlled”.)
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1.5. In higher rank cases, there are more problems. If Y1 ⊂ Y 2 ⊂ X are
singular strata of the Baily-Borel compactification, then it is possible to
define a “parabolic” connection in a neighborhood N(Y1) of Y1 whose cur-
vature form is controlled relative to the tubular projection π1 : N(Y1)→ Y1.
It is also possible to construct a “parabolic” connection in a neighborhood
N(Y2) of Y2 whose curvature form has the control property relative to the
tubular projection π2 : N(Y2)→ Y2. However these two connections do not
necessarily agree on the intersection N(Y1)∩N(Y2)∩ X, nor do their curva-
ture forms. When we patch these two connections together using a partition
of unity, the curvature form of the resulting connection fails to be controlled.
Nevertheless it is possible (as explained in Remark 11.3) to patch together
connections of this type so as to obtain a connection whose curvature form
Ω ∈ End(V ) differs from a controlled differential form by a nilpotent
element n ∈ End(V ) which commutes with Ω (cf. §12.10). (Here, V is
the representation of K that gives rise to the automorphic vector bundle
EΓ = (Γ\G)×K V on X = Γ\G/K.) This is enough to guarantee that the
Chern forms of this “patched” connection are controlled differential forms
(cf. Lemma 6.4). A standard argument shows that the resulting cohomology
class is independent of the choices that were involved in the construction.

1.6. A number of interesting questions remain. We do not know whether
the results on Chern classes which are described in this paper for Hermitian
symmetric spaces may be extended to the “equal rank” case (when the real
rank of G and of K coincide). We do not know if the lifts ci(E ′) ∈ H2i(X;C)
are integer or even rational cohomology classes. We do not know to what
extent these lifts are uniquely determined by the properties (11.9), (13.2.1),
(15.5). We do not know whether similar techniques can be applied to the
Euler class of automorphic vector bundles (when such a class exists: see
§16). We do not know whether the surjection h of Theorem 16.4 admits
a natural splitting. We expect that c̄∗(E ′) = 0 whenever the automorphic
vector bundle E ′ arises from a representation λ : K → GL(V ) which
extends to a representation of G. If E

RBS

Γ denotes the canonical extension
([GT] §9) of the automorphic vector bundle E over the reductive Borel-
Serre ([Z1] §4.2 p. 190, [GHM] §8) compactification ν : X

RBS → X then
it is likely that ν∗(c̄∗(E ′)) = c∗(E

RBS

Γ ). We expect these results to have
interesting applications to the study of the signature defect ([Hr2] §3,
[ADS], [Mü], [St1]) and to variations of weight 1 (and some weight 2)
Hodge structures ([Gr1], [Gr2]).

1.7. We would like to thank A. Borel, R. Bryant, D. Freed, R. Hain,
M. Harris, R. MacPherson, and L. Saper for valuable conversations. We
are grateful to S. Zucker for many suggestions and comments on an earlier
draft of this paper. We are especially grateful to an anonymous referee for
pointing out a mistake in an earlier version of this paper, and for his many
helpful comments, suggestions, and corrections. Both authors would like to
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1.8. List of symbols

§2 (2.1) Y < X, (2.2) TY (ε), πY , ρY , ∂TY (ε)
§3 (3.1) s, sε, sε

Z, tY
ε (3.2) Bε

Y (3.5) εY, Bεm
n

§4 (4.1) ωY , A•π(W ), (4.2) [ω]
§5 (5.1) Ai(M, E), G, K, g, k, λ, λ′, Lh, Yk̇, (5.2) G×K V, Ai

bas(G, V ),

i(Y ), Rk, ∇X, ∇ = d + ω, Ω, ω0, (5.5) ∇Nom, (5.6) J(g, x), ΦJ , J0

§6 (6.1) [θ, θ], (6.3) σ
f
∇ , σ i(∇), (6.5) χ, as + an, C(as)

§7 (7.1) G, G, D, θ, K, D∗, P, UP, L(P), νP, Gh, G�, νh, π : D→ D1

(7.2) P0, Φ(S0, G), Φ+ (7.3) P1 ≺ P2, D1 ≺ D2, P, U, P, U, Q�,
Q�

§8 (8.2) λ1, (8.3) P+, P−, j, c1, J1

§9 (9.1) Γ, q : D∗ → X, (9.4) DBS, D† (9.5) T(D1)
§10 (10.1) gh = kh ⊕ ph, g� = k� ⊕ p�,, Φ (10.2) Φ∗(∇1)
§11 (11.2) ∇p

Y (11.4) Z ≤ Y, BZ(x), Φ∗Z
§13 (13.1) E ′, c̄ j(E ′), XΣ, E

′
Σ, τ : XΣ→ X, (13.2) ∇p

Σ (13.3) Ě, Ď, Gu,

čI , c̄I , v(Γ)

§14 (14.3) Φ
∗
XY (∇Y ) (14.5) ZF, CF ⊂ z, Σ = {ΣF}, β : D → Ď, DF,

Γ′F, M′F , TF, AF , TF,Σ, M′F,Σ, DF,Σ, ϕF,Σ (14.6) Ě, EF, E ′F , Ẽ, E A
F ,

E
′
Σ, E

′
F,Σ, ψΣ, Φ̃F , ΦF , (14.7) ∇̃, ∇′F, ∇ A

F , ∇′F,Σ

§15 (15.1) χ(W, F), f∗(F), c∗(W, F) (15.2) TZ(− log D)
§16 (16.1) EK, BK, Eλ, H∗Chern, e(Eλ̃)

2. Control data

2.1. A weakly stratified space W is a compact Hausdorff space with
a decomposition into finitely many smooth manifolds W = Y1∪Y2∪. . .∪Yr
(called the strata of W) which satisfy the axiom of the frontier: If Y and Z
are strata and if Z ∩ Ȳ �= φ then Z ⊂ Ȳ ; we write Z < Y and say that Z is
incident to Y . The boundary ∂Ȳ = Ȳ − Y = ∪Z<Y Z of the stratum Y is the
union of all strata incident to Y . If W = X̄ is the closure of a single stratum
X then we say that X is the nonsingular part of W and the other strata Y < X
are boundary or singular strata of W . Fix a positive real number ε > 0.

2.2. Definition. An ε-system of control data on a weakly stratified space
W is a collection {TY (ε), πY , ρY } indexed by the boundary strata Y ⊂ W,
where

(1) TY (ε) ⊂ W is an open subset of W containing Y,
(2) TY (ε) ∩ TZ(ε) = φ unless Y < Z or Z < Y.
(3) The tubular projection πY : TY (ε) → Y is a retraction of TY (ε) to Y

which is smooth on each stratum,
(4) πZπY = πZ whenever Z < Y and both sides of the equation are defined,
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(5) ρY : TY (ε)→[0, ε) is a continuous “distance function”, with ρ−1
Y (0)=Y,

such that the mapping (ρY , πY ) : TY (ε)→ [0, ε)× Y is proper and its
restriction to each stratum is a submersion,

(6) ρZπY = ρZ whenever Z < Y and both sides of the equation are defined,

For τ ≤ ε, write TY (τ) = ρ−1
Y ([0, τ)). By shrinking the neighborhood

TY (ε) and scaling ρY if necessary, we may assume that each ρY is defined on
a slightly larger neighborhood TY (ε′) (where ε′ > ε) and that the “boundary”
of TY (ε) is

∂TY (ε) = TY (ε)− TY (ε) = ρ−1
Y (ε) = ρ−1

Y (ε) ∪ ∂Y .

Such neighborhoods are illustrated in the following diagram.

Z Z ′Y

TZ (ε) TY (ε) TZ ′ (ε)

Fig. 1 Tubular neighborhoods

If W is the closure of a single stratum X we extend this notation by setting
TX(ε) = X, πX(x) = x and ρX(x) = 0 for all x ∈ X.

2.3. Any compact real or complex algebraic or analytic variety admits
a Whitney stratification ([Ha1], [Ha2]). Any compact Whitney stratified
subset of a smooth manifold admits a system of control data (see [Mat]
or [Gi] Thm. 2.6). If W is a compact Whitney stratified set and if the
mappings {πY } are preassigned so as to satisfy Conditions (3) and (4)
above, then distance functions ρY may be found which are compatible with
the mappings πY .

3. Partition of unity

3.1. Throughout this paper we will fix a choice of a smooth nondecreasing
function s : R→ [0, 1] so that s(x) = 0 for all x ≤ 1/2 and s(x) = 1 for
all x ≥ 3/4. For any ε > 0 define sε(ρ) = s(ρ/ε).

Fix 0 < ε ≤ ε0. Let W be a weakly stratified space with an ε0 system of
control data {TY (ε0), πY , ρY }. For each stratum Z ⊂ W define the modified
distance function sε

Z : TZ(ε)→ [0, 1] by sε
Z(x) = sε(ρZ(x)). Then sε

Z = 0
on TZ( ε

2) and sε
Z = 1 near the edge ∂TZ(ε) of the tubular neighborhood

TZ(ε).
For each stratum Y ⊂ W define a smooth function tY

ε : Y → R as
follows: If y ∈ Y is not contained in the tubular neighborhood TZ(ε) of any
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� ρ

�

sε

0

1

1
2 ε 3

4 ε

Fig. 2 The function sε(ρ)

stratum Z < Y then set tY
ε (y) = 1. Otherwise, there is a unique maximal

collection of boundary strata Z1, Z2, . . . , Zr such that y ∈ TZ1(ε)∩TZ2(ε)∩
. . . ∩ TZr (ε) and in this case, by (2.2) (Condition 2), these boundary strata
form a flag Z1 < Z2 < . . . < Zr (after possibly relabeling the indices).
Define

tY
ε (y) = sε

Z1
(y).sε

Z2
(y) . . . sε

Zr
(y). (3.1.1)

Then the function tY
ε : Y → [0, 1] is smooth and vanishes on⋃

Z<Y

TZ( ε
2 ) ∩ Y.

Pull this up to a function π∗Y tY
ε : TY (ε) → [0, 1] by setting π∗Y tY

ε (x) =
tY
ε (πY (x)).

3.2. For each stratum Y ⊂ W , the product

Bε
Y =

(
π∗Y tY

ε

)
.
(
1− sε

Y

) : TY (ε)→ [0, 1] (3.2.1)

is smooth, vanishes near ∂TY (ε), and also near ∂Y :
x ∈

⋃
Z<Y

TZ( ε
2) �⇒ Bε

Y(x) = 0. (3.2.2)

Hence Bε
Y admits an extension to W which is defined by setting

Bε
Y(x) = 0 if x /∈ TY (ε). (3.2.3)

This extension is smooth on each statum of W and satisfies the following
conditions whenever Z < Y :

Bε
ZπY (x) = Bε

Z(x) for all x ∈ TY (ε0) (3.2.4)

Bε
Y (πY(x)) = Bε

Y(x) = tY
ε (πY (x)) for all x ∈ TY (ε/2) (3.2.5)

Bε
Y(x) = 1 for all x ∈ TY (ε/2)−

⋃
Z<Y

TZ(ε). (3.2.6)

3.3. Lemma. For every stratum Y ⊂ W and for every point y ∈ Y we have

Bε
Y(y)+

∑
Z<Y

Bε
Z(y) = 1 (3.3.1)
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3.4. Proof. It suffices to verify (3.3.1) for y ∈ Y. Then Bε
Y(y) = tY

ε (y). If y
is not in any tubular neighborhood TZ(ε) ∩ Y (for Z < Y ) then tY

ε (y) = 1
and 1− sε

Z(y) = 0. Otherwise, let {Z1, Z2, . . . Zr} be the collection of strata
for which Zi < Y and y ∈ TZi (ε). By relabeling the indices, we may assume
that Z1 < Z2 < . . . Zr < Y form a flag of strata. The nonzero terms in the
sum (3.3.1) involve only the functions s1, s2, . . . , sr (where si = sε

Zi
) and

can be written:

(1− s1)+ s1(1− s2 + s2(. . .+ sr−1(1− sr + sr) . . . )) = 1. (3.4.1)

!"

Fig. 3 Partition of unity for fixed ε

3.5. In §11.2 we will construct a connection on a modular variety by in-
duction, patching together connections which have been previously defined
on neighborhoods of boundary strata. For each step of this induction we
will need a different partition of unity, which is obtained from (3.3.1) by
shrinking the parameter ε. The purpose of this subsection is to construct the
family of partitions of unity.

Let W be a weakly stratified space with an ε0 > 0 system of control
data, {TY (ε0), πY , ρY }. Suppose each stratum Y is a complex manifold and
define

εY = ε0/2dimC(Y ).

(The complex structure is irrelevant to this construction and is only intro-
duced so as to agree with the later sections in this paper.) By Lemma 3.3
for every point x ∈ Y we have
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Z≤Y

BεY
Z (x) = 1.

By (3.2.4) and (3.2.5) the same equation holds, in fact for all x ∈ TY ( εY
2 ).

Let x ∈ W. Then there is a maximal collection of strata Y1, Y2, . . . , Yr
such that

x ∈ TY1(ε0) ∩ TY2(ε0) ∩ . . . ∩ TYr (ε0).

These strata form a partial flag which (we may assume) is given by Y1 <
Y2 < · · · < Yr . Set

Bεm
n = BεYm

Yn
and πm(x) = πYm (x).

In the following lemma we assume 1 ≤ m, n, m ′, n′ ≤ r, that m ≥ n
and that m′ ≥ n′.

3.6. Lemma. If Bεm
n (πn(x)) �= 0 then Bεm′

n′ (x) = 0 for all n′ < n and for
all m′ > m. If Bεm

n (x) �= 0 then Bεm′
n′ (πn′(x)) = 0 for all n′ > n and for all

m′ < m.

3.7. Proof. If Bεm
n (πn(x)) �= 0 then πn(x) /∈ Tn′(εm/2) ⊃ Tn′(εm′) by

(3.2.2). Therefore Bεm′
n′ (πn(x)) = 0 by (3.2.3). Hence Bεm′

n′ (x) = 0 by
(3.2.4). The second statement is the contrapositive of the first. !"

4. Controlled differential forms

4.1. Suppose W is a stratified space with a fixed ε-system of control data
{TY (ε), πY , ρY }. Define a controlled differential form ω to be a collection
ω = {ωY ∈ A∗(Y ;C)} of smooth differential forms (with complex coef-
ficients) on the strata Y of W , which satisfy the following compatibility
condition whenever Z < Y : There exists a neighborhood T(ω) ⊂ TZ(ε) of
Z such that

ωY |(Y ∩ T(ω)) = π∗YZ(ωZ )|(Y ∩ T(ω)). (4.1.1)

(Here, πYZ denotes the restriction πZ|Y∩TZ(ε).) We refer to equation (4.1.1)
as the control condition. If ω = {ωY} is a controlled differential form,
define its differential to be the controlled differential form dω = {dωY}.
Let A•π(W ) denote the complex of controlled differential forms and let
H∗π(W ) denote the resulting cohomology groups. These differential forms
are analogous to the π-fiber cocycles in [Go1]. Recall [V] the following
theorem of A. Verona.
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4.2. Theorem. The inclusion C → A•π(W ) of the constant functions into
the complex of controlled differential forms induces an isomorphism

Hi(W;C) ∼= Hi
π(W ) (4.2.1)

for all i. The restriction i∗[ω] ∈ H∗(Y ) of the cohomology class [ω] repre-
sented by a closed, controlled differential form ω = {ωY}Y⊂W to the closure
Y of a single stratum is given by the controlled differential form {ωZ}Z⊂Y

(where i : Y → W denotes the inclusion).

4.3. Outline of Proof. Since the control condition is local, the controlled
differential forms Ai

π(W ) are the global sections of a sheaf Ai
π of controlled

differential forms (which is obtained by first restricting controlled forms to
open sets and then sheafifying the resulting presheaf). This sheaf is a module
over the sheaf of controlled functions and hence is fine. Let Z be a stratum
in W , fix x ∈ Z and let B ⊂ Z be a small open ball containing the point x.
Let

U = π−1
Z (B) =

∐
Y≥Z

π−1
YZ (B) (4.3.1)

be the resulting “basic” open neighborhood of x ∈ W ([Mat], [GM1]
§1.1, [GM2] §1.1, [GM3] §1.4). If ω = {ωY} is a controlled differential
form (4.1.1) in the whole neighborhood U , then it is completely determined
by the smooth differential form ωZ ∈ A∗(B). Hence, the Poincaré lemma
for the ball B ⊂ Z implies the Poincaré lemma for the stalk A∗π,x at x of the
complex of controlled differential forms. This shows that the inclusion of
the constant sheaf CW → A∗π into the complex of sheaves of controlled dif-
ferential forms is a quasi-isomorphism and hence induces an isomorphism
on hypercohomology. The statement about the restriction to H∗(Y ) follows
immediately. !"
4.4. Suppose the stratified space W is the closure of a single stratum X.
Then a smooth differential form ωX ∈ Ai(X) is the X-component of a con-
trolled differential form ω ∈ Ai

π(W ) if and only if for each stratum Y there
exists a neighborhood UY of Y such that for each point p ∈ UY ∩ X and for
every tangent vector v ∈ Tp X the following condition holds:

If dπ(p)(v) = 0 then ivω = 0 (4.4.1)

where iv denotes the contraction with v. If (4.4.1) holds, then the controlled
form ω is uniquely determined by ωX .

Now suppose that W = X is a compact subanalytic Whitney stratified
subset of some (real) analytic manifold, and that τ : W̃ → W is a (sub-
analytic) resolution of singularities (cf. [Hi1], [Hi2]). This means that W̃
is a smooth compact subanalytic manifold, the mapping τ is subanalytic,
its restriction τ−1(X)→ X to τ−1(X) is a diffeomorphism, and τ−1(X) is
dense in W̃ . Let ωX ∈ Ai(X) be a controlled differential form on W .
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4.5. Lemma. Suppose the differential form τ∗(ωX ) is the restriction of
a smooth closed differential form ω̃ ∈ Ai(W̃). Let [ω̃ ] ∈ Hi(W̃;R) and
[ωX] ∈ Hi(W;R) denote the corresponding cohomology classes. Then
[ω̃ ] = τ∗([ωX]).

4.6. Proof. The cohomology classes [ω̃ ] and [ωX] are determined by their
integrals over subanalytic cycles by [Ha1], [Ha2]. Any subanalytic cycle
ξ ∈ Ci(W̃;R) may be made transverse (within its homology class) to the
“exceptional divisor” τ−1(W − X) ([GM3] §1.3.6). Then∫

ξ

ω̃ =
∫

ξ∩τ−1(X )

ω̃ =
∫

τ(ξ)∩X
ωX =

∫
τ(ξ)

ωX

!"

5. Homogeneous vector bundles

5.1. If M is a smooth manifold and E → M is a smooth vector bundle,
let Ai(M, E) denote the space of smooth differential i-forms with values
in E. Throughout this section, K denotes a closed subgroup of a connected
Lie group G with Lie algebras k ⊂ g and with quotient D = G/K. We
fix a representation λ : K → GL(V ) on some finite dimensional (real or
complex) vector space V. Write λ′ : k → End(V ) for its derivative at the
identity, and note that its derivative at a general point g ∈ K is given by

dλ(h)((Lh)∗(k̇)) = λ(h)λ′(k̇) ∈ End(V ) (5.1.1)

for any k̇ ∈ k, where Lh : K → K is multiplication from the left by h ∈ K.
The quotient mapping q : G → D = G/K is a principal K -bundle. The
fundamental vertical vectorfields Yk̇(g) = Lg∗(k̇) (for k̇ ∈ k) determine
a canonical trivialization, ker(dq) ∼= G × k.

5.2. The representation λ : K → GL(V ) determines an associated ho-
mogeneous vector bundle E = G ×K V on D = G/K, which consists of
equivalence classes [g, v] of pairs (g, v) ∈ G × V under the equivalence
relation (gk, v) ∼ (g, λ(k)v) for all g ∈ G, k ∈ K , v ∈ V. It admits the
homogeneous G action given by g′ · [g, v] = [g′g, v]. Smooth sections s̃ of
E may be identified with smooth mappings s : G → V such that

s(gk) = λ(k−1)s(g) (5.2.1)

by s̃(gK ) = [g, s(g)] ∈ E. Then (5.2.1) implies

ds(g)(Lg∗(k̇)) = −λ′(k̇)s(g) (5.2.2)

for all g ∈ G and k̇ ∈ k.
Similarly we identify smooth differential forms η̃ ∈ Ai(D, E) (with

values in the vector bundle E) with differential forms η ∈ Ai
bas(G, V )
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which are “basic,” meaning they are both K-equivariant (R∗k (η) = λ(k)−1η

for all k ∈ K ) and horizontal (i(Yk̇)η = 0 for all k̇ ∈ k). Here, i(Y ) denotes
the interior product with the vectorfield Y and Rk(g) = gk for g ∈ G.

A connection ∇ on E is determined by a connection 1-form ω ∈
A1(G, End(V )) which satisfies ω(Lg∗(k̇)) = λ′(k̇) and R∗k(ω) =
Ad(λ(k−1))ω for any k̇ ∈ k, k ∈ K , and g ∈ G. The covariant deriva-
tive ∇X with respect to a vectorfield X on D acts on sections s : G → V
satisfying (5.2.1) by

∇Xs(g) = ds(g)(X̃(g))+ ωg(X̃(g))(s(g)) (5.2.3)

where X̃ is any lift of X to a smooth vectorfield on G. We write ∇ = d+ω.
The curvature form Ω ∈ A2(D, End(E)) takes values in the vector bundle
End(E) = G ×K End(V) and it will be identified with the “basic” 2-form
Ω ∈ A2

bas(G, End(V )) which assigns to tangent vectors X, Y ∈ TgG the
endomorphism

Ω(X, Y ) = dω(X, Y )+ [ω(X), ω(Y )] (5.2.4)

If the Lie bracket is extended in a natural way to Lie algebra-valued
1−forms, then it turns out ([BGV] §1.12) that [α, α](X, Y ) = 2[α(X), α(Y )]
so we may express the curvature form as Ω = dω+ 1

2 [ω, ω].
The connection ∇ = d+ω is G-invariant iff L∗g(ω) = ω, in which case it

is determined (on the identity component G0) by its value ω0 : g→ End(V )
at the identity. Using [Wa] or [KN] Chapt. II Thm. 11.5. it is easy to verify
the following result.

5.3. Proposition. Suppose G is a connected Lie group and K is a closed
subgroup. Then the G-invariant connections on the homogeneous vector
bundle E = G ×K V are given by linear mappings ω0 : g→ End(V ) such
that

(1) ω0(k̇) = λ′(k̇) for all k̇ ∈ k and
(2) ω0([ġ, k̇]) = [ω0(ġ), λ′(k̇)] for all ġ ∈ g and all k̇ ∈ k.
Moreover the curvature Ω ∈ A2(G, End(V )) of such a connection is the
left-invariant “basic” differential form whose value Ω0 at the identity is
given by

Ω0(ġ, ḣ) = [ω0(ġ), ω0(ḣ)] − ω0([ġ, ḣ]) (5.3.1)

for any ġ, ḣ ∈ g. The connection is flat iff ω0 is a Lie algebra homomorphism.
!"

5.4. Example. Suppose the representation λ : K → GL(V ) is the restric-
tion of a representation λ̃ : G → GL(V ). Then we obtain a flat connection
with ω0(ġ) = λ̃′(ġ) for ġ ∈ g.
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5.5. Example. A connection in the principal bundle G → D is given by
a connection 1-form θ ∈ A1(G, k) such that R∗k(θ) = Ad(k−1)(θ) and
θ(Yk̇) = k̇ (for any k ∈ K and any fundamental vectorfield Yk̇). It determines
a connection ∇ = d+ω in the associated bundle E = G ×K V by ω(X) =
λ′(θ(X)). The principal connection θ is G-invariant iff L∗g(θ) = θ in which
case it is determined by its value θ0 : g → k at the identity. Conversely,
by [No], any linear mapping θ0 : g→ k determines a G-invariant principal
connection iff ker(θ0) is preserved under the adjoint action of K . If K is
a maximal compact subgroup of G then the Cartan decomposition g = k⊕p
determines a canonical G invariant connection in the principal bundle G →
G/K, and hence a connection ∇Nom on E which we refer to as the Nomizu
connection. It is given by ω0(k̇+ ṗ) = λ′(k̇) for k̇ ∈ k and ṗ ∈ p. By (5.3.1),
its curvature is given by

Ω(Lg∗(ġ1), Lg∗(ġ2)) = −λ′([ ṗ1, ṗ2]) (5.5.1)

(where ġi = k̇i + ṗi ∈ k⊕ p), since [k, p] ⊂ p and [p, p] ⊂ k.

5.6. There is a further description of homogeneous vector bundles on
D which are topologically trivial. Let E = G ×K V be a homogeneous
vector bundle corresponding to a representation λ : K → GL(V ) of K .
A (smooth) automorphy factor J : G × D→ GL(V ) for E (or for λ) is a
(smooth) mapping such that

(1) J(gg′, x) = J(g, g′x)J(g′, x) for all g, g′ ∈ G and for all x ∈ D
(2) J(k, x0) = λ(k) for all k ∈ K.

It follows (by taking g = 1) that J(1, x) = I . The automorphy factor J
is determined by its values J(g, x0) at the basepoint: any smooth mapping
j : G → GL(V ) such that j(gk) = j(g)λ(k) (for all k ∈ K and all g ∈ G)
extends in a unique way to an automorphy factor J : G × D → GL(V )
for E, namely

J(g, hx0) = j(gh) j(h)−1. (5.6.1)

An automorphy factor J , if it exists, determines a (smooth) trivialization

ΦJ : G ×K V → (G/K )× V (5.6.2)

by [g, v] &→ (gK, J(g, x0)v). This trivialization is G-equivariant with re-
spect to the following J-automorphic action of G on (G/K )× V :

g.(x, v) = (gx, J(g, x)v). (5.6.3)

Conversely, any smooth trivialization Φ : E ∼= (G/K )× V of the homoge-
neous vector bundle E determines a unique automorphy factor J such that
Φ = ΦJ . A trivialization of E (if one exists) allows one to identify smooth
sections s of E with smooth mappings r : D → V . If the trivialization is
given by an automorphy factor J and the smooth section s of E is given by
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a K -equivariant mapping s : G → V as in (5.2.1) then the corresponding
smooth mapping is

r(gK ) = J(g, x0)s(g) (5.6.4)

which is easily seen to be well defined. Sections s which are invariant under
γ ∈ G correspond to functions r such that r(γx) = J(γ, x)r(x) for all x ∈ D.

If D = G/K is Hermitian symmetric of noncompact type then the
canonical automorphy factor (§8.3) J0 : G × D → K(C) determines an
automorphy factor J = λC ◦ J0 for every homogeneous vector bundle
E = G ×K V, where λC : K(C)→ GL(V ) is the complexification of λ.

5.7. If J1, J2 are two automorphy factors for E, then the mapping φ :
D×V → D×V which is given by φ(gx0 , v) = (gx0, J1(g, x0)J2(g, x0)

−1v)
is a well defined G-equivariant isomorphism of trivial bundles, where G
acts on the domain via the J1-automorphic action and G acts on the target
via the J2-automorphic action.

5.8. (The following fact will be used in §10.4.) Suppose that J : G×D→
GL(V ) is an automorphy factor for E. Let∇ = d+ω be a connection on E.
The trivialization ΦJ of E (5.6.2) determines a connection ∇ J = d + η
on the trivial bundle D × V (with η ∈ A1(D, End(V ))) as follows: if
r(gK ) = J(g, x0)s(g) as in (5.6.4) then ∇ J

q∗Xr(gK ) = J(g, x0)∇Xs(g) (for
any X ∈ TgG). It follows from (5.1.1) that the connection 1-forms are
related by

η(q∗(X)) = J(g, x0)ω(X)J(g, x0)
−1 − (dX J(g, x0))J(g, x0)

−1. (5.8.1)

6. Lemmas on curvature

6.1. Suppose E = G ×K V is a homogeneous vector bundle over D =
G/K arising from a representation K → GL(V ) of a closed subgroup K
of a Lie group G on a complex vector space V . If θ ∈ A1(G, End(V )) is
a Lie algebra-valued 1-form, denote by [θ, θ] the Lie algebra valued 2-form
(X, Y ) &→ 2[θ(X), θ(Y )] (cf [BGV] §1.12). The proof of the following
lemma is a direct but surprisingly tedious computation.

6.2. Lemma. Suppose { f1, f2, . . . , fn} form a smooth partition of unity
on D, that is 0 ≤ fi(x) ≤ 1 and

∑n
i=1 fi(x) = 1 for all x ∈ D. Let

∇i = d + ωi be connections on E with curvature forms Ωi for 1 ≤ i ≤ n.
Let∇ =∑n

i=1 fi∇i be the connection with connection form ω =∑n
i=1 fiωi.

Then the curvature Ω of ∇ is given by

Ω =
n∑

i=1

fiΩi − 1
2

∑
i< j

fi f j[ωi − ω j, ωi − ω j] +
n−1∑
i=1

d fi ∧ (ωi − ωn).

!"
(Even if the ∇i are flat and the fi are constant, the connection ∇ is not
necessarily flat.)
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6.3. Let E be a complex vector space and let f : E → C be a homogeneous
polynomial of degree k. The polarization of f is the unique symmetric k-
linear form P : E × E × . . .× E → C such that f(x) = P(x, x, . . . , x) for
all x ∈ E . If N ⊂ E is a vector subspace such that f(x + n) = f(x) for all
x ∈ E and all n ∈ N then the polarization P satisfies

P(x1 + n1, x2 + n2, . . . , xk + nk) = P(x1, x2, . . . , xk) (6.3.1)

for all x1, . . . , xk ∈ E and all n1, . . . , nk ∈ N.
Now let K → GL(V ) be a representation on a complex vector space

V as above, and let f : E = End(V )→ C be a homogeneous polynomial
of degree k, which is invariant under the adjoint action K → GL(k) →
GL(End(V )) of K . Then the polarization P of f is also AdK -invariant. If∇
is a connection on E = G ×K V with curvature form Ω ∈ A2(G, End(V ))
then the characteristic form associated to f is

σ
f
∇ (X1, Y1, . . . , Xk, Yk) = P(Ω(X1, Y1), . . . ,Ω(Xk, Yk)) ∈ A2k(G,C).

(6.3.2)

It is “basic” (cf. §5.2) and hence descends uniquely to a differential form
on D which we also denote by σ

f
∇ ∈ A2k(D,C). Throughout this paper we

shall be concerned only with homogeneous polynomials f : End(V )→ C
which are invariant under the full adjoint action of GL(V ) and which we
shall refer to as a Ad-invariant polynomials. When f(x) is the i-th elemen-
tary symmetric function in the eigenvalues of x, the resulting characteristic
form is the i-th Chern form and it will be denoted σ i(∇).

6.4. Lemma. Let V be a complex vector space, H = GL(V ) and h =
End(V ). Let x, n ∈ h and suppose that [x, n] = 0 and that n is nilpotent.
Then for any Ad-invariant polynomial f : h→ C we have:

f(x + n) = f(x).

6.5. Proof. Let t ⊂ h be the Lie algebra of a Cartan subgroup T ⊂ H
and let W denote its Weyl group. The adjoint quotient mapping χ : h →
t/W associates to any a ∈ h the W-orbit C(as) ∩ t where a = as + an
is the Jordan decomposition of a into its semisimple and nilpotent parts
(with [as, an] = 0), and where C(as) denotes the conjugacy class of as
in h, cf. [Sp]. (The value χ(a) may be interpreted as the coefficients of
the characteristic polynomial of a ∈ End(V ).) Since x and n commute,
(x + n)s = xs + ns = xs, hence χ(x + n) = χ(x). But every Ad-invariant
polynomial f : h→ C factors through χ, hence f(x + n) = f(x). !"

7. Hermitian symmetric spaces

7.1. Throughout the remainder of this paper, algebraic groups will be
denoted by boldface type and the associated group of real points will be
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denoted in Roman. Fix a reductive algebraic group G which is defined over
Q and which (for convenience only) is assumed to be connected and simple
over Q. Suppose G = G(R) acts as the identity component of the group of
automorphisms of a Hermitian symmetric space D. A choice of basepoint
x0 ∈ D determines a Cartan involution θ : G → G, a maximal compact
subgroup K = Gθ = StabG(x0) and a diffeomorphism G/K ∼= D. Let D∗
denote the Satake partial compactification of D, in other words, the union
of D and all its rational boundary components, with the Satake topology
(cf. [BB]). The closure D∗1 in D∗ of a rational boundary component D1 is
again the Satake partial compactification of D1.

If D1 ⊂ D∗ is a rational boundary component of D, its normalizer P
is the group of real points of a rationally defined maximal proper parabolic
subgroup P ⊂ G. Let UP denote the unipotent radical of P and let
L(P) = P/UP be the Levi quotient with projection νP : P → L(P). It is
well known that L(P) is an almost direct product (commuting product with
finite intersection) of two subgroups, L(P) = GhG� where the Rieman-
nian symmetric space associated to Gh is Hermitian, and the Riemannian
symmetric space associated to G� is a self adjoint homogeneous cone. (We
assume the possible compact factors in L(P) have been distributed among
Gh and G� so that each is defined over Q. The factor Gh may be trivial.
The Q-split component SP(R) of the center of L P is contained in the G�

factor.) The choice of basepoint x0 ∈ D determines a unique θ-stable lift
L P(x0) ⊂ P of the Levi quotient [BoS] (which, from now on, we shall use
without mention), as well as basepoints x1 ∈ D1 in the boundary component
D1 such that StabGh (x1) = K ∩ Gh. We obtain a decomposition

P = UPGhG�. (7.1.1)

The group P acts on the boundary component D1 through the projection
νh : P→ L(P)→ Gh/(Gh∩G�) which also determines a diffeomorphism
Gh/Kh

∼= D1 (where Kh = K ∩ Gh). This projection νh also gives rise to
a P-equivariant canonical projection

π : D→ D1 (7.1.2)

by π(ughg�K P) = gh Kh.
The “linear part” G� is reductive and contains the 1-dimensional Q-split

torus SP(R) in the center of the Levi quotient. If z ⊂ NP denotes the center
of the Lie algebraNP of the unipotent radical of P, then the adjoint action of
G� on z has a unique open orbit C(P) which is a self adjoint homogeneous
cone.

7.2. Let P0 ⊂ G be a fixed minimal rational parabolic subgroup and
define the standard parabolic subgroups to be those which contain P0. Let
S0 ⊂ L(P0) be the greatest Q-split torus in the center of L(P0) and let
Φ = Φ(S0, G) be the (relative) roots of G in S0 with positive roots Φ+
consisting of those roots which appear in the unipotent radical UP0 and
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resulting simple roots ∆. Each simple root α corresponds to a vertex in the
(rational) Dynkin diagram for G and also to a maximal standard parabolic
subgroup P such that SP ⊂ ker(β) for each β ∈ ∆− {α}.

7.3. Two maximal parabolic subgroups. For simplicity, let us assume
that G is (almost) simple over Q. The (rational) Dynkin diagram for G is
linear, of type BC, and determines a canonical ordering among the maximal
standard rational parabolic subgroups with P1 ≺ P2 iff D1 ≺ D2 (meaning
that D1 ⊂ D∗2 ⊂ D∗) where Di is the rational boundary component fixed
by Pi . Write P1 = U1G1hG1� and P2 = U2G2hG2� as in (7.1.1). If P1 ≺ P2
then G1h ⊂ G2h and G1� ⊃ G2�. Let P = P1 ∩ P2. In Fig. 4, ∆− {α1} and
∆− {α2} denote the simple roots corresponding to P1 and P2 respectively.

α1 α2

G1h G′� G2�

1

Fig. 4 Dynkin diagrams for G and P

Then we have a commutative diagram

U1 ⊂UP ⊂ P ⊂ P1
 
 
ν1

UP ⊂ P ⊂ L(P1)= G1hG1�

(7.3.1)

where P = ν1(P) ⊂ L(P1) is the image of P. Then P = G1h P� where
P� ⊂ G1� is a parabolic subgroup of G1� whose Levi factor decomposes as
a commuting, almost direct product L(P�) = G′�G2�. Writing U for the lift
of UP = UP�

we conclude that P has a decomposition

P = U1G1h(UG′�G2�) = UPG1hG P� (7.3.2)

with UP = U1U, G P� = G′�G2� and P� = UG′�G2� ⊂ G1�. Similarly, we
have a diagram

U2 ⊂UP ⊂ P ⊂ P2
 
 
ν2

U
P
⊂ P ⊂ L(P2)= G2hG2�

(7.3.3)
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where P = ν2(P) ⊂ L(P2) is the image of P. Then P = Ph G2� with
Ph ⊂ G2h a parabolic subgroup of G2h whose Levi factor decomposes as

a product L(Ph) = G1hG′�. Writing U for the canonical lift of U
P
= UPh

we obtain another decomposition,

P = U2(UG1h G′�)G2� = UPG1hG P� (7.3.4)

with Ph = UG1h G′�.
Similarly, an arbitrary standard parabolic subgroup Q may be expressed

in a unique way as an intersection Q = P1 ∩ P2 ∩ . . . ∩ Pm of maximal
standard parabolic subgroups, with P1 ≺ P2 ≺ . . . ≺ Pm. In this case
we write Q� = P1 and Q� = Pm . If P1 = U1G1hG1� (with projection
ν1 : P1 → G1hG1�) then the Levi factor L(Q) decomposes as an almost
direct product of m + 1 factors

L(Q) = G1h
(
G′1G′2 . . . G′m−1Gm�

) = G1hGQ� (7.3.5)

where G1h is the hermitian part of L(P1), and GQ� consists of the remaining
factors, including Gm�, the linear part of L(Pm). Each factor in GQ� acts as
an automorphism group of a certain symmetric cone in the boundary of the
cone C(P1). The projection

Q = ν1(Q) = G1hUP1 QGQ�

is parabolic in L(P1) with unipotent radical UP1Q ⊂ G1� which also has
a lift depending on the choice of basepoint. In summary we obtain a decom-
position

Q = U1G1hUP1Q GQ�. (7.3.6)

8. Cayley transform

8.1. As in §7, suppose that G is defined over Q and simple over Q, that
G = G(R), and that K is a maximal compact subgroup of G with D = G/K
Hermitian. The following proposition is the key technical tool behind our
construction of a connection which is flat along the fibers of π. The proof
follows from the existence of a “canonical automorphy factor for P1” as
defined by M. Harris [Har2] [HZ1] (1.8.7). See also the survey in [Z3]. In
this section we will approximately follow [Har2] and derive these results
from known facts about the Cayley transform [WK], [Sat] Chapter III.

8.2. Proposition. Let P1 = U1G1h G1� be a maximal rational parabolic
subgroup of G. Set K1 = K ∩ P1 = K1h K1�. Let λ : K → GL(V ) be
a representation of K. Then the restriction λ|K1 admits a natural extension
λ1 : K1hG1� → GL(V ).
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8.3. Proof. The group K is the set of real points of an algebraic group
K defined over R. As in [He] VIII§7, [Sat] II §4, [AMRT] III §2 when
the Cartan decomposition g = k ⊕ p is complexified it gives rise to two
abelian unipotent subgroups P+ and P− of G(C) such that the complex
structure on g(C) acts with eigenvalue ±i on Lie(P±). The natural mapping
P+K(C)P− → G(C) is injective and its image contains G = G(R). Let j :
P+K(C)P− → K(C) denote the projection to the middle factor. The group
P+ is the unipotent radical of the maximal parabolic subgroup P+K(C) and
hence is normal in P+K(C); similarly P− is normal in K(C)P−. It follows
that, for all h ∈ P+K(C), for all h ′ ∈ K(C)P− and for all g ∈ P+K(C)P−
we have

j(hgh ′) = j(h) j(g) j(h ′). (8.3.1)

In particular, j(gk) = j(g)k whenever k ∈ K(C), so by equation (5.6.1),
j determines a unique automorphy factor (the “usual” canonical automorphy
factor) J0 : G × D→ K(C) such that J0(g, x0) = j(g) (for all g ∈ G).

Let c1 ∈ G(C) be the Cayley element [Sat], [WK], [BB], [Har2], [Z3]
which corresponds to P1. That is, c1 is a lift to G(C) of the standard choice
of Cayley element in Ad(g)(C). We follow Satake’s convention, rather than
that of [WK] (which would associate c−1

1 to P1.) The element c1 satisfies
the following properties, [Sat] (Chapt. III (7.8), (7.9), (2.4)), [Har2], [Z3]:

(1) c1, c−1
1 ∈ P+K(C)P− and c1G ⊂ P+K(C)P−;

(2) c1 commutes with G1h;
(3) c1U1K1hG1�c−1

1 ⊂ P+K(C);
(4) c1 K1hG1�c

−1
1 ⊂ K(C), and hence

(5) j(c1g) = j(c1gc−1
1 ) j(c1) = c1gc−1

1 j(c1) for all g ∈ K1hG1�.

Harris then defines the canonical automorphy factor (for P1) to be the
automorphy factor J1 : G × D→ K(C) which is determined by its values
at the basepoint, J1(g, x0) = j(c1)

−1 j(c1g). This is well defined because
j(c1)

−1 j(c1gk) = j(c1)
−1 j(c1g)k by (8.3.1), see (5.6.1). So we may define

the canonical extension

λ1(g) = λC J1(g, x0) = λC( j(c1)
−1 j(c1g)) (8.3.2)

for any g ∈ K1hG1�, where λC is the complexification of λ. Then λ1(k) =
λ(k) for any k ∈ K1. Moreover λ1 is a homomorphism: if k1hg1� and k′1hg′1�

are elements of K1hG1� then

J1
(
k1hg1�k

′
1hg′1�, x0

) = j(c1)
−1
(
c1k1hg1�c

−1
1 · c1k′1hg′1�c−1

1

)
j(c1)

= j(c1)
−1c1k1hg1�c−1

1 j(c1) · j(c1)
−1c1k′1hg′1�c

−1
1 j(c1)

= J1(k1hg1�, x0)J1(k
′
1hg′1�, x0).

Verification that J1(k
−1
1h g−1

1� , x0) = J1(k1hg1�, x0)
−1 is similar. We remark,

following [Har2] that modifying c1 by any element d ∈ P+K(C) will not
affect the values of J1(k1hg1�, x0). !"



580 M. Goresky, W. Pardon

Now suppose P1 ≺ P2 are rational maximal parabolic subgroups of G
with Pi = UiGih Gi� (i = 1, 2) and, as in (7.3.4),

P1 ∩ P2 = U2(UG1h G′�)G2� with Ph = UG1hG′� ⊂ G2h.

8.4. Proposition. Let λi : Kih Gi� → GL(V ) be the canonical extensions of
λ|Ki = K ∩ Pi (i = 1, 2) and let λ21 : K1hG′� → GL(V ) be the canonical
extension of λ|K2h ∩ Ph corresponding to the canonical automorphy factor
J21 for Ph ⊂ G2h. Then

λ1(g2�) = λ2(g2�) and λ1(g′�) = λ21(g′�)

for all g2� ∈ G2� and all g′� ∈ G′�.

8.5. Proof. Let c1, c2 ∈ G(C) and c21 ∈ G2h(C) be the Cayley elements
for P1, P2 ⊂ G and Ph ⊂ G2h respectively. By [Sat] Chapter III (9.5),

c21 = c1c−1
2 = c−1

2 c1.

The lift G2h ⊂ G is stable under the Cartan involution on G so the
corresponding decomposition P+2hK2h(C)P−2h coincides with (G2h(C) ∩
P+)(G2h(C)∩K(C))(G2h(C)∩ P−) and in particular j2h : G2h → K2h(C)
is the restriction of j : G → K(C). Let c21 = c+21c0

21c−21 be the resulting
decomposition. Then c2 commutes with each of the factors c∗21. It follows
from (8.3.1) that

j(c1) = j(c21c2) = j
(
c+21c0

21c2c−21

) = j
(
c0

21c2
) = j(c21) j(c2)

and similarly j(c1) = j(c2) j(c21). Since g2� ∈ G2� also commutes with
c21 ∈ G2h(C) and with j(c21) ∈ K2h(C), we find

λ1(g2�)λ2(g2�)
−1 = λC

(
j(c1)

−1c1g2�c−1
1 j(c1) j(c2)

−1c2g−1
2� c−1

2 j(c2)
)

= λC
(

j(c1)
−1c1g2�c−1

1 j(c21)c2g−1
2� c−1

2 j(c2)
)

= λC
(

j(c1)
−1c1g2�c−1

1 c2g−1
2� c−1

2 j(c21) j(c2)
)

= λC
(

j(c1)
−1c1g2�c−1

21 g−1
2� c−1

2 j(c1)
)

= λC
(

j(c1)
−1c1c−1

21 c−1
2 j(c1)

) = 1.

Similarly if g′� ∈ G′� then using (4) above,

λ21(g′�) = λC
(

j(c21)
−1 j

(
c21g′�c−1

21

)
j(c21)

)
= λC

(
j(c21)

−1 j
(
c−1

2 c1g′�c−1
1 c2

)
j(c21)

)
= λC

(
j(c21)

−1 j(c2)
−1 j

(
c1g′�c−1

1

)
j(c2) j(c21)

)
= λC

(
j(c1)

−1 j
(
c1g′�c−1

1

)
j(c1)

) = λ1(g′�). !"
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9. Baily-Borel Satake compactification

9.1. As in §7, suppose that G is defined over Q and simple over Q,
that G = G(R), and that K is a maximal compact subgroup of G with
D = G/K Hermitian. Let D∗ be the Satake partial compactification of D,
consisting of D together with its rational boundary components DP , one
for each (proper) maximal rational parabolic subgroup P ⊂ G; with the
Satake topology [BB]. The action of G(Q) on D extends continuously to an
action of G(Q) on D∗. Let Γ ⊂ G(Q) be a neat arithmetic subgroup and let
q : D∗ → X = Γ\D∗ denote the quotient mapping. Then X is the Baily-
Borel compactification of X and it admits the structure of a complex pro-
jective algebraic variety with a canonical stratification with a single stratum
for every Γ-conjugacy class of rational boundary components as follows.
Let D1 ⊂ D∗ be a rational boundary component with normalizing maximal
parabolic subgroup P = UPGh G�. Let νh : P → G′h = Gh/(Gh ∩ G�)
and let ν� : P → G′� = G�/(Gh ∩ G�). The closure D∗1 of D1 in D∗ is
the Satake partial compactification of D1. The group P acts on D1 through
its projection to G ′h and the group ΓP = Γ ∩ P acts on D∗1 through its
projection Γh = νh(ΓP) to G′h. Then X1 = ΓP\D∗1 = Γh\D∗1 is a stratum
of X. Its closure X1 = Γh\D∗1 in X is the Baily-Borel compactification
of X1. The stratum X1 is also the image of the (infinitely many) rational
boundary components D′1 which are Γ-conjugate to D1.

9.2. Let D1 ⊂ D∗ be a rational boundary component which projects to X1.
We will say that a neighborhood Ũ ⊂ D∗ is a Γ-parabolic neighborhood
of D1 if the following holds: if x1, x2 ∈ Ũ and γ ∈ Γ satisfy x2 = γx1

then γ ∈ Γ∩ P. If X1 ⊂ X is a stratum in the Baily-Borel compactification
of X, we say that a neighborhood U ⊂ X of X1 is parabolic if for some
(and hence for any) boundary component D1 ⊂ D∗ with q(D1) = X1, there
is a Γ-parabolic neighborhood Ũ ⊂ D∗ of D1 such that U = q(Ũ). This
means that the covering ΓP\D∗ → Γ\D∗ is one to one on Ũ , and we have
a commutative diagram

D∗ ⊃ Ũ ⊃ D1

q


Γ


ΓP


Γh

X ⊃ U ⊃ X1

.

9.3. Lemma. Each stratum X1 ⊂ X has a fundamental system of neigh-
borhoods, each of which is parabolic.

9.4. Proof. (We are grateful to L. Saper for providing us with the follow-
ing argument.) Let DBS be the Borel-Serre partial compactification of D
together with its “Satake” topology [BoS]. It is a manifold with corners,
having one corner e(P) for each rational parabolic subgroup P. According
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to [Z2] the identity mapping D → D has a unique continuous extension
w : DBS → D∗, and it is surjective. If P is standard then w(e(P)) = DP� .
Let D† denote the quotient topology on the underlying set |D∗| which is
induced by w. Then D† → D∗ is a continuous bijection and the quotient
mapping Γ\D† → Γ\D∗ is a homeomorphism. In [Sa1] Theorem 8.1,
Saper constructs a basis of Γ-parabolic neighborhoods UP of each corner
e(P) in DBS. If P is maximal then w(UP) is open in D∗ as may be shown
by verifying the condition at the bottom of page 264 in [AMRT]. !"

We remark that the image of UP is Γ-parabolic and is open in D† by
construction, and that the topology D† may be substituted for the Satake
topology D∗ throughout this paper.

9.5. Fix a standard rational boundary component D1 ⊂ D∗ normal-
ized by a standard maximal rational parabolic subgroup P1. In the Sa-
take topology (or in the topology D†) there is a natural neighborhood
T(D1) = ⋃{D2| D1 ≺ D2 ≺ D} consisting of the union of all rational
boundary components (including D, the nonproper boundary component)
whose closures contain D1. The projection π : D→ D1 (7.1.2) has a unique
continuous extension T(D1) → D1 to this neighborhood. Its restriction to
each intermediate boundary component D2 coincides with the canonical
projection D2 → D1 which is obtained by considering D2 to be the sym-
metric space corresponding to the Hermitian part G2h of the Levi factor of
P2 and by considering D1 ⊂ D∗2 to be the rational boundary component
preserved by the parabolic subgroup Ph ⊂ G2h (notation as in §7.3). It
follows that π1(x) = π1π2(x) for all x ∈ T(D1)∩ T(D2). (The above union
can be quite large: if D20 is a standard boundary component normalized
by a standard parabolic subgroup P2 * P1 then the boundary components
D2 ⊂ T(D1) which are conjugate to the standard one D20 are in one to one
correspondence with elements of P1(Q)/(P1(Q) ∩ P2(Q)) cf. (7.3.2).)

9.6. Lemma. For ε0 > 0 sufficiently small, the Baily-Borel compactif-
ication X admits an ε0-system of control data {TY(ε0), πY , ρY } such that for
each stratum Y ⊂ ∂X and for any choice of boundary component D1 ⊂ D∗
with q(D1) = Y we have

(1) The neighborhood TY (ε0) ⊂ X is a parabolic neighborhood of Y; it is
the image, say, of some Γ-parabolic neighborhood Ũ(ε0) ⊂ D∗ of D1,
and

(2) πY (q(x)) = q(π(x)) for all x ∈ Ũ(ε0) (where π : D → D1 is the
canonical projection).

9.7. Proof. For any g ∈ P and x ∈ D we have π(gx) = νh(g)π(x) ∈ D1. It
follows that the projection function π passes to the quotient ΓP\D∗, where
it may be restricted to a parabolic neighborhood U of Y = q(D1); write
πY : U → Y for the result. If P and P′ are Γ conjugate maximal rational
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parabolic subgroups corresponding to conjugate boundary components D1
and D′1 then the projections T(D1)→ D1 and T(D′1)→ D′1 are compatible
with conjugation, which shows that the resulting projection πY : U → Y
is independent of the choice of lift D1 ⊂ D∗ of the stratum Y ⊂ X. The
tubular neighborhood TY (ε0) may be chosen inside U . The compatibility
between these projections follows from (9.5). As mentioned in §2.3, by
further shrinking the tubular neighborhoods if necessary, control data may
be found for which the tubular projections agree with these πY . (In fact it is
possible to construct particular tubular distance functions ρY by smoothing
Saper’s piecewise analytic distance functions ãR of [Sa1] thm. 8.1. See
also [GM4] §4.2.) !"

10. Parabolically induced connection

10.1. As in §7, 9 we suppose that G is semisimple, defined over Q and
simple overQ; that G = G(R), and K ⊂ G is a maximal compact subgroup
with D = G/K Hermitian symmetric. Fix Γ ⊂ G(Q) a neat arithmetic
subgroup. Let λ : K → GL(V ) be a representation of K on some complex
vector space V and denote by E = G ×K V the associated homogeneous
vector bundle on D.

Let D1 be a rational boundary component of D with canonical projection
π : D → D1. Let P be the maximal parabolic subgroup of G which
preserves D1. Write P = UGh G� as in §7.1 and let Kh = K ∩ Gh and
K� = K ∩G� be the corresponding maximal compact subgroups. Let gh =
kh ⊕ ph and g� = k� ⊕ p� denote the corresponding Cartan decompositions.

The restriction of λ to Kh determines a homogeneous vector bundle E1 =
Gh ×Kh V over D1. By Proposition 8.2 the representation λ| Kh K� admits
an extension to a representation λ1 : KhG� → GL(V ). This extension
determines an action of P on E1 which is given by

ugh g�.
[
g′h, v

] = [gh g′h, λ1(g�)v
]
. (10.1.1)

We obtain a vector bundle mapping (which covers π),

Φ̃ : E = P ×K P V → Gh ×Kh V = E1 (10.1.2)

by Φ̃([ugh g�, v]) = [gh, λ1(g�)v]. Then Φ̃ induces an isomorphism,

Φ : E ∼= π∗(E1); [g, v] &→ (gK P, Φ̃([g, v])) ∈ D× E1 (10.1.3)

of P-homogeneous vector bundles (where g ∈ P and v ∈ V ).

10.2. Definition. Let∇1 = d+ω1 be a connection on E1. The parabolically
induced connection ∇ = d + ω on E is defined to be the pullback ∇ =
Φ∗(∇1) of ∇1 under the isomorphism Φ. It is the unique connection whose
covariant derivative (5.2.3) satisfies

∇v(Φ
∗(s)) = Φ∗((∇1)π∗vs) (10.2.1)

for any section s of E1 and for any tangent vector v ∈ Tx D.
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10.3. Proposition. Suppose ∇1=d+ω1 is a connection on E1=Gh×Kh V .
Let ∇ = d + ω denote the parabolically induced connection on E =
P ×K P V . Then

ω(Lg∗(u̇ + ġh + ġ�)) = λ′1(ġ�)+ Ad
(
λ1
(
g−1

�

))
(ω1(Lgh∗(ġh))) (10.3.1)

for any g = ugh g� ∈ P and any u̇ + ġh + ġ� ∈ Lie(UP)⊕ gh ⊕ g�.

10.4. Proof. Let J1 : Gh × D1 → GL(V ) be an automorphy factor for
E1, corresponding to a trivialization E1

∼= D1 × V . Composing this with
the isomorphism Φ : E → π∗(E1) determines an automorphy factor
J : P × D→ GL(V ) with

J(ugh g�, x0) = J1(gh, x1)λ1(g�) (10.4.1)

where x1 = π(x0) ∈ D1 denotes the basepoint in D1. To simplify notation
we will write j(g) and j1(gh) rather than J(g, x0) and J1(gh, x1).

By (5.8.1), the connection∇1 in E1 determines a connection∇ J1 = d+η1
in the J1-trivialization E1

∼= D1 × V with

η1(q1∗(Xh)) = j1(gh)ω1(Xh) j1(gh)
−1 − dXh ( j1(g)) ◦ j1(g)−1 (10.4.2)

for any gh ∈ Gh and any Xh ∈ Tgh Gh , where q1 : Gh → D1 denotes the
projection.

The parabolically induced connection ∇ in E determines a connection
∇ J = d + η in the J-trivialization E ∼= D× V with

η(q∗X) = j(g)ω(X) j(g)−1 − dX( j(g)) ◦ j(g)−1. (10.4.3)

By (10.2.1) and (5.2.3) the connection forms η and η1 are related by
η(q∗(X)) = η1(π∗q∗(X)) for any X ∈ TgG. Take X = Lg∗(u̇ + ġh + ġ�) ∈
TgG and let Xh = Lgh∗(ġh) ∈ Tgh Gh denote its projection to Gh . Then we
have

j1(gh)ω1(Xh) j1(gh)
−1 = j1(gh)λ1(g�)ω(X)λ1(g�)

−1 j1(gh)
−1

− j1(gh)dX(λ1(g�))λ1(g�)
−1 j1(gh)

−1

or, using (5.1.1)

ω1(Lgh∗(ġh)) = λ1(g�)ω(X)λ1
(
g−1

�

)− λ1(g�)λ
′
1(ġ�)λ1

(
g−1

�

)
!"

10.5. Corollary. Suppose ω1 ∈ A1(Gh, End(V )) commutes with the ad-
joint action of λ1 : G� → GL(V ). Then the curvature form Ω of the
parabolically induced connection ∇ = Φ∗(∇1) = d + ω is controlled,

Ω = π∗(Ω1)

where Ω1 ∈ A2
bas(Gh, End(V )) is the curvature form of ∇1 = d + ω1.
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10.6. Proof. Let us compute Ω(X, Y ) where X = Lg∗(ẋ) and Y = Lg∗(ẏ),
where ẋ, ẏ ∈ Lie(P) and where g = ugh g� ∈ P. Set ẋ = u̇ X + ġXh + ġX� ∈
Lie(UP)⊕ gh ⊕ g� (and similarly for ẏ). By (10.3.1),

ω(X) = ω1(Lgh∗(ġXh))+ λ′1(ġX�) (10.6.1)

and similarly for ω(Y ). Set Xh = Lgh∗(ġXh) and Yh = Lgh∗(ġYh). Using the
structure equation (5.2.4) and the fact that Lie(UP) is an ideal in Lie(P)
gives

Ω(X, Y ) = X(ω(Y ))− Y(ω(X))− ω([X, Y ])+ [ω(X), ω(Y )]
= X(ω1(Lgh∗(ġYh)))+ X(λ′1(ġY�))− Y(ω1(Lgh∗(ġXh)))

− Y(λ′1(ġX�))− ω1(Lgh∗([ġXh, ġYh]))− λ′1([ġX�, ġY�])
+ [ω1(Lgh∗(ġXh)), ω1(Lgh∗(ġYh))] + [λ′1(ġX�), λ′1(ġY�)]
= Xhω1(Lgh∗(ġYh)))− Yhω1(Lgh∗(ġXh)))− ω1([Xh, Yh])
+ [ω1(Xh), ω1(Yh)]
= Ω1(Xh, Yh). !"

10.7. If ∇1 = d + ω1 is a connection on E1 which is invariant under
a subgroup Γh ⊂ Gh , then by (10.3.1) the induced connection Φ∗(∇1) is
invariant under the group ν∗h(Γh) ⊂ P which is obtained by first projecting
Γh to G′h = Gh/(Gh ∩ G�) then taking the pre-image under the projection
νh : P→ G′h (cf. §7.1, §9.1).

As in §9 let Γ ⊂ G be a neat arithmetic subgroup with X = Γ\D.

Write X1 = Γh\D1 for the stratum in X = Γ\D∗ corresponding to the
boundary component D1. The homogeneous vector bundles E → D and
E1 → D1 pass to automorphic vector bundles E ′ → X and E ′1 → X1
respectively. Parabolic induction then passes to an operation on these vector
bundles as follows. Suppose ∇′1 is a connection on E ′1. It pulls back to
a Γh-invariant connection ∇1 on E1 → D1. The parabolically induced
connection ∇ = Φ∗(∇1) is invariant under ΓP = Γ ∩ P ⊂ ν∗h(Γh) so it
passes to a connection on ΓP\E → ΓP\X. Since TX1(ε0) is a parabolic
neighborhood of X1 in X this defines a connection ∇′ = Φ∗X X1

(∇′1) on the
restriction E ′|(X ∩ TX1(ε0)).

This procedure may be applied to any pair of strata, say, X2 < X1 of X.
Thus, if ∇′2 is any connection on the automorphic vector bundle E ′2 → X2
defined by λ, then we obtain a parabolically induced connection

∇′1 = Φ∗X1 X2
(∇′2)

on E ′1|(X1 ∩ TX2(ε0)). However, if X3 < X2 < X1 are strata of X
and if ∇′3 is a connection on E ′3 → X3 then the parabolically induced
connection Φ∗X1 X3

(∇′3) does not necessarily agree with the connection
Φ∗X1 X2

Φ∗X2 X3
(∇′3), even in the neighborhood X1 ∩ TX2(ε0)∩ TX3(ε0) where

they are both defined, cf. Proposition 10.9.
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10.8. We will also need the following more technical result concerning
parabolic induction for the proof of the main theorem. Suppose P1 ≺ P2 ≺
. . . ≺ Pr are standard maximal parabolic subgroups with corresponding
rational boundary components D1 ≺ D2 ≺ · · · ≺ Dr . Let Q = P1 ∩ P2 ∩
. . . ∩ Pr . Then Q� = P1 = U1G1h G1� so by (7.3.6), Q decomposes as
Q = UQG1hGQ�.

Let λ be a representation of K with resulting homogeneous vector bun-
dles Ei → Di (1 ≤ i ≤ r). By Proposition 8.2, λ extends to a representation
λ1 of K1h G1�. For 1 ≤ i < j ≤ r let Φ ji : E j → π∗ji Ei denote the vector
bundle isomorphism of (10.1.2) corresponding to the canonical projection
π ji : D j → Di. Let Φr : E → π∗r (Er) be the vector bundle isomorphism
(10.1.2) corresponding to the canonical projection πr : D→ Dr .

10.9. Proposition. Suppose∇1 = d+ω1 is a connection on E1 and suppose
that the connection form ω1 ∈ A1(G1h, End(V )) commutes with the adjoint
action of λ1(G1�). Let ∇ = d + ω denote the connection

∇ = Φ∗r Φ
∗
r,r−1 . . . Φ∗21(∇1).

Then

ω(Lg∗(u̇Q + ġ1h + ġQ�)) = ω1(Lg1h∗(ġ1h))+ λ′1(ġQ�) (10.9.1)

for any g = uQ g1hgQ� ∈ Q and any u̇Q+ġ1h+ġQ� ∈ Lie(Q) = Lie(UQ)+
g1h + gQ�. The curvature form Ω of the connection ∇ satisfies

Ω = π∗1 (Ω1) (10.9.2)

where Ω1 ∈ A2
bas(G1h, End(V )) is the curvature form of ∇1 and where

π1 : D→ D1 is the canonical projection.

10.10. Proof. First we determine the connection form of the connection

∇r = Φ∗r,r−1Φ
∗
r−1,r−2 . . . Φ∗21(∇1) = d + ωr

on the vector bundle Er → Dr. Set Pr = Ur Grh Gr�. The images under
the projection νrh : Pr → Grh of Q ⊂ P1 ∩ Pr are parabolic subgroups
Q ⊂ P1 ⊂ Grh . In fact, Q is the parabolic subgroup corresponding to the
flag of rational boundary components D1 ≺ D2 ≺ · · · ≺ Dr−1 of Dr . By
(7.3.4) there are compatible decompositions

Pr = Ur Grh Gr�

P1 ∩ Pr = Ur(UG1h G′�)Gr� with P1 = UG1hG′�
Q = UrUG1h(UQ�GQ�)Gr� with Q = UUQ�G1hGQ�.

Corresponding to the maximal parabolic subgroup P1 ⊂ Grh the represen-
tation λ|K1h K ′� has a canonical extension

λr1 : K1hG′� → GL(V ).
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According to Proposition 8.4, λr1|G′� = λ1|G′� which, by assumption, com-
mutes with ω1. So by induction, for any q̄ = uQ g1hgQ� ∈ Q and for any
q̇ = u̇Q + ġ1h + ġQ� ∈ Lie(Q),

ωr(Lq̄∗(u̇Q + ġ1h + ġQ�)) = ω1(Lg1h∗(ġ1h))+ λ′1(ġQ�). (10.10.1)

Now we are in a position to compute ∇ = Φ∗r (∇r) = d + ω. By Proposi-
tion 10.3, for any g = ur grh gr� ∈ Pr, and any ġ = u̇r+ ġrh+ ġr� ∈ Lie(Pr),
we have:

ω(Lg∗(u̇r + ġrh + ġr�)) = Ad
(
λr
(
g−1

r�

))
(ωr(Lgrh∗(ġrh)))+ λ′r(ġr�).

By Proposition 8.4, λr|Gr� = λ1|Gr�. Taking grh = q̄ = uQ g1hgQ� ∈ Q
and

ġrh = ˙̄q = u̇Q + ġ1h + ġQ� ∈ Lie(Q)

gives

ω(Lg∗(u̇r + u̇Q + ġ1h + ġQ� + ġr�))

= Ad
(
λ1
(
g−1

r�

))
(ω1(Lg1h∗(ġ1h))+ λ′1(ġQ�))+ λ′1(ġr�).

By assumption, the adjoint action of λ1(Gr�) commutes with ω1 ∈
A1(G1h, End(V )). Moreover Gr� commutes with GQ�. Therefore the op-
erator Ad(λ1(g−1

r� )) may be dropped in this equation which gives equation
(10.9.1):

ω(Lg∗(u̇r + u̇Q + ġ1h + ġQ� + ġr�)) = ω1(Lg1h∗(ġ1h))+ λ′1(ġQ� + ġr�).

Finally we compute the curvature Ω of the induced connection ∇. Let
g = uQ g1hgQ� ∈ Q, let ẋ = u̇xQ + ẋ1h + ẋQ� and ẏ = u̇ yQ + ẏ1h + ẏQ� ∈
Lie(Q). Then a calculation identical to that of §10.6, using (10.9.1) in place
of (10.6.1) gives:

Ω(Lg∗(ẋ, ẏ)) = Ω1(Lg1h∗(ẋ1h, ẏ1h))

which implies that Ω = π∗1 (Ω1). !"

11. The patched connection

11.1. As §7, 9, suppose that D = G/K is a Hermitian symmetric space
which is irreducible over Q, and that Γ ⊂ G(Q) is a neat arithmetic group.
Let X = Γ\D∗ denote the Baily Borel compactification of X = Γ\D with
projection q : D∗ → X. By Lemma 9.6, for any sufficiently small ε0 > 0
there exists an ε0-system of control data {TY (ε0), πY , ρY } (which we now
fix) on X, so that πY is obtained from the canonical projection D → D1
whenever q(D1) = Y and so that TY (ε) is a parabolic neighborhood of Y
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in X. Applying §3.5 to this system of control data yields a partition of unity
on each stratum Y of X,

BεY
Y (y)+

∑
Z<Y

BεY
Z (y) = 1 (11.1.1)

for all y ∈ Y, where εY = ε0/2dim Y .
A choice of representation λ : K → GL(V ) on some complex vector

space V determines homogeneous vector bundles E = G ×K V on D
and E1 = Gh ×Kh V on D1 which pass to automorphic vector bundles
E ′ = Γ\E on X and E ′Y → Y on Y . Here, D1 is a rational boundary
component (with q(D1) = Y ), normalized by some maximal parabolic
subgroup P = UPGhG�; and Kh = K ∩ Gh ; cf. §7.1, 9.1. The Nomizu
connections ∇Nom

D (on E) and ∇Nom
1 (on E1) pass to connections ∇Nom

X on
E ′ → X and∇Nom

Y on E ′Y → Y respectively. We use an inductive procedure
to define the patched connection ∇p

Y on the vector bundle E ′Y → Y, for any
stratum Y ≤ X as follows. If Y ⊂ X is a minimal stratum set ∇p

Y = ∇Nom
Y .

Now suppose that the patched connection ∇p
W has been constructed on every

stratum W < Y.

11.2. Definition. The patched connection ∇p
Y on E ′Y → Y is the connection

∇p
Y = BεY

Y ∇Nom
Y +

∑
W<Y

BεY
W Φ∗YW

(∇p
W

)
(11.2.1)

(where the sum is taken over all strata W < Y in the Baily Borel compact-
ification of X).

11.3. Remarks. The idea behind this construction may be explained when
there are two singular strata Z < Y < X. A simpler candidate for a connec-
tion on X whose Chern forms might satisfy the control condition is

∇′X = BεX
Z Φ∗X Z∇Nom

Z + BεX
Y Φ∗XY∇Nom

Y + BεX
X ∇Nom

X . (11.3.1)

In the region TY (εX/2) only the first two terms contribute to ∇′X . Both con-
nection Φ∗X Z∇Nom

Z and Φ∗XY∇Nom
Y have curvature forms which are controlled

with respect to Y . However the curvature form of (and even the Chern forms
of) any affine combination of these fails to satisfy the control condition. (cf.
Fig. 3.4: this occurs in the region where BZ + BY = 1.) The remedy is
to create a connection on X for which no nontrivial affine combination of
Φ∗X Z∇Nom

Z and Φ∗XY∇Nom
Y ever occurs. Replacing ∇Nom

Y by ∇p
Y in (11.3.1)

gives

∇p
X = BεX

Z Φ∗X Z∇Nom
Z + BεX

Y BεY
Z Φ∗XY Φ∗YZ∇Nom

Z

+ BεX
Y BεY

Y Φ∗XY∇Nom
Y + BεX

X ∇Nom
X

Within the region TY (εX/2) only the first three terms appear: the first term
alone appears in TZ(εX/2); the first and second terms appear in TZ(εX)−
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TZ(εX/2); the second term alone appears in TZ(εY/2)−TZ(εX); the second
and third terms appear in TZ (εY )−TZ(εY/2) and the third term alone appears
outside TZ(εY ). In the region TZ(εY )− TZ(εY/2),

∇p
X = Φ∗XY

(
BεY

Z Φ∗YZ∇Nom
Z + BεY

Y ∇Nom
Y

)
.

So ∇p
X is parabolically induced from a connection on Y , and by Corol-

lary 10.5 its curvature form is controlled relative to Y . In the region
TZ(εX)− TZ(εX/2),

∇p
X =

(
BεX

Z Φ∗X Z + BεX
Y BεY

Z Φ∗XYΦ∗YZ

)(∇Nom
Z

)
.

In this region, the curvature form still does not satisfy the control condition
however we show in §12.10 that the difference (Φ∗X Z − Φ∗XY Φ∗YZ)ωNom

Z
is nilpotent and commutes with the curvature form. This turns out to be
enough (Lemma 6.4) to imply that the Chern forms of ∇p

X are controlled
with respect to Y .

11.4. Returning to the general case, suppose Z = Z(1) < Z(2) < · · · <
Z(r) is a chain of strata in X. Write Z ≤ Y if Z(r) = Y , that is, if the
chain ends in Y . Write Y ≤ Z if Z(1) = Y , that is, if the chain begins at Y .
Suppose Z is such a chain of strata and suppose x ∈ TZ(i)(ε0) for 1 ≤ i ≤ r.
Denote by

εi = ε(Z(i)) = ε0/2dim Z(i)

Bε
i = Bε

Z(i)

Φ∗ji = Φ∗Z( j)Z(i) for j > i

πi(x) = πZ(i)(x).

Define

BZ(x) = Bεr
r−1(πr(x)) . . . Bε3

2 (π3(x))Bε2
1 (π2(x)) (11.4.1)

Φ∗Z = Φ∗r,r−1 . . . Φ∗32Φ
∗
21. (11.4.2)

If Z = {Y } consists of a single element, set BZ(x) = 1 and Φ∗Z = Id.

11.5. Lemma. Let Y be a stratum of X. Then for all x ∈ Y,∑
Z≤Y

BZ(x)BεZ(1)

Z(1) (πZ(1)(x)) = 1 (11.5.1)

and the patched connection may be expressed as follows,

∇p
Y (x) =

∑
Z≤Y

BZ(x)Φ∗Z
(

BεZ(1)

Z(1) (πZ(1)(x))∇Nom
Z(1) (πZ(1)(x))

)
(11.5.2)

where (in both equations) the sum is over all chains of strata Z ≤ Y ending
in Y . !"
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11.6. Remarks. One checks that, although the projection functions x &→
πZ(i)(x) are not everywhere defined, they occur in (11.5.1), (11.5.2) with
coefficient 0 unless x lies in the region of definition. Henceforth we will
abbreviate (11.5.2) by

∇p
Y =

∑
Z≤Y

BZΦ∗Z
(
BεZ(1)

Z(1) ∇Nom
Z(1)

)
but we caution the reader about the possible ambiguity in this notation which
arises from the fact that both BεZ(1)

Z(1) (x) and BεZ(1)

Z(1) (πZ(1)(x)) are defined but
do not necessarily coincide.

11.7. Proof. We will prove (11.5.2) by induction; the proof of (11.5.1)
is similar. Using induction, replace ∇p

W in (11.2.1) by the corresponding
expression (11.5.2) to obtain

∇p
Y (x) =BεY

Y (x)∇Nom
Y (x)

+
∑
W<Y

∑
Z′≤W

BεY
W (x)BZ′(πW(x))Φ∗YWΦ∗WZ′

(
BεZ ′(1)

Z ′(1)
∇Nom

Z ′(1)

)
. (11.7.1)

In (11.5.2) the trivial chain Z = {Y } gives rise to a term BεY
Y (πY(x))∇Nom

Y .
Each nontrivial chain Z = {Z(1) < · · · < Z(r − 1) < Z(r) = Y } may be
expressed uniquely as the concatenation of a 1-step chain W = Z(r−1) < Y
with a chain Z′ ending in W. Then BZ(x) = BεY

W (x)BZ′(πW(x)) and
Φ∗Z = Φ∗YWΦ∗Z′ . When substituted into (11.5.2) these give (11.7.1), which
completes the inductive step in the argument. !"

Definition 11.2 constructs a patched connection ∇p
Y on each of the auto-

morphic vector bundles E ′Y → Y. The proof of the following theorem will
appear in §12.

11.8. Theorem. The Chern forms {σ j(∇p
Y )}Y≤X of the patched connections

∇p
Y constitute a closed controlled differential form.

11.9. Corollary. For each j, the Chern form σ j(∇p
X) ∈ A2 j

π (X;C) of the
patched connection determines a lift

c̄ j(E ′) = [σ j
(∇p

X

)] ∈ H2 j(X;C) (11.9.1)

of the Chern class c j(E ′) ∈ H2 j(X;C) which is independent of the choices
that were made in its construction. For any stratum closure i : Y ↪→ X the
restriction i∗c̄ j(E ′) is equal to the Chern class c̄ j(E ′Y ) ∈ H2 j(Y;C) of the
automorphic vector bundle E ′Y → Y.
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11.10. Proof of Corollary 11.9. The restriction map i∗ : H2 j(X)→ H2 j(X)

associates to any controlled differential form ω ∈ A2 j
π (X) the cohomology

class [ωX] of the differential form ωX ∈ A2 j(X) on the nonsingular part.
Hence i∗(c̄ j(E ′)) = c j(E ′) ∈ H2 j(X;C) since the latter is independent of
the connection.

The patched connection ∇p
X depends on the choice of a pair (partition of

unity, control data which is subordinate to the canonical projections {πZ})
(see §3 and §2). It is tedious but standard to check that two such choices are
connected by a smooth 1-parameter family of choices (partition of unity,
control data subordinate to {πZ}). The resulting patched connections ∇p

0 and
∇p

1 are therefore connected by a smooth 1-parameter family of patched con-
nections ∇p

t , each of whose Chern forms is a controlled differential form. So
the usual argument (e.g. [KN] Chapt. XII Lemma 5; [MiS]) produces a dif-
ferential 2 j−1 form Ψ such that σ j (∇p

1 )−σ j(∇p
0) = dΨ. It is easy to see that

Ψ ∈ A2 j−1
π (X;C) is a controlled differential form. Consequently the con-

trolled cohomology classes coincide: [σ j(∇p
1)] = [σ j(∇p

0)] ∈ H2 j(X;C).
The second statement follows from the analogous statement in Theo-
rem 4.2. !"
11.11. Remarks. Theorem 11.8 and Corollary 11.9 extend to the case that
G is semisimple over Q. The restriction map H2 j(X;C) → H2 j(X;C)
factors as follows,

H2 j(X;C)→ IH2 j(X;C)→ H2n−2 j(X;C)

→ H2n−2 j(X, ∂X;C) ∼= H2 j(X;C)

where 2n = dimR(X), and where ∂X denotes the singular set of the Baily-
Borel compactification X. The Chern class c j(E ′) ∈ H2 j(X;C) lives in the
last group. For any toroidal resolution of singularities τ : XΣ → X, the
pushdown

cn− j (E ′) = τ∗
(
c j(Ē ′Σ) ∩ [XΣ]

) ∈ H2n−2 j(X;Z)

of the Chern class of Mumford’s canonical extension ([Mu1]) Ē ′Σ of E ′
gives a canonical lift of c j(E ′) to the homology of the Baily-Borel com-
pactification. In §15 (in the case of the tangent bundle) we identify this
with the (homology) Chern class of the constructible function 1X . In [BBF]
it is shown that every algebraic homology class (including cn− j(E ′)) ad-
mits a (non-canonical) lift to middle intersection homology with rational
coefficients.

12. Proof of Theorem 11.8

12.1. Preliminaries. As in §9.1, let q : D� → X denote the projection. If
ε0 > 0 is sufficiently small, then for each stratum Z of X the preimage



592 M. Goresky, W. Pardon

q−1(TZ(ε0)) =
∐

q(D1)=Z

UD1(ε0)

is a disjoint union of Γ-parabolic neighborhoods UD1(ε0) of those boundary
components D1 such that q(D1) = Z. For such a boundary component
define

χD1(x) =
{

1 if x ∈ UD1(ε0)

0 otherwise

to be the characteristic function of UD1 .
Fix a stratum Y and a choice D2 of rational boundary component such

that q(D2) = Y. Denote by P2 = U2G2hG2� the rational maximal parabolic
subgroup of G which normalizes D2 and by νh : P2 → G2h the projection
as in §9.1. By Proposition 8.2 the representation λ|K ∩ P2 extends to
a representation λ2 of K2h G2�. Set Γh = νh(Γ ∩ P2).

The partition of unity BεY
Y +

∑
Z<Y BεY

Z = 1 on Y pulls back to a Γh-
invariant locally finite partition of unity on D2,

BεY
D2
+

∑
D1≺D2

BεY
D1
= 1

where the sum is over all rational boundary components D1 ≺ D2, where
BεY

D1
= q∗(BεY

Z )χD1 (and similarly for BεY
D2

, however χD2 = 1 on D2).
The patched connection ∇p

Y on the vector bundle E ′Y → Y pulls back to a
Γh-invariant connection ∇p

2 = q∗(∇p
Y ) on the homogeneous vector bundle

E2 = G2h ×K2h V. This connection may also be described as the affine
locally finite combination

∇p
2 = BεY

D2
∇Nom

2 +
∑

D1≺D2

BεY
D1

Φ∗21

(∇p
1

)
(12.1.1)

where, for each rational boundary component D1 ≺ D2 the obvious notation
holds: ∇p

1 is the patched connection on E1 → D1 and Φ21 : E2 → π∗21(E1)
is the vector bundle isomorphism which is obtained from (10.1.3) upon
replacing G by G2h.

Denote by ω
p
2 ∈ A1(G2h, End(V )) the connection form of ∇p

2 . The
curvature form Ω

p
Y ∈ A2(Y, End(E ′Y )) of ∇p

Y coincides with the curvature
form Ω

p
2 ∈ A2

bas(G2h, End(V )) of ∇p
2 under the canonical isomorphism

A2(Y, End(E ′Y )) ∼= A2(D2, End(E2))
Γh ∼= A2

bas(G2h, End(V ))Γh

(12.1.2)

where the superscript Γh denotes the Γh-invariant differential forms.

12.2. Proposition. Let D2 be a rational boundary component of D = G/K.
Then the connection form ω

p
2 ∈ A1(G2h, End(V )) and the curvature form

Ω
p
2 ∈ A2

bas(G2h, End(V )) commute with the adjoint action of λ2(G2�) ⊂
GL(V ).
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12.3. Proof. The proof uses a double induction over boundary components
D2 in D∗. However, so as to avoid the horribly complicated notation which
would arise in the proof, we rephrase the double induction as follows:

(1) By induction we assume the proposition has been proven for every
rational boundary component D′2 of any Hermitian symmetric domain
D′ = G′/K for which dim(D′) < dim(D). (The case dim(D′) = 0 is
trivial.)

(2) For our given domain D, we assume the proposition has been proven
for every rational boundary component D1 of D such that dim(D1) <
dim(D2). (The case D1 = φ is trivial.)

To prove Proposition 12.2 for D2 ⊂ D∗, it suffices to verify that λ2(G2�)
commutes with the connection form of each of the connections appearing in
the linear combination (12.1.1). The connection form ωNom

2 of the Nomizu
connection ∇Nom

2 is given by

ωNom
2 (Lg2h∗(ġ2h)) = λ′(k̇2h) = λ′2(k̇2h)

for any g2h ∈ G2h and for any ġ2h ∈ g2h , where ġ2h = k̇2h+ ṗ2h is its Cartan
decomposition. This commutes with λ2(G2�) since G2h and G2� commute.

Now consider any boundary component D1 ≺ D2 which appears in
the sum (12.1.1). Let P1 = U1G1hG1� be the rational parabolic subgroup
which normalizes D1. Decompose the intersection

P = P1 ∩ P2 = U2(UG1hG′�)G2�

according to (7.3.4), setting Ph = UG1h G′� ⊂ G2h. Let ∇p
1 be the patched

connection on E1 → D1. According to Proposition 10.3, the connection
form ω21 of the parabolically induced connection Φ∗21(∇p

1 ) is given by

ω21
(
Lg∗

( ˙̄̄u + ġ1h + ġ′�
)) = λ′21(ġ′�)+ Ad

(
λ21(g′�)

−1)(ωp
1(Lg1h∗(ġ1h))

)
.

Here, g = ¯̄ug1hg′� ∈ Ph and ˙̄̄u + ġ1h + ġ′� ∈ Lie(Ph) and λ21 : K1hG′� →
GL(V ) is as in Proposition 8.2. Since dim Y < dim X we may apply the
first induction hypothesis and conclude that the adjoint action of λ21(G′�)
commutes with the connection form ω

p
1 ∈ A1(G1h, End(V )). Hence, using

Proposition 8.4,

ω21
(
Lg∗( ˙̄̄u )+ ġ1h + ġ′�

) = λ′1(ġ′�)+ ω
p
1(Lg1h∗(ġ1h)).

The group G′� commutes with G2� so the first term λ′1(ġ′�) commutes with
λ1(G2�). By the second induction hypothesis, the connection form ω

p
1 ∈

A1(G1h, End(V )) also commutes with λ1(G1�). But λ1(G1�) ⊃ λ1(G2�) =
λ2(G2�) by Proposition 8.4 again, which completes the proof that the con-
nection form of the patched connection commutes with λ2(G2�). !"



594 M. Goresky, W. Pardon

12.4. Let x ∈ X be a point near the boundary of X. Then there is a maximal
collection of strata Y1, Y2, . . . , Yt such that x ∈ Tε0(Yi) for each i, and we
may assume they form a partial flag,

Y1 < Y2 < · · · < Yt = X. (12.4.1)

Let W≤ X be the largest stratum in this collection such that BεW
W (πW(x)) �=0.

Such a stratum exists since BεY1
Y1

(πY1(x)) = 1.
Choosing W in this way guarantees that, if W �= X, then for every

stratum Z > W in this partial flag, at the point πZ(x) the connection
∇p

Z is an affine combination of connections induced from smaller strata
and contains no contribution from ∇Nom

Z , because BεZ
Z (πZ(x)) = 0. To be

precise:

12.5. Proposition. At the point x ∈ X,∑
W≤S≤X

BS(x) = 1 (12.5.1)

and

∇p
X(x) =

 ∑
W≤S≤X

BS(x)Φ∗S

(∇p
W(πW(x))

)
(12.5.2)

where the sum is over sub-chains S in the partial flag (12.4.1) which begin
at W and end at X.

12.6. Proof. By Lemma 11.5 applied to∇p
W , we need to show (at the point x)

that

∇p
X =

 ∑
W≤S≤X

BSΦ
∗
S

(∑
R≤W

BRΦ∗R
(

BεR(1)

R(1) ∇Nom
R(1)

))
. (12.6.1)

By Lemma 11.5, ∇p
X(x) is a sum over chains Z ≤ X of terms

BZ(x)Φ∗Z
(

BεZ(1)

Z(1) (πZ(1)(x))∇Nom
Z(1)

)
.

For any ε ≤ ε0, Bε
Z(x) = 0 unless Z occurs in the collection {Y1, Y2, . . . ,

Yt = X}. By assumption the term BεZ(1)

Z(1) (πZ(1)(x)) also vanishes unless
Z(1) ≤ W. Therefore each chain Z = Z(1) < · · · < X appearing in the
sum may be assumed to occur as a sub-chain of Y1 < Y2 < · · · < Yt = X,
and we may also assume the chain begins at Z(1) ≤ W. We claim that if
such a chain Z occurs with nonzero coefficient

BZ(x)BεZ(1)

Z(1) (πZ(1)(x)) �= 0



Chern classes of automorphic vector bundles 595

then the stratum W must appear in the chain. For if not, then Z(k) < W <
Z(k + 1) for some k. But the term BZ(x) contains a factor

BεZ(k+1)

Z(k) (πZ(k+1)(x)).

Since BεW
W (πW(x)) �= 0, this factor vanishes by Lemma 3.6, which proves

the claim. Summarizing, every chain Z which occurs with nonzero coeffi-
cient in the sum may be described as

R(1) < R(2) < · · · < R(r) = W = S(1) < S(2) < · · · < S(s) = X.
(12.6.2)

The contribution to ∇p
X(x) in (11.5.2) from such a chain is the product of

BεX
S(s−1)(πX(x)) . . . BεS(2)

W (πS(2)(x))Φ∗XS(s−1) . . . Φ
∗
S(2)W

with

BεW
R(r−1)(πW(x)) . . . BεR(2)

R(1) (πR(2)(x))Φ∗WR(r−1) . . . Φ∗R(2)R(1)

applied to

BεR(1)

R(1) (πR(1)(x))∇Nom
R(1) .

However this product is exactly a single term in (12.6.1) and every such
product occurs exactly once, which verifies (12.5.2).

A similar argument applies to the coefficients. By (11.5.1),∑
Z≤X

BZ(x)BεZ(1)

Z(1) (πZ(1)(x)) = 1. (12.6.3)

By the preceding argument, the only chains Z contributing to this sum are
of the form (12.6.2), for which the term in (12.6.3) is the product of

BεX
S(s−1)(πX(x)) . . . BεS(2)

W (πS(2)(x))

with

BεW
R(r−1)(πW(x)) . . . BεR(2)

R(1) (πR(2)(x))BεR(1)

R(1) (πR(1)(x))

which is a single term of ∑
W≤S≤X

BS(x)

 · (∑
Z≤W

BZ(πW(x))BεZ(1)

Z(1) (πZ(1)(x))

)
(12.6.4)

and every such product occurs exactly once. Therefore (12.6.4) is equal
to 1. But the second factor in (12.6.4) is 1 by (11.5.1). This yields equation
(12.5.1). !"
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12.7. With these preliminaries out of the way, let us begin the proof of
Theorem 11.8. We must show that the Chern forms of the patched connection
satisfy the control condition near each stratum of X. Let Y be such a stratum
and let x ∈ X ∩ TY (εX/2). We will verify the control condition relative to
the stratum Y at the point x. The point x ∈ X lies in an intersection of
ε0-tubular neighborhoods of a maximal collection of strata, which (we may
assume) form a partial flag Z1 < Z2 < · · · < X. Let W be the largest
stratum in this chain such that BεW

W (πW(x)) �= 0. Then W ≤ Y by (3.2.2).
Consider the subchain lying between W and Y , which we shall denote by

W = Y1 < Y2 < · · · < Yt = Y.

Fix corresponding boundary components D1 ≺ D2 ≺ · · · ≺ Dt and let
P1 ≺ P2 ≺ . . . ≺ Pt be their normalizing maximal parabolic subgroups.
Set P = P1∩ P2∩ . . .∩ Pt . Let∇p

W be the patched connection on E ′W → W.
According to Proposition 12.5,

∇p
X(x) =

 ∑
W≤S≤X

BS(x)Φ∗S

∇p
W(πW(x)). (12.7.1)

However the only chains S = {S(1) < · · · < S(s)} which occur with
nonzero coefficient in this sum satisfy

{S(1), S(2), . . . , S(s − 1)} ⊂ {Y1, Y2, . . . , Yt}, S(1) = W = Y1, S(s) = X
(12.7.2)

for the following reason. Suppose a chain S contains a stratum larger than
Y (but not equal to X). Let Z be the largest such stratum occurring in S.
Then the first factor in BS(x) is BεX

Z (x), cf. (11.4.1). By assumption, x ∈
TY (εX/2). So by (3.2.2) (with ε = εX and where the roles of Y and Z are
reversed), BεX

Z (x) = 0.

If W = Y then (12.7.1) becomes ∇p
X = Φ∗XY (∇p

Y ) so by Corollary 10.5
and Proposition 12.2 the curvature form Ω

p
X of∇p

X is controlled with respect
to Y . So the same is true of every Chern form which proves Theorem 11.8
in this case.

Therefore we may assume that W < Y . As in §12.1 the connection ∇p
W

on E ′W → W pulls back to a Γh-invariant connection ∇p
1 on E1 → D1 and

the connection ∇p
X on E ′ → X pulls back to a Γ-invariant connection ∇p

on E → D. As in (12.1.2) we identify the curvature form Ω
p
X of ∇p

X with
the curvature form Ωp of ∇p under the canonical isomorphism

A2(X, End(E ′)) ∼= A2(D, End(E))Γ ∼= A2
bas(G, End(V ))Γ.

Similarly identify the curvature Ω
p
1 of ∇p

1 with the curvature Ω
p
W of ∇p

W .
Choose a lift x̃ ∈ D of x, which lies in the intersection

UD1(ε0) ∩UD2(ε0) ∩ . . . ∩UDt(ε0)

of Γ-parabolic neighborhoods of the boundary components D1 ≺ D2 ≺
. . . ≺ Dt . Let π : D→ D1 denote the canonical projection.



Chern classes of automorphic vector bundles 597

12.8. Lemma. For any tangent vectors U, V ∈ Tx̃ D,

Ωp(U, V ) = π∗Ωp
1(U, V )+ n ∈ End(V )

for some nilpotent element n ∈ λ′1(g1�). (Here, P1 = UP1 G1hG1�; g1� =
Lie(G1�); and λ1 is the extension (Proposition 8.2) of the representation
λ|K ∩ P1.)

12.9. Proof. We will compute the curvature Ω
p
X of ∇p

X . Each chain S satis-
fying (12.7.2) corresponds also to a chain of rational boundary components
DS(1) ≺ DS(2) ≺ . . . ≺ DS(s) which begin at D1 = DS(1) (the boundary
component corresponding to the stratum W) and end at D = DS(s). Let
B̃S = q∗BS denote the pullback to D. It follows from Proposition 12.5 that∑

S B̃S(x̃) = 1 (where the sum is over all chains S which appear in (12.7.1)).
Choose any ordered labeling of the chains S which appear in (12.7.1), say
S1, S2, . . . , SM.

Let U, V ∈ Tx̃ D. Pulling back the equation (12.7.1) to D and using
Lemma 6.2 gives:

Ωp(U, V ) =
M∑

i=1

B̃SiΦ
∗
Si

(
Ω

p
1

)
(U, V )+

M−1∑
i=1

dB̃Si ∧
(
Φ∗Si

ω
p
1 −Φ∗SM

ω
p
1

)
(U, V )

−
∑
i< j

B̃Si(x)B̃S j (x)
[
Φ∗Si

ω
p
1(U)−Φ∗S j

ω
p
1(U),Φ∗Si

ω
p
1(V )−Φ∗S j

ω
p
1(V )

]
(12.9.1)

where Φ∗S(ω
p
1) denotes the connection form of Φ∗S(∇p

1 ) and where Φ∗S(Ω
p
1)

denotes its curvature. Because of Proposition 12.2 we may apply Proposi-
tion 10.9, especially equation (10.9.2) to obtain Φ∗Si

(Ω
p
1) = π∗(Ωp

1). There-
fore the first term in (12.9.1) is

M∑
i=1

B̃Siπ
∗(Ωp

1

)
(U, V ) = π∗

(
Ω

p
1

)
(U, V )

by (12.5.1). In order to evaluate the remaining terms we must first compute
the connection forms Φ∗Si

(ω
p
1). Suppose that S is a chain satisfying (12.7.2).

For 1 ≤ j ≤ s − 1 let PS( j) be the corresponding normalizing maximal
parabolic subgroup and set Q = PS(1) ∩ PS(2) ∩ . . . ∩ PS(s−1). Then P ⊂ Q
and P� = Q� = P1 which implies (as in §7.3) that P ⊂ Q ⊂ P1 have
compatible decompositions,

P1 = U1G1hG1�

Q = U1G1h(UP1 Q GQ�) with UQ = U1UP1 Q

P = U1G1hUP1 Q(UQ PG P�) with UP = U1UP1 QUQ P.
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Here, UQ PG P� is the parabolic subgroup of GQ� determined by P ⊂ Q.
We also note that

UP1 P = UP1QUQ P (12.9.2)

is the unipotent radical of the parabolic subgroup ν1�(P) ⊂ G1� determined
by P (where ν1� : P1 → G1� is the projection). Let NP1 P denote its Lie
algebra.

By Proposition 12.2, the connection form ω
p
1 ∈ A1(G1h, End(V )) com-

mutes with the adjoint action of λ1(G1�) ⊂ GL(V ). So we may apply Propo-
sition 10.9 to determine Φ∗S(ω

p
1). Let g = u Pg1hgP� ∈ P = UPG1h G P� and

let

ġ = u̇1 + ġ1h + u̇ P1 Q + u̇Q P + ġP� ∈ Lie(U1G1hUP1 QUQ PG P�).

Apply Proposition 10.9 using u̇Q = u̇1 + u̇ P1 Q ∈ Lie(UQ) and ġQ� =
u̇Q P + ġP� ∈ gQ� to find:

Φ∗S
(
ω

p
1

)
(Lg∗(ġ)) = ω

p
1(Lg1h∗ġ1h))+ λ′1(u̇Q P)+ λ′1(ġP�) .

Moreover, λ′1(u̇Q P) ∈ λ′1(NP1 P) ⊂ λ′1(g1�).
Now suppose that R is another chain in the sum (12.7.1) which makes

a nonzero contribution Φ∗R∇p
1 = d+Φ∗R(ω

p
1) to the connection∇p, say, W =

R(1) < R(2) < · · · < R(r−1) < X. Then Q ′ = PR(1)∩PR(2)∩. . .∩PR(r−1)

and P also have compatible decompositions:

Q′ = U1G1h(UP1 Q ′GQ ′�) with UQ ′ = U1UP1 Q ′

P = U1G1hUP1 Q ′(UQ ′PG P�) with UP = U1UP1 Q ′UQ ′P.

The same element ġ ∈ Lie(P) decomposes as

ġ = u̇1 + ġ1h + u̇ P1 Q ′ + u̇Q ′P + ġP�.

So the same argument gives Φ∗R(ω
p
1)(Lg∗(ġ)) = ω

p
1(Lg1h∗(ġ1h))+λ′1(u̇Q ′P)+

λ′1(ġP�). We conclude that:(
Φ∗Sω

p
1 −Φ∗Rω

p
1

)
(Lg∗(ġ)) = λ′1(u̇Q P − u̇Q ′P) ∈ λ′1(NP1 P) ⊂ λ′1(g1�).

(12.9.3)

Consequently each term in the sum (12.9.1) (except for the first) lies in
λ′1(NP1 P). !"
12.10. Completion of the proof. Using Lemma 12.8, at the point x̃ we may
write

Ωp(U, V ) = π∗
(
Ω

p
1

)
(U, V )+ n

where n ∈ λ′1(g1�) is nilpotent and in fact lies in λ′1(NP1 P). Moreover, by
Proposition 12.2, the curvature Ω

p
1 commutes with n. If f : End(V )→ C is

any Ad-invariant polynomial, it follows from Lemma 6.4 that f(Ωp(U, V ))
= f(Ωp

1(π∗U, π∗V )) hence also f(Ωp
X(U, V )) = f(Ωp

W(πXW∗U, πXW∗V )).
So it follows from (6.3.1) that the corresponding characteristic form is
controlled relative to W . This completes the proof of Theorem 11.8. !"
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13. Toroidal compactification

13.1. Throughout this section we assume that G = G(R) is the set of real
points of a connected semisimple algebraic group G defined over Q, that
D = G/K is a Hermitian symmetric space, Γ ⊂ G(Q) is a neat arithmetic
group, X = Γ\G/K is the corresponding locally symmetric space with
Baily-Borel Satake compactification X = Γ\D∗. Fix a representation λ :
K → GL(V ) on some complex vector space V and let E = G ×K V be
the corresponding homogeneous vector bundle on D, and E ′ = Γ\E the
automorphic vector bundle on X. Choose a system of control data on the
Baily-Borel compactification X and a partition of unity as in §3, and let ∇p

X
denote the resulting patched connection on E ′ → X. For each i, the Chern
form σ i(∇p

X) ∈ Ω•π(X;C) (cf §6.3) is a controlled differential form on X
so it determines a cohomology class c̄i(E ′) = [σ i(∇p

X)] ∈ H2i(X;C).

We also fix a nonsingular toroidal compactification X Σ. This corresponds
to a Γ-compatible collection of simplicial polyhedral cone decompositions
ΣF of certain self adjoint homogeneous cones. These compactifications
were constructed in [AMRT] and are reviewed in [Har3], [HZ1], [FC], [Na].
In [Mu1], D. Mumford shows that the automorphic vector bundle E ′ → X
admits a canonical extension Ē ′Σ over the toroidal compactification XΣ.
In [Har3] Theorem 4.2, M. Harris shows that Mumford’s canonical exten-
sion coincides with Deligne’s canonical extension [D] (for an appropriately
chosen flat connection with unipotent monodromy).

The identity mapping X → X has a unique continuous extension, τ :
XΣ → X of X, and this is a resolution of singularities.

13.2. Theorem. The patched connection∇p
X on E ′→X extends to a smooth

connection ∇p
Σ on Ē ′Σ → XΣ. Moreover for each i,

τ∗c̄i(E ′) = τ∗
([

σ i
(∇p

X

)]) = [σ i
(∇p

Σ

)] = ci(Ē ′Σ) ∈ H2i(XΣ;C).

(13.2.1)

The proof will appear in Sect. 14. S. Zucker has pointed out that it follows
from mixed Hodge theory that the image of c̄i(E ′) in GrW

2i H2i(X;C) is
uniquely determined by (13.2.1).

13.3. Proportionality theorem. Fix representations λ j : K → GL(Vj)
for j = 1, 2, . . . , r and fix nonnegative integers I = (i1, i2, . . . ir) with i1+
i2+ . . .+ir = n = dim(D). For j = 1, 2, . . . , r let E ′j = Γ\G×K Vj → X

be the resulting automorphic vector bundle on X and let Ě j = Gu ×K Vj
be the corresponding vector bundle on the compact dual symmetric space
Ď = Gu/K (where Gu is a compact real form of G containing K ). Define
“generalized” Chern numbers

čI (λ1, λ2, . . . , λr) = (ci1(Ě1) ∪ ci2(Ě2) ∪ . . . ∪ cir (Ěr)) ∩ [Ď] ∈ Z
(13.3.1)
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and

c̄I (λ1, λ2, . . . , λr) =
(
c̄i1
(∇p

1

) ∪ c̄i2
(∇p

2

) ∪ . . . ∪ cir
(∇p

r

)) ∩ [X] ∈ C
(13.3.2)

where ∇p
j denotes the patched connection on E ′j → X and where [X] ∈

H2n(X;C) denotes the fundamental class of the Baily-Borel compactif-
ication. Let v(Γ) ∈ Q denote the constant which appears in the proportion-
ality theorem of Hirzebruch [Hr1], [Mu1].

13.4. Proposition. For any choice λ1, λ2, . . . , λr of representations and
for any partition I = (i1, i2, . . . , ir) of n = dimC(D) we have

c̄I (λ1, λ2, . . . , λr) = v(Γ)čI (λ1, λ2, . . . , λr). (13.4.1)

13.5. Proof. Each of the vector bundles E ′j has a canonical extension

Ē ′j,Σ → XΣ. The same proof as in [Mu1] (which is the same proof as
in [Hr1]) (cf. [Hr3]) shows that the Chern classes of these extended bundles
satisfy the proportionality formula(
ci1(Ē ′1,Σ) ∪ ci2(Ē ′2,Σ) ∪ . . . ∪ cir (Ē ′r,Σ)

) ∩ [XΣ] = v(Γ)čI (λ1, λ2, . . . , λr).

(13.5.1)

The result now follows immediately from Theorem 13.2 . !"

14. Proof of Theorem 13.2

14.1. Fix ε ≤ ε0. We claim that the partition of unity (3.3.1)
∑

Z≤X Bε
Z = 1

on X pulls back to a smooth partition of unity on XΣ. Fix a pair of strata
Y, Z of X. We must verify that τ∗Bε

Z is smooth near τ−1(Y ). It can be shown
that the mapping τ : XΣ → X is a complex analytic morphism between
complex analytic varieties, as is the projection πY : TY (ε)→ Y. It follows
that the composition πYτ : τ−1TY (ε)→ Y is a complex analytic morphism
between smooth complex varieties, so it is smooth. If the stratum Z is not
comparable to Y or if Z > Y then by (3.2.2), Bε

Z vanishes on TY (ε/2).

Therefore τ∗Bε
Z vanishes on τ−1(TY (ε/2)) so it is smooth. If Z ≤ Y then

by (3.2.4) (when Z < Y ) and (3.2.5) (when Z = Y )

τ∗Bε
Z(x) = Bε

ZπYτ(x) for all x ∈ τ−1(TY (ε/2)),

so τ∗Bε
Z is smooth in this open set.

14.2. We may assume that G is simple overQ. The “boundary” XΣ− X of
the toroidal compactification has a distinguished covering by open sets UY ,
one for each stratum Y ⊂ X of the Baily-Borel compactification, such that
τ(UY ) ⊂ X is a neighborhood of Y , and for which the restriction Ē ′Σ|UY
arises from an automorphy factor ([HZ1] §3.3).
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14.3. Proposition. For any smooth connection ∇Y on (E ′Y , Y ) the paraboli-
cally induced connection Φ∗XY (∇Y ) (which is defined only on E′|(UY∩X) =
Ē ′Σ|(UY∩X)) extends canonically to a smooth connection (which we denote
by Φ

∗
XY (∇Y )) on E

′
Σ|UY .

14.4. Proof of Theorem 13.2. We may assume that ε0 > 0 was chosen
so small that TY (ε0) ⊂ τ(UY ) for each stratum Y < X of X. By §14.1
the partition of unity which is used to construct the patched connection ∇p

X

extends to a smooth partition of unity on XΣ. Hence, using Proposition 14.3,

∇p
Σ = τ∗BεX

X +
∑
Y<X

τ∗BεX
Y Φ

∗
XY

(∇p
Y

)
is a smooth connection on E

′
Σ → XΣ which coincides with the patched

connection ∇p
X on E ′ → X. Therefore its Chern forms are smooth and ev-

erywhere defined and they restrict to the Chern forms of∇p
X . It follows from

Lemma 4.5 that each Chern class of∇p
Σ is the pullback of the corresponding

Chern class of ∇p
X . !"

The remainder of §13 is devoted to the proof of Proposition 14.3 which is
essentially proven in [HZ1] (3.3.9) (following [Har2]). We will now verify
the details.

14.5. Let us recall the construction [AMRT] of the toroidal compactif-
ication. Fix a rational boundary component F with normalizing parabolic
subgroup P = UGhG� and let Y = Γh\F ⊂ X denote the corres-
ponding stratum in the Baily-Borel compactification of X = Γ\D. Let
ZF = Center(U) and z = Lie(ZF ). The vector space z is preserved under
the adjoint action of G� and contains a unique open orbit CF ⊂ z; it is a ra-
tionally defined self adjoint homogeneous cone. Its Satake compactification
C∗F consists of CF together with all its rational boundary components (in the
Satake topology). The toroidal compactification is associated to a collection
Σ = {ΣF} of rational polyhedral cone decompositions of the various C∗F
which are compatible under Γ.

Let Ď denote the compact dual symmetric space (so Ď = G(C)/K(C)P−

in the notation of Proposition 8.2; cf. [AMRT], [Sat]) and let β : D → Ď
denote the Borel embedding. Set DF = ZF(C).β(D). The domain DF is
homogeneous under P.ZF(C) and it admits “Siegel coordinates” DF

∼=
ZF(C) × Ca × F in which the subset β(D) ⊂ DF is defined by a certain
well known inequality ([AMRT] p. 239, [Sat] §III (7.4)). Now consider the
commutative diagram [HZ1] (1.2.5), reproduced in Fig. 5.

Here, Γ′F = Γ ∩ (GhU) and M′F = Γ′F\DF . The algebraic torus
TF = ZF(C)/(Γ ∩ ZF ) acts on M′F with quotient AF , which is in turn an
abelian scheme over Y . The choice ΣF of polyhedral cone decomposition
determines a torus embedding TF ↪→ TF,Σ and a partial compactification
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D −−−→ Γ′F\D ⊂ DF,Σ −−−→
ϕF,Σ

XΣ

∩ ∩ ∩
DF −−−→

Γ′F
M′F ⊂ M′F,Σ

θ2


 π2


TF π2,Σ


TF,Σ

DF/Z F(C) −−−→ AF AF

θ1


 π1



F

Γh−−−→ Y

Fig. 5 Toroidal compactification

M′F,Σ = M′F ×TF TF,Σ of M′F . Let DF,Σ denote the interior of the closure
of M′F = Γ′F\D in M′F,Σ. The quotient mapping Γ′F\D → X extends to
a local isomorphism ϕF,Σ : DF,Σ → XΣ (cf. [AMRT] p. 250). In other
words, ϕF,Σ is an open analytic mapping with discrete fibers which, near the
boundary, induces an embedding DF,Σ/(Γ′F\ΓP) ↪→ XΣ whose image is
the neighborhood UY referred to in §14.2. The mappings ϕF,Σ for the various
strata Y ⊂ X cover the boundary of XΣ. The composition θ1θ2|D : D→ F
coincides with the canonical projection π.

14.6. Each of the spaces in Fig. 5 comes equipped with a vector bundle
and most of the mappings in this diagram are covered by vector bundle iso-
morphisms. We will make the following notational convention: If E1 → M1
and E2 → M2 are (smooth) vector bundles, α : M1 → M2 is a (smooth)
mapping, and Φ : E1 → E2 is a vector bundle mapping which induces an
isomorphism E1

∼= α∗(E2), then we will write Φ : (E1, M1) ∼ (E2, M2)
and refer to Φ as being a vector bundle isomorphism which covers α.

As in [Mu1], complexify λ : K → GL(V ) and extend it trivially over
P− to obtain a representation λ̃ : K(C)P− → GL(V ). The homogeneous
vector bundle E = G ×K V has a canonical extension

Ě = G(C)×K(C)P− V

over the compact dual symmetric space Ď. Its restriction EF to DF is a
PZF(C)-homogeneous bundle, and it passes to a vector bundle E ′F → M′F
upon dividing by Γ′F . The restriction E ′F |(Γ′F\D) coincides with the vector
bundle obtained from the homogeneous vector bundle E = G ×K V upon
dividing by Γ′F . We will denote this restriction also by (E ′F,Γ′F\D).

Define Ẽ = P.ZF(C)×K P .ZF (C) V. This vector bundle on DF/ZF(C) is
homogeneous under P.ZF(C) and it passes to a vector bundle E A

F → AF
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upon dividing by Γ′F . As in [HZ1] (3.2.1) and (3.3.5), there is a canonical
vector bundle isomorphism

ψ : (E ′F, M′F
) ∼ (E A

F , AF
)

(14.6.1)

which covers π2. In fact, the isomorphism ψ is obtained from the canonical
isomorphism of P.ZF(C)-homogeneous vector bundles,

Ψ : (EF, DF ) ∼ (Ẽ, DF/ZF(C)) (14.6.2)

which covers θ2 and which is given by the quotient mapping

EF = P.ZF(C)×K P V → Ẽ = P.ZF(C)×K P .ZF (C) V.

Let Ē ′Σ denote Mumford’s canonical extension of the vector bundle E ′ =
Γ\E → X to the toroidal compactification XΣ, and let Ē ′F,Σ = ϕ∗F,Σ(E ′Σ) be
its pullback to DF,Σ. Then we have a further canonical identification E ′ =
Ē ′F,Σ|(Γ′F\D) = E ′F |(Γ′F\D). We also have vector bundles Eh = Gh×Kh V
on F and its quotient E ′Y → Y = Γh\F.

According to [HZ1] (3.3.9) (which in turn relies on [Har2]), the canon-
ical isomorphism 14.6.1 extends to a vector bundle isomorphism

ψΣ :
(
Ē ′F,Σ, DF,Σ

) ∼ (E A
F , AF

)
(14.6.3)

which covers π2,Σ. This is the key point in the argument: the isomorph-
ism ψΣ identifies Mumford’s canonical extension (which is defined using
a growth condition on a singular connection) with a vector bundle, π∗2,Σ(E A

F )
which is defined topologically, and which is trivial on each torus embed-
ding π−1

2,Σ(a) ∼= TF,Σ. We will use this isomorphism to extend the parabol-
ically induced connection over the toroidal compactification, because such
a parabolically induced connection is also pulled up from E A

F .
As in (10.1.1), define an action of P.Z F (C) on the vector bundle Eh → F

by

ugh g�z.[g′h, v] = [gh g′h, λ1(g�)v] (14.6.4)

(where u ∈ UP , gh, g′h ∈ Gh , g� ∈ G�, z ∈ ZF(C), and v ∈ V ). Define
a mapping

Φ̃F : PZF(C)×K P ZF (C) V → Gh ×Kh V (14.6.5)

by Φ̃F([ugh g�z, v]) = [gh, λ1(g�)v]. Then Φ̃F is well defined, it is P.ZF (C)-
equivariant, and it gives a P.ZF(C)-equivariant isomorphism of vector bun-
dles,

ΦF : (Ẽ, DF/ZF(C)) ∼ (Eh, F) (14.6.6)

which covers θ1. Moreover the composition ΦFΨ|(E, D) is precisely the
isomorphism Φ : (E, D) ∼= π∗(Eh, F) of (10.1.3). This array of vector
bundles appears in Fig. 6.
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(E, D)
mod Γ′F− ���(E ′F,Γ′F\D)

extend− ��� (Ē ′F,Σ, DF,Σ)
extend− ���(Ē ′Σ, XΣ)

extend



(EF, DF )

Ψ


∼
− ���

extend



(E ′F, M′F )

ψ


∼
ψΣ


∼
(Ẽ, DF/ZF(C))− ��� (E A

F , AF ) (E A
F , AF )

ΦF


∼ 

(Eh, F)

mod Γh− ��� (E ′Y , Y )

Fig. 6 Vector bundles on the toroidal compactification

14.7. Each of the vector bundles in Fig. 6 comes equipped with a connec-
tion. Let ∇Y be a given connection on E ′Y → Y and let ∇h be its pullback
to Eh → F. It is Γh-invariant. Define ∇̃ = Φ∗F(∇h) to be the pullback of
∇h under the isomorphism (14.6.6). By §10.7 it is ν∗h(Γh)-invariant. Then
Ψ∗(∇̃) is an extension of the parabolically induced connection Φ∗(∇h) on
(E, D). Both connections are invariant under ν∗h(Γh) ⊃ Γ′F . Let ∇′F de-
note the resulting connection on the quotient (E ′F, M′F ) (where again we
use the same symbol to denote this connection as well as its restriction to
(E ′F,Γ′F\D)). We need to show that this connection ∇′F on (E ′F ,Γ′F\D) has
a smooth extension to a connection ∇′F,Σ on (Ē ′F,Σ, DF,Σ) which is invariant
under Γ′F\ΓP.

The connection ∇̃ passes to a connection ∇ A
F on (E A

F , AF ) such that
∇′F = ψ∗(∇ A

F ). Therefore the connection

∇′F,Σ = ψ∗Σ
(∇ A

F

)
on (Ē ′F,Σ, M′F,Σ) is a smooth extension of ∇′F . The Γ′F\ΓP-invariance of
∇′F,Σ follows from the ν∗h(Γh)-invariance of ∇̃. This completes the proof of
Proposition 14.3. !"

15. Chern classes and constructible functions

15.1. A constructible function F : W → Z on a complete (complex)
algebraic variety W is one which is constant on the strata of some alge-
braic (Whitney) stratification of W . The Euler characteristic of such a con-
structible function F is the sum

χ(W; F) =
∑

α

χ(Wα)F(Wα)



Chern classes of automorphic vector bundles 605

over strata Wα ⊂ W along which the function F is constant. If f : W → W ′
is an (proper) algebraic mapping, then the pushforward of the constructible
function F is the constructible function

f∗(F)(w′) = χ( f −1(w′); F) (15.1.1)

(for any w′ ∈ W ′). According to [Mac], for each constructible function
F : W → Z it is possible to associate a unique Chern class c∗(W; F) ∈
H∗(W;Z) which depends linearly on F, such that f∗c∗(W; F) =
c∗(W ′; f∗F) (whenever f : W → W ′ is a proper morphism), and such that
c∗(W; 1W ) = c∗(W ) ∩ [W] if W is nonsingular. (Here, [W] ∈
H2 dim(W )(W;Z) denotes the fundamental class of W .) The MacPherson-
Schwartz Chern class of W is the Chern class of the constructible func-
tion 1W .

15.2. Now let Z be a nonsingular complete complex algebraic variety
and let D = D1 ∪ D2 ∪ . . . ∪ Dm be a union of smooth divisors with
normal crossings in Z. Set Z = Z − D. The tangent bundle TZ of Z has a
“logarithmic” extension to Z,

TZ(− log D) = Hom
(
Ω1

Z
(log D),OZ

)
which is called the “log-tangent bundle” of (Z, D). It is the vector bundle
whose sheaf of sections near any k-fold multi-intersection {z1 = z2 = . . . =
zk = 0} of the divisors is generated by z1

∂
∂z1

, z2
∂

∂z2
, . . . , zk

∂
∂zk

, ∂
∂zk+1

, . . . , ∂
∂zn

(where n = dim(Z)). The following result was discovered independently
by P. Aluffi [Al].

15.3. Proposition. The Chern class of the log tangent bundle is equal to
the Chern class of the constructible function which is 1 on Z = Z− D, that
is,

c∗(TZ(− log D)) ∩ [Z] = c∗(1Z ).

15.4. Proof. For any subset I ⊂ {1, 2, . . . , m} let DI = ⋂i∈I Di , let

DI = DI ∩
⋃
j /∈I

D j

denote the “trace” of the divisor D in DI , and let Do
I = DI − DI denote

its complement. The restriction of the log tangent bundle of (Z, D) to any
intersection DI is (topologically) isomorphic to the direct sum of vector
bundles

TZ(− log D)|DI
∼= TDI (− log(DI ))⊕ |I |1 (15.4.1)
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(the last symbol denoting |I | copies of the trivial bundle). (This follows
from the short exact sequence of locally free sheaves on D j ,

0 −−−→ Ω1
D j

(log D{ j}) −−−→ Ω1
Z
(log D)|D j −−−→ OD j −−−→ 0

by dualizing and induction.) We will prove Proposition 15.3 by induction
on the number m of divisors, with the case m = 0 being trivial. For any
constructible function F on Z, denote by c(F) ∈ H∗(Z) the Poincaré dual
of the (homology) Chern class of F. Each divisor D j carries a fundamental
homology class whose Poincaré dual we denote by [D j ] ∈ H2(Z). The
Chern class of the line bundle O(D j) is 1 + [D j]. Let c̃ denote the Chern
class of the bundle TZ(− log D). If I ⊂ {1, 2, . . . , m} and if i : DI → Z
denotes the inclusion then

c̃ · [DI ] = i∗(c(TZ(− log D))|DI ) = i∗c
(
TDI (− log(DI ))

) = i∗c(1Do
I
)

by (15.4.1) and induction. Using [Tu] Proposition 1.2 we see,

c(Z) = c̃ ·
∏

i

(1+ [Di]) = c̃+ c̃ ·
∑

I

[DI ]

= c̃+
∑

I

c(1Do
I
) = c̃+ c(1D)

since each point in D occurs in exactly one multi-intersection of divisors. !"
15.5. Theorem. Let X = Γ\G/K be a Hermitian locally symmetric space
as in §9, with Baily-Borel compactification X. Let c̄i(X) ∈ H2i(X;C)
denote the cohomology Chern class of the tangent bundle, constructed in
Theorem 11.8. Then its homology image

c̄∗(X) ∩ [X] = c∗(1X ) ∈ H∗(X;Z)

lies in integral homology and coincides with the (MacPherson) Chern class
of the constructible function which is 1 on X and is 0 on X − X.

15.6. Proof. Let τ : XΣ → X denote a smooth toroidal resolution of
singularities, having chosen the system of polyhedral cone decompositions
Σ so that the exceptional divisor D is a union of smooth divisors with normal
crossings. Let TXΣ

(− log D) denote the log tangent bundle of (XΣ, D). As
in [Mu1] Prop. 3.4, this bundle is isomorphic to Mumford’s canonical
extension T X,Σ of the tangent bundle. Therefore

c̄∗(X) ∩ [X] = τ∗(τ∗c̄∗(X) ∩ [XΣ])
= τ∗(c∗(T X,Σ) ∩ [XΣ])
= τ∗c∗(1X ) = c∗(τ∗(1X )) = c∗(1X )

by Theorem 13.2, Proposition 15.3 and (15.1.1). !"
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15.7. Corollary. The MacPherson-Schwartz Chern class of the Baily-Borel
compactification X is given by the sum over strata Y ⊂ X,

c∗(1X) = c∗(
∑
Y⊂X

1Y ) =
∑
Y⊂X

i∗c̄∗(Y ) ∩ [Y ]

where i : Y ↪→ X is the inclusion of the closure of Y (which is also the
Baily-Borel compactification of Y) into X. !"

16. Cohomology of the Baily-Borel compactification

16.1. Let K be a compact Lie group and let EK → BK be the universal
principal K -bundle. For any representation λ : K → GL(V ) on a complex
vector space V , let Eλ = EK ×K V be the associated vector bundle. The
Chern classes ci(E) ∈ H2i(BK;C) of all such vector bundles generate
a subalgebra which we denote H∗Chern(BK;C). Two cases are of particular
interest: if K = U(n) then BK = limk→∞ Gn(C

n+k) is the infinite Grass-
mann manifold and H∗(BK;C) = H∗Chern(BK;C). In fact, the standard
representation λ : U(n) → GLn(C) gives rise to a single vector bundle
Eλ → BK such that the algebra H∗(BK;C) is canonically isomorphic to
the polynomial algebra in the Chern classes c1(Eλ), c2(Eλ), . . . , cn(Eλ).
If K = SO(n) then BK = limk→∞ Go

n(R
n+k) is the infinite Grassmann

manifold of real oriented n-planes. Let λ̃ : SO(n) → GLn(R) be the
standard representation with resulting vector bundle Eλ̃ → BK, and let
λ : SO(n) → GLn(C) denote the composition of λ̃ with the inclu-
sion GLn(R) ⊂ GLn(C). The associated vector bundle Eλ = Eλ̃(C)
is the complexification of Eλ̃. If n is odd, then H∗(BK;C) is canoni-
cally isomorphic to the polynomial algebra generated by the Pontrjagin
classes pi(Eλ̃) = c2i(Eλ) ∈ H4i(BK;C) for i = 1, 2, . . . , n. Hence
H∗(BK;C) = H∗Chern(BK;C). If n is even then the algebra H∗(BK;C)
has an additional generator, the Euler class e = e(Eλ̃) ∈ Hn(BK;C).
(It satisfies e2 = pn/2.) If n = 2 then e is the first Chern class of the line
bundle corresponding to the representation SO(2) ∼= U(1) ⊂ GL1(C).

16.2. Now suppose that K = K1 × K2 × . . .× Kr is a product of unitary
groups, odd orthogonal groups, and copies of SO(2). According to the
preceding paragraph, there are representations λ1, . . . , λr of K on certain
complex vector spaces V1, V2, . . . , Vr so that the Chern classes of the
resulting “universal” complex vector bundles Ei = EK ×K Vi → BK
generate the polynomial algebra H∗(BK;C) = H∗Chern(BK;C).

16.3. Suppose that G is a semisimple algebraic group defined overQ, and
that G(R)0 acts as the identity component of the group of automorphisms
of a Hermitian symmetric space D = G/K. Recall ([He] X §6, [Bo2]) that
the irreducible components of D come from the following list:
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Type Symmetric Space Compact Dual
AIII U(p, q)/U(p)× U(q) U(p+ q)/U(p)×U(q)

DIII SO∗(2n)/U(n) SO(2n)/U(n)

BDI SO(p, 2)/SO(p)× SO(2) SO(p+ 2)/SO(p)× SO(2)

CI Sp(n,R)/U(n) Sp(n)/U(n)

EIII E3
6/Spin(10)× SO(2) E6/Spin(10)× SO(2)

EVII E3
7/E6 × SO(2) E7/E6 × SO(2)

Let X = Γ\G/K , with Γ ⊂ G(Q) a neat arithmetic group, and let
X denote the Baily-Borel compactification of X. Let Ď = Gu/K be the
compact dual symmetric space, where Gu ⊂ G(C) is a compact real form
containing K . The principal bundles Γ\G → X and Gu → Ď are classified
by mappings Φ : X → BK and Ψ : Ď → BK (respectively) which are
uniquely determined up to homotopy. A theorem of Borel [Bo2] states that
(in this Hermitian case) the resulting homomorphism Ψ∗ : H∗(BK;C)→
H∗(Ď;C) is surjective.

Suppose the irreducible factors of D = G/K are of type AIII, DIII, CI,
or BDI for p odd or p = 2. The construction of controlled Chern forms
in Sect. 11 determines a homomorphism Φ̃∗ : H∗(BK;C) → H∗(X;C)
by setting Φ̃∗(ci(E j)) = c̄i(E ′j) (where E j → BK is the universal vector
bundle corresponding to the representation λ j of §16.2 and E ′j → X is the
corresponding automorphic vector bundle). Let us denote the image of Φ̃∗
by H∗Chern(X;C).

16.4. Theorem. Suppose X = Γ\G/K is a Hermitian locally symmetric
space such that the irreducible factors of D = G/K are of type AIII, DIII,
CI, or BDI for p odd or p = 2. Then the mappings Φ̃∗ and Ψ∗ determine
a surjection

h : H∗Chern(X;C)→ H∗(Ď;C) (16.4.1)

from this subalgebra of the cohomology of the Baily-Borel compactification,
to the cohomology of the compact dual symmetric space. Moreover, for each
“universal” vector bundle E j → BK we have

h
(
c̄i(E ′j)

) = ci(Ě j)

where E ′j → X and Ě j → Ď are the associated automorphic and homo-
geneous vector bundles, respectively.

16.5. Proof. Define the mapping h : H∗Chern(X;C) → H∗(Ď;C) by
hΦ̃∗(c) = Ψ∗(c) for any c ∈ H∗(BK;C). If this is well defined, it is
surjective by Borel’s theorem. To show it is well defined, let us suppose that
Φ̃∗(c) = 0. We must show that Ψ∗(c) = 0, so we assume the contrary.



Chern classes of automorphic vector bundles 609

Let x = Ψ∗(c) ∈ Hi(Ď;C). By Poincaré duality, there exists a com-
plementary class y ∈ H2n−i(Ď;C) so that (x ∪ y) ∩ [Ď] �= 0 (where
n = dimC(Ď)). Then y has a lift, d ∈ H2n−i(BK;C) with Ψ∗(d) = y.
Let us write K = K1 K2 . . . Kr for the decomposition of K into irreducible
factors. By §16.2 the polynomial algebra H∗(BK;C) is generated by the
Chern classes of the universal vector bundles E1, E2, . . . , Er correspond-
ing to representations λi : Ki → GL(Vi). Hence, both c and d are poly-
nomials in the Chern classes of the vector bundles E1, E2, . . . , Er . Hence
(Φ̃∗(c) ∪ Φ̃∗(d)) ∩ [X] ∈ C is a sum of “generalized” Chern numbers
which, by the Proposition 13.4, coincides with the corresponding sum
of “generalized” Chern numbers for the compact dual symmetric space,
v(Γ)(x ∪ y) ∩ [Ď] �= 0. This implies that Φ̃∗(c) �= 0 which is a contradic-
tion. !"

16.6. Remarks. We do not know whether the surjection (16.4.1) has a canon-
ical splitting. However, the intersection cohomology IH∗(X;C) contains,
in a canonical way, a copy of the cohomology H∗(Ď;C) of the compact
dual symmetric space. By the Zucker conjecture ([Lo] and [SS]), the in-
tersection cohomology may be identified with the L2 cohomology of X
which, in turn may be identified with the relative Lie algebra cohomology
H∗(g, K; L2(Γ\G)). But L2(Γ\G) contains a copy of the trivial repre-
sentation 1 (the constant functions), whose cohomology H∗(g, K; 1) ∼=
H∗(Ď;C) is the cohomology of the compact dual symmetric space. We
sketch a proof that the following diagram commutes.

H2k
Chern(X;C) −−−→

j
IH2k(X;C)

h


 �i

H2k(Ď;C) H2k(Ď;C)

If E ′ → X and Ě → Ď are vector bundles arising from the same
representation λ of K then the class j(c̄k(E ′)) is represented by the dif-
ferential form σ k(∇p

X ) which is controlled, hence bounded, hence L2. The
class i(ck(Ě)) is represented by the differential form σ k(∇Nom

X ) which is
“invariant” (meaning that its pullback to D is invariant), hence L2. The
intersection cohomology of X embeds into the ordinary cohomology of
any toroidal resolution XΣ. But when these two differential forms are con-
sidered on XΣ, they both represent the same cohomology class, ck(E

′
Σ)

(using Theorem 13.2 and [Mu1]). Alternatively, one may deform the con-
nection ∇p

X to ∇Nom
X , obtaining a differential form Ψ ∈ A2k−1(X) such that

dΨ = σ k(∇p
X )− σ k(∇Nom

X ), and check that Ψ is L2.

In the case BDI, the compact dual is Ď = SO(p+ 2)/SO(p)× SO(2).
Suppose p is even. Its cohomology H∗(Ď;C) has a basis {1, c1, c2

1, . . . ,
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cp−1
1 , e} where c1 is the Chern class of the complexification of the line

bundle arising from the standard representation of SO(2) and where e is the
Euler class of the vector bundle arising from the standard representation of
SO(p), [BoH] §16.5. All these classes lift canonically to IH∗(X;C) and
c j

1 lifts further to the (ordinary) cohomology of the Baily-Borel compactif-
ication. However (except in the case p = 2) we do not know whether e also
lifts further to H∗(X;C).
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