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The topological trace formula

By Mark Goresky and Robert MacPherson at Princeton

Abstract. The topological trace formula is a computation of the Lefschetz number
of a Hecke correspondence C acting on the weighted cohomology groups, defined in
[GHM], of a locally symmetric space X. It expresses this Lefschetz number as a sum of
contributions from fixed point components of C on the reductive Borel Serre compactifi-
cation of X. The proof uses the Lefschetz fixed point formula of [GM2].

1. Introduction

1.1. The goal. Although this paper is self contained, it is actually the fourth in a
series of five papers ((GM1], [GM2], [GHM], this paper, and [GKM]) in which we derive a
formula for the Lefschetz number of a Hecke correspondence acting on the weighted coho-
mology groups of any locally symmetric space X. For various reasons, the publication of
this paper was delayed for many years, and it is now appearing after [GKM], which logi-
cally depends on results from this paper.

In [GM1] the formula is described (without proof) for the special case of locally
symmetric spaces associated to Sp(4, R).

In [GM2] we address the general topological problem of determining the contribution
from a single fixed point component to the Lefschetz number of an arbitrary “weakly hyper-
bolic” correspondence acting on a complex of sheaves on a compact stratified space. (An
error [GM2] is corrected in §11.7 of the present paper.)

In [GHM] we construct a family of (complexes of ) sheaves W'C*(X, E) on the reduc-
tive Borel Serre compactification X of the locally symmetric space X, with coefficients in a
local system E. The (hyper) cohomology of this complex is the weighted cohomology
WY'H*(X,E). For various choices of v the weighted cohomology may be identified with the
ordinary cohomology H*(X, E), the compact support cohomology H;(X,E), the L? coho-
mology H 5 (X, E) (when it is finite dimensional), or with Franke’s weighted L? cohomol-
ogy [F], [N]. The goal is (a) to apply the formula of [GM2] to the action of a Hecke
correspondence Clg] on the weighted cohomology W'H*(X,E), and (b) to sum these
contributions over all the fixed point components in X, so as to obtain a formula for the
Lefschetz trace of C[g] on the weighted cohomology.



78 Goresky and MacPherson, Topological trace formula

For part (a) one must verify that each Hecke correspondence C[g] is ““weakly hyper-
bolic” in the sense of [GM2], and this is the first main result of the present paper, Theorem
11.9. In the process, we describe some of the rich geometry of Hecke correspondences and
their fixed points. In Theorem 13.6, the second main result of this paper, we complete part
(a) by describing the local contribution to the Lefschetz number in terms of roots and
weights.

For part (b), one may sum the contributions from the fixed point components of X in
either the adelic setting or the discrete group setting. This is accomplished in the adelic
setting using orbital integrals, in [GKM], Theorem 7.14 (p. 535). Theorem 7.14 of [GKM]|
uses Theorem 13.6 of the present paper as its starting point: it occurs as the expression for
Lo(y) on page 534 of [GKM].

When the L?> cohomology of X is finite dimensional (the equal rank case), the Lef-
schetz number of the Hecke correspondence Clg] acting on the L? cohomology H () (X, E)

was computed by J. Arthur in [Arl], [Ar3] using the trace formula. In this case the L? coho-
mology coincides with the “middle”” weighted cohomology (see [GHM]), so we obtain an
independent computation of this Lefschetz number. In [GKM], it was shown that these two
computations agree. Consequently, the present paper completes an independent proof of
Arthur’s formula.

In the (slightly more general) discrete group setting, the fixed points can be explicitly
“counted” using double cosets. This is accomplished in Proposition 8.4 which some geo-
meters may find to be more accessible than the orbital integrals of [GKM] (although they
are in fact equivalent). As a consequence, we obtain a Lefschetz formula, Theorem 1.5 (the
third main result of this paper), in the discrete group setting. These matters will now be
described in more detail.

1.2. Geometric overview. For the purposes of this introduction, a locally symmetric
space X is a complete connected Riemannian manifold with finite volume and non-positive
curvature, such that every point p € X has a neighborhood U, with a Cartan symmetry: an
isometry U, — U, that takes p to itself and induces minus the identity on the tangent space
to X at p. As for any manifold, we have X = I'\D where D is the simply connected cov-
ering space of X and I' is the fundamental group of X. Because X has nonpositive curva-
ture, it follows that D is a Riemannian symmetric space of noncompact type, that is, the
metric product of a negatively curved symmetric space from Cartan’s classification, and a
Euclidean factor R”. The discrete group I' acts by Riemannian automorphisms of D. We
assume that this action is “arithmetic” (see §1.3).

Correspondences. We are interested in the automorphisms of X. A morphism
f X — Y of locally symmetric spaces is a local isometry; i.e. a map f that restricts to an
isometry U, — Uy, for appropriate choices of neighborhoods. Topologically, a morphism
is a covering map of finite degree. There are finitely many morphisms X — X. Instead, we
consider a correspondence on X, i.e. a locally symmetric space C together with two mor-
phisms ¢; and ¢; from C to X. We can think of (¢1,¢;) : C 3 X as a multi-valued function,
whose values at p € X are the points in the set ¢>(¢;!(p)). There is a rich supply of corre-
spondences. They include the Hecke correspondence, see §1.3.

Lefschetz numbers. Consider a cohomology theory of X, such as the L? cohomology
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H(iz)(X ). A correspondence (¢j,¢;) : C 3 X acts on H(iz) (X) by sending a differential form
o to C*w = (¢1),(c2)"w. (The map (c;), adds the differential form over the sheets of the
finite covering map c¢;.) It is believed that the induced maps C* : H, (iz)(X ) — H ("2)(X ) carry
deep number theoretic significance. One would like to compute them. Unfortunately, this
is too difficult. Even the rank of H(iz)(X ) is too hard to compute in most cases. As often
happens, however, a more accessible goal is the computation of the Lefschetz number

L(C) =3 (=1)'Tr(C* : Hj(X) — Hj(X)).

i
Our goal is to use the Lefschetz fixed point theorem to express the Lefschetz number

L(C) = ZFZL(F)

as a sum over fixed point components F of some local contribution L(F).

Compactifying X. The first obstacle is the fact that X is, in general, non-compact.
(When X is compact, the Lefschetz formula was described by M. Kuga and J. H. Sampson
[Ku].) There is no hope for a Lefschetz fixed point formula on a noncompact space. To see
this, consider the example where X = C is the complex line with the self map that sends
x € X to x + 1. The Lefschetz number for ordinary cohomology is 1. But there are no fixed
points, so the right hand side is 0 no matter how L(F) is interpreted. There are similar
examples for L? cohomology and locally symmetric spaces X.

The solution is to pass to a compactification X of X. We need a compactification
X < X satisfying:

(1) The L? cohomology of X can be expressed locally on X.

(2) The correspondence (c1,¢2) : C 3 X extends to a compactified correspondence
(61,62) C3X.

(3) The singularities of X are simple enough to allow a calculation of L(F).

Remarks on these properties. In (1), “expressed locally” means that the L> coho-
mology is the cohomology of a complex of sheaves on X. For (2), we want a functorially
constructed compactification C of C. The map C* on L? cohomology should be induced by
a lift of the complex of sheaves to C. Properties (1) and (2) together will imply that there
exists an expression L(C) = > L(F) for L(C) as a sum of contributions L(F) over fixed
point components F of C, by applying the fixed point theorem of Grothendieck and Illusie
[GI].

A lot of effort has gone in to constructing various compactifications of X. Most of
these fail some of the criteria, however. For example, the toroidal compactification
[AMRT] for Hermitian X satisfies (3) but neither (1) nor (2). The Borel-Serre compactifi-
cation [BS] satisfies (2) and (3) but not (1). (It does satisfy (1) in the case of ordinary coho-
mology rather than L? cohomology. In this case, U. Weselmann, following suggestions of
G. Harder, has carried out the Lefschetz computations ([We]).)
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It is likely that (for sufficiently high rank) any compactification satisfying (1) and (2)
must be singular. A well known example is the Baily-Borel compactification for Hermitian
X. This satisfies (1) because of the Zucker conjecture (i.e. the Looijenga [Lo|, Saper-Stern
[SaS] theorem) which expresses the L? cohomology of X on the Baily-Borel compactifica-
tion as the intersection cohomology, which is the cohomology of a complex of sheaves (see
[GM4]). It satisfies (2) because it is functorial. However, the singularities of the Baily-Borel
compactification are as complex as a locally symmetric space only slightly smaller than X
and are too complicated to allow a direct computation of L(F).

The first miracle is that there is a compactification satisfying all three properties: the
reductive Borel-Serre compactification X (defined for all X, Hermitian or not). In the Her-
mitian case, it may be thought of as a (non algebraic) partial resolution of singularities
of the Baily-Borel compactification. The reductive Borel-Serre compactification satisfies
property (2) because it is functorial with respect to morphisms of locally symmetric spaces.
So in the diagram (cy,¢;) : C 3 X, the space C is the reductive Borel-Serre compactifica-
tion of C. It satisfies property (1) because of the existence of weighted cohomology described
below, and it satisfies property (3) because its singularities may be explicitly constructed
from certain nilmanifolds (see §1.4).

Weighted cohomology. The Lefschetz fixed point formula of this paper is for the
weighted cohomology groups WYH'(X,E) where X is any locally symmetric space and E is
a local system over it. These were introduced in [GHM]. The weighted cohomology is the
cohomology of a complex of sheaves W'C*(E). Therefore it satisfies property (1) men-
tioned above.

The weighted cohomology groups WYH(X,E) depend on an auxiliary param-
eter v called a weight profile. When X has finite dimensional L? cohomology, then
W'H'(X,E) = Hj, (X,E) provided the weight profile v is chosen to be the “middle
weight” ((GHM], [N]), so our formula includes the L? case. Another weight profile gives
the ordinary cohomology of X. A. Nair [N] has shown that for any weight profile, the
weighted cohomology W'H'(X E) is equal to J. Franke’s “weighted L? cohomology” [F]
for a particular weight function. For a leisurely account of the properties of weighted coho-
mology, see the introduction to [GHM].

The Lefschetz formula. Even on a compact space with mild singularities, the fixed
point contribution L(F) is usually too difficult to compute. The second miracle is that on
the reductive Borel-Serre compactification X, each correspondence is hyperbolic. A formula
for the contributions L(F) for hyperbolic correspondences was developed in [GM1], [GM2]
expressly for the application in this paper to Hecke correspondences. A related result in a
different language, which applies to functions (rather than correspondences) was disocvered
in [KS], Prop. 9.6.12.

The rest of the introduction proceeds as follows. The next section enumerates the
fixed point components and determines their topology. Section 1.4 describes the local con-
tribution from each fixed point component, and §1.5 adds them up to give the Lefschetz
number L(C).

1.3. The structure of a correspondence on X. The theory of correspondences on X is
very self-referential. The reductive Borel-Serre compactification X is a stratified space
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whose strata are themselves locally symmetric spaces. The closure of such a stratum is its
reductive Borel-Serre compactification. The fixed point components of a correspondence on
X are (almost) locally symmetric. A correspondence restricted to a stratum of X is itself a
correspondence.

Obtaining X from G. In order to be precise, we need the language of algebraic
groups. We use boldface symbols for linear algebraic groups, and Roman symbols for their
Lie group of real points, for example, G = G(R). Throughout this paper we fix a reductive
linear algebraic group G defined over the rational numbers Q. The symmetric space D for G
is defined to be G/SK. Here K is a maximal compact subgroup of G and S¢ is the greatest
Q-split torus in the center of G. The group G acts on D by Riemannian automorphisms.
Let X =T'\D =T'\G/S¢K, where I' « G(Q) < G is assumed to be a neat arithmetic sub-
group. This is the arithmeticity assumption on the locally symmetric space X of §1.2. By
results of Margulis, in most cases the arithmeticity assumption is automatically satisfied.
(The space D may have Euclidean factors because G may have a part of its center that
is split over R but not over Q. After dividing by I', these Euclidean factors will become
wound into tori.)

Rational parabolic subgroups P of G. If P is a rational parabolic subgroup, let Lp
be its Levi quotient; let vp : P — Lp be the projection; let %p be the unipotent radical; let
Sp < Lp be the maximal Q-split torus in the center of Lp; and let Ap be the set of simple
roots occurring in 9tp = Lie(%p). Let Kp = K n Lp be the maximal compact subgroup of
Lp which corresponds to K; set [p = T' n P; and I, = vp(I'p).

The reductive Borel-Serre compactification X (§2.10). The strata of X are indexed by
I'-conjugacy classes of rational parabolic subgroups P of G. The stratum Xp = X corre-
sponding to the conjugacy class containing a parabolic P is the locally symmetric space
I'/\Dp, where Dp = Lp/SpKp is the symmetric space of the Levi factor Lp. If P = Q then
the stratum Xp is contained in the closure X, o of Xo (which is the reductive Borel-Serre
compactification of Xp).

Hecke correspondences. Let g € G(Q). Let I =« ' ng~'T'g be a subgroup of finite
index. This data determines a correspondence (c1,¢;): Clg,I'] 3 X as follows. Let
Clg,T’] = T'\D. The mapping ¢, is obtained by factoring the projectiond; : D — T'\D = X
through Clg, T''] which may be done since I = I'. The mapping ¢, is obtained by factoring
the projection d> : D — I'\D through C[g,T"'], where d>(x) = d;(gx). Such a factoring
exists because I'' < g~ 'T'g.

It is a fact (Proposition 6.9) that every correspondence may be obtained in this way.
For the maximal choice I'" = I’ ng~!T'g, the resulting correspondence is called a Hecke
correspondence and is denoted C[g] =3 X. Up to isomorphism, this correspondence depends
only on the double coset I'gI" e I'\G(Q)/T (cf. Lemma 6.6).

The correspondence Clg,I’] 3 X is a covering of the correspondence Clg] 3 X of
degree d = [I" : T']. The action of C[g,T"’] on weighted cohomology is simply d times the
action of Cl[g]. So, without loss of generality, we may concentrate on computing the Lef-
schetz number of the Hecke correspondence C|g] for a fixed double coset I'gI" e T'\G(Q)/T.

The correspondence on a stratum of X. Each Hecke correspondence C[g] = X has a
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unique continuous extension to the reductive Borel-Serre compactification C[g] =3 X. Every
boundary stratum Cy of Cg] will be a correspondence taking a boundary stratum of X to
another one. Since we are interested in fixed points, we want to classify those Cp which
take a stratum Xp S X to itself. There is one of these for every double coset I'pg;Tp in
the intersection P N I'gl" (Proposition 7.3). It is isomorphic to a correspondence of the
form C|g;,T';] as described above, but with G replaced by Lp. (Here g; = vp(g:) € Lp and
FIC = Vp(rp N g;ll“g,-) c Lp)

Fixed point components. The fixed point set (sometimes called the coincidence set) of
a correspondence (¢, ¢;) : C 3 X is by definition the set of points in C on which the two
maps ¢; and ¢, agree.

The fixed point set of the correspondence Clg,I''] =3 X (before compactification)
breaks up into constituent pieces F(e) indexed by I' conjugacy classes of elliptic (modulo
S¢) elements e € I'gl" (§8.2). The piece F(e) corresponding to the conjugacy class contain-
ing e is the space I'/\G,/K!, where G, is the centralizer of ¢ in G, I’ =T'n G,, and
K! = G, (z(SgK)z"") where zAGK € D = G/AgK is a fixed point of the action of e on
D. (Such a point exists since e is elliptic (§8.4).) The constituent F(e) is a finite union of
spaces, each of which is almost a locally symmetric space for the group G,. (It may have
infinite volume because it may have Euclidean factors that are not wound into tori.)

Applying this result to the boundary stratum Xp, in conjunction with the calculation
(§1.3) of the part of the correspondence C[g] which preserves Xp, we get a group theoretic
enumeration of all the fixed points of C[g] which lie over points in Xp: For each choice of a
double coset I'pg;I'p = I'g[" N P, and for each conjugacy class of elliptic (modulo Sp) ele-
ments e in [',§,I7, there is a fixed point constituent Fp(e). (It is a smooth submanifold of
the stratum Cyp of C[g] which is determined by the double coset I'pg;I'p as in §1.3.) Sum-
ming over " conjugacy classes of rational parabolics P gives the complete enumeration of
fixed points of C[g].

The topology of the fixed point set. There are finitely many constituents Fp(e) of the
fixed point set and they are disjoint. Unfortunately however they may not be topologically
isolated from each other. If Xp: = Xp, then the closure of Fp(e) can contain points in some
Fpi(e'). So a single connected component of the fixed point set may have a very compli-
cated structure. This phenomenon is the main source of technical difficulty of this paper.
(The only real limit we have found on the possible complexity of a connected component of
the fixed point set is Proposition 10.4.) We get around this problem by composing the
correspondence with a mapping, very close to the identity, which shrinks a neighborhood
of the singularity set X — X into the singularity set, and which does something similar on
the closure of each stratum of X. This has the effect of “truncating” each connected com-
ponent of the fixed point set into pieces each of which is contained in a single stratum of X
(a process which may be considered as a sort of topological analog to Arthur’s truncation
procedure). The Lefschetz number of this “modified” Hecke correspondence is equal to
that of the original one. We prove that the modified Hecke correspondence is hyperbolic.
The resulting formula (Theorem 1.5) would be the same if no truncation were used, how-
ever the proof would be more technical.

1.4. Calculating the local contribution L(F). Let E be a finite dimensional repre-
sentation of G, and let E be the associated local system over X. Denote by Py a fixed min-
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imal (“standard”) rational parabolic subgroup of G and by Sy a maximal Q-split torus in
the center of its Levi factor. Then Sg = Sy. A weight profile v € 7(So) (§12.2) is a (quasi-)
character of Sy whose restriction to S coincides with the character by which S¢ acts on E.
The Hecke correspondence Clg] = X has a canonical lift (§13.1) to the weighted cohomol-
ogy sheaf W'C*(E), so it induces a homomorphism on weighted cohomology whose Lef-
schetz number

(1:4.1) L(Clg)) = (=) Tr(Clyls WH'(X: )

is what we want to compute.

Hyperbolicity of the correspondence. Let us assume for the moment that the fixed
point set is topologically the disjoint union of the constituent pieces Fp(e). This is not
always the case, but the formula we obtain is nevertheless always valid, as explained in
§1.3.

We focus on a single stratum Xp which is preserved by the correspondence, and
on a single stratum of the correspondence C corresponding to a single double coset
I'pg:I'p = PN T'gl'. Within this stratum, we focus on a single constituent Fp(e) of the fixed
point set. Each stratum X, which contains Xp in its closure correspondence to a rational
parabolic subgroup Q containing P, and therefore to a unique subset / = Ap. The empty
subset corresponds to Xp itself and the largest subset Ap = Ap corresponds to X. Let a, be
the projection of e to the identity component 4p of Sp(R). The elements of Ap are rational
characters of Sp so we may define

Aj(e) = {o e Ap|afa,) < 1}.

Let Xp be the stratum containing Xp which corresponds to the subset A} (e) < Ap. The
correspondence Clg| is hyperbolic near Fp(e) (11.7), with “expanding” (or “unstable”)
set Xp (Theorem 11.9, §13.10). In other words, near Fp(e) the Hecke correspondence is
“expanding” in those directions normal to X which point into Xy.

Let F' = ¢ (Fp(e)) =0 (Fp(e)) < Xp and let L, be the centralizer of e in Lp. There
are diffecomorphisms (Proposition 8.4),

Fp(e) ~T)\L,/K, and F'=~T,\L./K]

where K! =L, nz(KpAp)z~! (for appropriately chosen ze Lp), I, =L,nT;, and
Il = L,nT;. The projection Fp(e) — F' is a covering of degree d, = I, : I')] (cf. §8.6).

It follows from the Lefschetz fixed point theorem of [GM2] that the local contribution
is given by

L(Fp(e) = 1(F) X (=1) Tr(Clg)" : HY(A") — H{(A"))

iz0

(see Theorem 13.2). Here A® = h'j*W"C*(E) where / is the inclusion F’ — Xp — Xy and
J is the inclusion Xy — X; HI(A®) denotes its stalk cohomology at x € F'; and y, denotes
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the Euler characteristic with compact supports. See the introduction to [GM?2] for a geo-
metric account of hyperbolic correspondences.

The stalk cohomology. Let ¢ denote the codimension of F’ in Xp and let ¢ be the top
exterior power of the normal bundle of F’ in Xp. Let r denote the index [[p N %p : T'p N Up]
where T}, = Ip N g; ' Trg;.

The stalk cohomology of the sheaf A® at a fixed point x € F’ = Xp is given by (13.10.4)
and Proposition 12.8:

(142)  HIK)Z @ Kyl 00) — 450~ @
=50

The Hecke correspondence Clg] acts on the first factor by rd, times the action of e~! and it
acts on the second factor by (—1)¢, cf. (13.10.5). We now describe the other symbols in this
formula.

Let T be a maximal torus (over C) in G, and let B be a Borel subgroup (over C) of G
containing T. These may be chosen as in §12.7 so that So(C) < T(C) and so that B < P,.
Let Wi = W(G(C),T(C)) denote the Weyl group of G. The choice of B determines posi-
tive roots @ = @ (G(C), T(C)), and a length function / on Wg. Let W, = W denote the
set of Kostant representatives: the unique elements of minimal length from each of the co-
sets Wpx € Wp\ Wg, where Wp = W (Lp(C), T(C)), (§12.7). The sum in (1.4.2) is over those
v e W, such that the set

L(w) ={oaeAp| (Wi +pg) — pp — v, 1) <0}

coincides with the set A} (e) defined above (after conjugating P so as to contain B). Here, as
in §12.7, Zp denotes the highest weight of the representation E, and {#,} form the basis of
the cocharacter group y®(Sp/S¢) which is dual to the basis Ap of the simple roots. Also,
pg denotes the half-sum of the positive roots ®. The product (v(dg+ pg) — pg — v, 1,)
makes sense: the restriction (v(4z + pg) — pg — v) | Sp is trivial on S and hence defines an
element of x*(Sp) ® Q which can then be paired with 7,. For any B-dominant weight f3, the
symbol V' denotes the irreducible Lp-module with highest weight § e x*(T(C)) and
V;*[~m] means that the module ¥;" is placed in degree m.

The geometry behind this formula is roughly this: Consider the intersection of a small
neighborhood of x in X with the largest stratum X. This intersection will deformation
retract to the nilmanifold (I n %p)\%p. The cohomology of this intersection with coeffi-
cients in E coincides with the 9tp cohomology by Van Est’s theorem, which is computed

by Kostant’s theorem to be €@ V. 5, =¢ (w)]. The cut-off (£,(w) = Aj(e)) and the
we W

degree shift (by #(w) + |A}(e)|) come from the computation of 4'j*W"C*(E) in §12. The
integer r is the ramification index: the degree of the mapping ¢; when it is restricted to this
nilmanifold (§13.9).

w AB-HJB

By adding the contributions L(Fp(e)) over all the fixed point constituents Fp(e) we
arrive at the final result in this paper. It is proven in §14.
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1.5. Theorem. Let g€ G(Q). Let Clg] 3 X be the resulting Hecke correspondence.
Fix a weight profile v € x,(So). The Lefschetz number L(Clg]) (1.4.1) is given by

ry (T\Le/K')(—1)27() Y Tee vk, ),

A e w(Ag+pg)—p

Pl i {e} we WP1 PP
1,00) =5

The first sum is over a choice of representative P, one from each I'-conjugacy class of
rational parabolic subgroups of G. For such a P, set I'gI' nP(Q) =[[I'pg;I'» (where

I'» =T nP(Q) and where g, € P(Q)). The second sum is over these finitely many double
cosets. Set g; = vp(g;) € Lp and I'r, = vp(I'p). The third sum is over a choice of representa-
tives e, one from each I';-conjugacy class of elliptic (modulo Sp) elements e € I',g,I',. The
rest of the notations are explained above.

There are various ways to rewrite the Lefschetz formula; see §14.4, §15.8 and §15.9.

1.6. Adelic formulation. One of the main goals of the series of papers [GMI],
[GM2], [GHM], [GKM], and the present paper is Theorem 7.14.B (p. 535) of [GKM], an
expression for the Lefschetz number L(C[g]) in the adelic setting. If the weight profile v is
the “middle” weight (and if the rank of G equals the rank of K) then the weighted coho-
mology coincides with the L? cohomology, and this formula coincides with Arthur’s for-
mula [Arl] (Theorem 6.1). If the weight profile v = —oo then the weighted cohomology
coincides with the ordinary “full cohomology” H*(X, E) and this formula coincides with
Franke’s formula [F] (thm. 21, p. 273). The paper [GKM] uses the above Theorem 1.5 as
its starting point (see the remarks following Theorem 13.6), then modifies it using three
main steps.

(1) The quantity ry . (I'J\L./K_) which appears in Theorem 1.5, and the sum > over

double cosets ['pg;I'» = I'gI" N P (which precedes it) are replaced by an orbital integral.

(2) If Lp/Ap does not contain a compact maximal torus, then the stratum Cp makes
no contribution to Arthur’s formula or to Franke’s formula. The same holds for the general
formula in Theorem 7.14.B of [GKM]. However fixed points in such a stratum may make a
nonzero contribution to the formula in Theorem 1.5 above. In [GKM], §7.14 the method of
descent is used to re-attribute such a contribution to smaller strata Cy for which Ly/4o
does admit a compact maximal torus. See also §15.8 of this paper.

(3) Theorem 1.5 above involves a sum over parabolic subgroups, while Theorem
7.14.B of [GKM] involves a sum over Levi subgroups. This is achieved in [GKM] (p. 529)
by grouping together the contributions from those parabolic subgroups with a given Levi
factor. (This has the remarkable effect of grouping together fixed points with different
contracting-expanding behavior.) In [GKM] it is shown that the resulting contribution
from a single Levi subgroup may be interpreted in terms of the (Harish-Chandra) character
of a certain admissible representation. In the case of the middle weight, this fact gives rise
to a combinatorial formula for the stable discrete series characters, which is the second
main result of [GKM]. (Although this discrete series character formula was discovered by
comparing Arthur’s formula to Theorem 1.5, the statement and proof of the character
formula in [GKM] is independent of the part of the paper dealing with Lefschetz numbers.)
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1.7. Related literature. Besides the articles listed above, and an extensive literature
on the co-compact case, we mention several other closely related papers. The Lefschetz
formula in the rank one case was studied by Moscovici [Mo] and Barbasch-Moscovici
[BaM], also by Bewersdorff [Be] and Rapoport [R]. In [St], M. Stern gave a general Lef-
schetz formula for Hecke correspondences. We do not easily see how to compare his for-
mula with ours. In [Sh] S. Shokranian, following the outline in [GKM], describes a formula
for the Lefschetz numbers of Hecke operators on twisted groups. We wish to draw atten-
tion to Langlands’ article [L1], in which the expanding and contracting nature of the fixed
points on the boundary was first isolated (see especially Proposition 7.12, p. 485).

1.8. Acknowledgments. We would like to thank J. Arthur, W. Casselman and R.
Langlands for encouraging us to work on this question. We would especially like to thank
R. Kottwitz for patiently explaining Arthur’s formula to us and for helping to interpret
our early results in this direction. Some of the results in this paper appeared earlier in the
adelic setting in our joint paper [GKM] with R. Kottwitz. We have profited from useful
conversations with A. Nair, A. Borel, W. Casselman, P. Deligne, G. Harder, E. Looijenga,
S. Morel, A. Nicas, M. Rapoport, L. Saper, J. Steenbrink, M. Stern, and S. Zucker. The
first author is grateful to the Institute for Advanced Study for its support while much of
this paper was written. This research was begun and partially completed when the authors
were at Northeastern University and the Massachusetts Institute of Technology, respec-
tively. We are also grateful to the following institutions for their hospitality and support
during various phases of this project: the Centre de Recherches Mathématiques at the
Université de Montréal, the Max Planck Institut fiir Mathematik in Bonn, the Department
of Mathematics at the University of Chicago, the Universita di Roma la Sapienza. This
research was partially supported by the National Science Foundation under grants
number DMS-8802638, DMS-9001941, DMS-9303550, DMS-9626616, DMS-9900324,
DMS-0139986(Goresky) and DMS-8803083, DMS-9106522(MacPherson).

1.9. List of symbols.
§. 21: G,Sg 46, °G, K, D, GY, KW, 4, T,, K(x), ., K', elliptic, 0, T, X, t

2.2 PJ Jllp, RdP, LP, vp, Mp, SP, AP, Fp, KP, SlPr A};, ixo> Langlands’
decomposition, a,, geodesic action, torus factor

2.3: P(), S(), q), mo, A, P()(I), )(Q(S;))
2.4: P, i(Agp), complementary decomposition, orthogonal decomposition

2.5: boundary component, boundary stratum, ep, Yp, Dp, Xp, 1, Fp, canoni-
cal cross section

2.6: M,

2.9: A}, Ay (>1), A (21), D, D(P), X

2.10: 7p, geodesic projection, D, i, D[P], X, 7, X(P), X[P]
§3.  3.1: «a,p,I'-parabolic

3.2: root function, f.f, np



§4.

§5.

§6.

§7.

§8.
§9.

§11.

§12.

§13.

4.1:
4.2
4.5:
4.6:
5.2
5.4:
6.2:
6.3:
6.5:

6.11:

7.1:
7.3:
8.2:
9.1:
9.2:
9.4

11.4:
11.7:
12.1:
12.2:
12.3:
12.6:
12.7:
13.1:
13.2:
13.5:
13.7:

13.9:

Goresky and MacPherson, Topological trace formula
21, b, parameter, %, tiling, D, 0¥ D", Dy
T(Dy), 0T (Do), r2, partial distance function
X? T(Xp), 0T(Xp)

R, retraction, W, exhaustion, Rg, Wp
D{Q}, p, Sh(Q; 1), Sho(1)

Sh(t)

morphism, Mor(X', X)

I 7

correspondence, I'[g], Clg]

narrow

parabolic correspondence, I'p[y], modeled

—
=)
—

fixed point, characteristic element, e, Fp(e), elliptic, L,

Ab, Ap, AY

neutral, P < Q

Pt

E, dg

hyperbolic

tay X0(SP) 115 X0(SP)20,0)
E, v, weight profile, W'C*(E)
Ox )y

Ny, &, 8,571 by

OF, Of, pp, Wo, We, Wi, Vi, Ag, 1,(w)
A

XLe

’

Np

C*(Np,E), C*(Np, E), Qiny(%p, E)

87



88 Goresky and MacPherson, Topological trace formula
2. Notation and terminology

2.1. Locally symmetric spaces. Linear algebraic groups will be represented by bold-
face symbols (e.g., G, S) and their real points will be in Roman type (e.g., G = G(R),
S = S(R)). Throughout this paper we fix a connected reductive linear algebraic group G
defined over Q. Denote by S¢ the greatest (D-split torus in the center of G, and let
Ag = S(;(R)O denote the identity component of the group of real points of Sg. Following
[BS], §1.1 let

G = ﬂ ker(y?)

be the intersection of the kernels of the squares of all the rationally defined characters
% : G — GL;. Then °G is normal in G; it contains every compact subgroup and every
arithmetic subgroup of G, and G = A x °G. Let K = G(R) be a maximal compact sub-
group and define D = G/KAg. We refer to D as the “symmetric space” associated to G.
The derived group GW is semisimple and K = G A K is a maximal compact subgroup.
The space D is diffeomorphic to the Cartesian product of the Riemannian symmetric space
D = G /KM with 4g/Ac where A is the identity component of the greatest R-split
torus in the center of G. Both G(R) and °G act transitively on D, an action which we usu-
ally denote by (g, x) — gx or g.x but occasionally it will be necessary to refer to this action
as a mapping, in which case we write

(2.1.1) T,:D—D

for g € G. (For most geometric questions involving the symmetric space D, one could
replace G by °G, however there are Hecke correspondences for G which do not necessarily
come from °G.) For each x € D the stabilizer K(x) of x in °G is a maximal compact sub-
group of °G so we obtain a G-equivariant diffeomorphism

V. : G/AgK(x) — D.

The choice of K — G corresponds to a “‘standard” basepoint xo € D. We write
K = K(x¢) and K’ = AgK(xo). An element x € G is elliptic mod A (often shortened to
“elliptic”) if it is G(R)-conjugate to an element of K'. There is a unique “algebraic” Cartan
involution 0 = 0, : G — G whose fixed point set is K. If x; € D is another basepoint with
X1 = gxo then the Cartan involution for the new basepoint is given by

(2.1.2) 0x () = 905 (9 ' vg)g ™"
and the composition ‘lpxﬂ : G/AgK(x0) — G/AgK(x)) is given by
(2.1.3) yAGK (x0) — yg ' AGK (x1).

Let g = T @ p be the +1 eigenspace decomposition of ¢ in Lie(G). The Cartan involution 0
preserves °G and determines a decomposition of its Lie algebra, °g = @ °p. Then ’p may
be canonically identified with the tangent space T,D. Any choice of K-invariant inner
product on %p induces a G-invariant Riemannian metric on X.

Throughout this paper we also fix an arithmetic subgroup I' = G(Q) and denote by
7: D — X =T'\D the projection to the locally symmetric space X.
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2.2. Parabolic subgroups. Fix a rationally defined parabolic subgroup P < G. We
have the following groups:

(1) %p = the unipotent radical of P; 9tp = Lie(%p) its Lie algebra.
(2) R4P = the Q split radical of P.

(3) Lp = the Levi quotient; vp : P — Lp the projection.

(4) Mp = "Lp = N ker(x?).

(5) Sp = RdP/%p/:

(6) Ap = Sp(R)" the identity component of the set of real points.

(7) Tp =T AP, T = Tpp = vp(Tp) = Mp.

(8) Kp=K NP, Kr = Ky (p) = vp(Kp) © Mp, Kj = K' 0 P = KpAg.

The torus Sp may also be identified as the greatest Q-split torus in the center of Lp. It
contains S¢ and we denote the quotient by Sp = Sp/Sg, with corresponding identity
component 4}, = Si,([RR)O = Ap/Ag. We identify A}, with the subgroup 4p N °G to obtain a
canonical decomposition 4Ap = A, A¢.

The group of real points of the Levi quotient is the direct product, Lp = Mp x Ap.
For any x € P write vp(x) = vy (x)v4(x) for its Mp and its 4p components and write v (x)
for the further projection of v4(x) to the quotient A, = Ap/Ag. The group P acts transi-
tively on D with isotropy K, = AgKp = Stabp(xo).

The choice of standard basepoint xy € D with associated Cartan involution § : G — G
determines a unique 6-stable lifting [BS], §1.9, i =i, : Lp — P. Denote the image by
Lp(xo) = i(Lp). We obtain liftings of subgroups, Ap(xy) = i(4p) and Mp(xy) = i(Mp).
Thus the choice x¢ € D of basepoint determines a canonical Langlands’ decomposition

(221) P = @/pAP(X())MP(XQ)
and we write
(2.2.2) g = ugagmy

where u; = givp(g7'), a, = iva(g), and my = ivy(g) for any g € P. The groups Kp = P and
K (p) = vp(Kp) are canonically isomorphic, in fact,

(223) Kp = Z(KL(P)) ) MP(X()) e LP(X()).

By abuse of notation we will usually write Kp = Lp. If x; € D is another basepoint with
associated Cartan involution 0, : G — G then, by (2.1.2), the associated 0,,-stable lifting
iy, : Lp — P is given by

(2.2.4) i, (¥) = gi(y)g™"

where g € P is any element such that g - xo = x| € D. The geodesic action of Borel and Serre
[BS], §3 is the right action of Ap on D which is given by
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(2.2.5) (zK0) - a = zi(a)Kh € D = P/K}

for any a € Ap and z € P. It is well defined since i(4p) commutes with K, and it passes to
an action of A, = Ap/A¢. The geodesic action commutes with the (left) action of P, and it
is independent of the choice of basepoint, by (2.1.3). It is not an action by isometries.

For g = ugaym, € P as in (2.2.2), the element a, € Ap is called the torus factor of g.
We will often use without mention the following fact: if y = u,a,m, e I' n P then a, = 1.

2.3. Roots. Fix once and for all a minimal rational parabolic subgroup Py = G.
The parabolic subgroups P 2 Py are called standard. Let Sy = i(Sp,) be the lift of Sp,. Let
® = g®(Sy, g) denote the rational relative roots of g with respect to Sy. The unipotent
radical %p, determines a linear order on the root system g® such that the positive roots are
those occurring in 9y = Lie(%p,). Let A denote the resulting collection of simple roots.
Each subset I = A corresponds to a unique standard parabolic subgroup Py(7) > Py (|BS],
§4, [Bo3], §14.17, §21.11) such that Sp(;) = ker(«) for all o € 1.

Suppose P = G is any rational parabolic subgroup. Then P is G(Q)-conjugate
to a unique standard parabolic subgroup Py(I). Any choice of conjugating element
P = gPy(I)g~" gives rise to the same (canonical) isomorphism Sp = Sp, ;). The elements
of A — I give rise (by conjugation and restriction to Sp) to the set Ap of simple roots of Sp
occurring in 9ip. The roots o € Ap are trivial on Sg and form a basis for the character
module x4 (Sp) = x*(Sp/S¢) ®7 Q. Rather than follow the common practice of identify-
ing Ap with A — I we will, for any « € Ap denote by ¢y € A the unique simple root which
agrees with o after conjugation and restriction to Sp.

_ 24. Two parabolic subgroups. If P = Q are rational parabolic subgroups then
P = vy(P) is a rational parabolic subgroup of Lq, with unipotent radical % = Up /.
The 0-stable lifts of the Levi quotients satisfy Lp(xy) = Lo(xo) and we have a diagram

Ug < Up c P < Q
.
1 < Up/uyg < P c Lo

1

L

c 1 c Lp

with vgv; = vp. The inclusion R;Q = R,P induces an injection Sq — Sp which agrees
with the inclusion Sp(x) > Sp(x). It follows from (2.4.4) below that the geodesic action
of 4y, on D agrees with the restriction (to 4, = A}) of the geodesic action of 4}, on D (cf.
[BS], prop. 3.11). Each « € Ay is the restriction to Sq of a unique simple root i(«) € Ap. The
association i : Ag — Ap is injective, so Ap is the disjoint union

0
(2.4.1) Ap = i(Ap)T1J  with Sq = ( N ker(oc)) .

aed

Among rational parabolic subgroups containing P, the group Q is determined by the set J,
and we will write Q = P(J). The subset J < Ap of simple roots may be identified with
the set
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(2.4.2) J=A;

of simple roots A of S = Sp/Sq occurring in 9t = Lie(%p). (Although the projection vp
induces a canonlcal 1sornorph1srn Sp = S;, the torus Sp corresponds to the parabolic sub-
group P = G so S} = Sp/S¢ while Sg corresponds to the parabolic subgroup P = Lg so
Sp = Sp/Se.)

A certain amount of confusion arises from the fact that 4 ’Q has two natural comple-
ments in Ap. One is the identity component Ay, of the group of real points of the torus
So' = So'/ SG where

0
So' :( N ker(oc)) < Sp.

aei(Ap)
Then S is the (identity component of) the center of the Levi quotient of the largest par-
abolic subgroup Q" o P such that Q n Q' = P, which we refer to as the parabolic subgroup

containing P that is complementary to Q. We therefore refer to the complementary decom-
position Ap = ApAg,. The other complement is

AR (x0) = Ap N Mo(xo)
whose Lie algebra ag is the orthogonal complement to aQ in a, with respect to any
Weyl-invariant inner product on a/ r We will usually identify the quotient 4p/Ag = Ap/ Ay

with this second complement A9 p» and we will refer to the orthogonal decomposztzons
Ap = AQA and Ap = AQA

The canonical Langlands decompositions of P and Q are related as follows: Set
02[[,()60) = l'xO(UZZp/%Q). Note that MP(X()) c MQ(X()) and AQ = A/QAG If

(2.4.3) P = U3[A2 (x0)AG) Mp(x0)

is the canonical Langlands decomposition of P, then

(24.4) P = [U g5 (x0)][Ag(x0) AF (x0)| Mp(xo)
(24.5) = WA g(x0)[Up(x0) AL (x0) Mp(x0)].

The first is the canonical Langlands decomposition of P while the second is the decompo-
sition of P which is induced from the canonical Langlands decomposition of Q.

2.5. Boundary strata. Fix a rational parabolic subgroup P — G. Define

(1) the Borel-Serre boundary component ep = D/A)p (quotient under geodesic
action),

(2) the Borel-Serre boundary stratum Yp = I'p\ep,
(3) the reductive Borel-Serre boundary component
Dp = Up\ep = P/KpApllp = Lp/KpAp = Mp/KpAg,
(4) the reductive Borel-Serre boundary stratum Xp = I'p\Dp = I'rp)\Dp.

The projection vp : P — Lp induces a projection u : ep — Dp which passes to a projection
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u: Yp — Xp. Writing Yp = I'p\P/KpAp and Xp = I';(p)\Lp/KpAg, the mapping x is just
,u(l"prpAp) = FL(P)VP(X)KPA(;.

As in [Bo4|, §4.2, the Langlands’ decomposition (2.2.1) determines a (basepoint-
dependent) diffeomorphism,

(251) F:Fp:%pXA})XDP%D:P/K;)
by
(2.5.2) F(u,a,mKy) = uiy,(a)iy,(m)Kp

where u € Up, a € Ap, and m € Mp. With respect to the coordinates defined by the diffeo-
morphism F, the mapping  is the projection to the third factor. The (left) action of g € P
and the (right) geodesic action of b € A on D are given by

(2.5.3) g.(u,a,mKy) - b = (guixOvP(g*I), va(g).ab, vy (g).mKyp)

(where u € Up, a,b € Ap, and m € Mp), as may be seen by applying the function F to both
sides of this equation. For any fixed b € A} the set F(%p x {b} x Dp) < D is called a ca-
nonical cross section; it is a single orbit of the group

OP = ﬂker()(z) = %PMP,
X

the intersection being taken over all rationally defined characters y : P — GL;. The pull-
back by F of the canonical Riemannian metric on D is given ([Bo4], §4.3) by the orthogonal
sum,

(2.5.4) F*(ds®) = 3 a ?hy(z) ® da* ® ds?,
ped®

where ds?, is the canonical Riemannian metric on Dp as determined by the Killing form for
Mp, where @ denotes the set of roots of %p with respect to Ap, and hg(z) is a smoothly
varying metric on the root space 1.

2.6. The flat connection (GHM], §7.10). For any point x = gK} € D with g = uam
decomposed according to (2.2.1), define the submanifold

(2.6.1) oty = Fp({u} x {a} x Dp) = w.ix,(a).ix,(Mp)Kp < D.

2.7. Lemma. The manifold . is perpendicular to the fibers of the mapping
vp : D — Dp. The restriction vp| My is an isometry. The submanifolds . form the horizontal
submanifolds of a flat connection on the fiber bundle u : ep — Dp, which is independent of the
choice of basepoint and is invariant under the action of I'p and which therefore passes to a flat
connection on yu : Yp — Xp.

2.8. Proof. Perpendicularity follows from (2.5.4). Also, by (2.5.4), the mapping vp is
an isometry. Finally the flat connection is I'p-invariant because by (2.5.3) the action of
y € I'p on D is given by

(2.8.1) v (u,a,mKy) = (VuixOVP(V_l)»aa VM(V)WKL)

which does not mix the factors. []
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2.9. Borel-Serre compactification. In this section we recall basic facts from [BS]. Let
P < G be a rational parabolic subgroup. The elements of Ap determine a canonical iso-
morphism ([BS], §4.2) 4} = (0, 0)*" which extends to a unique partial compactification,

A, ~ (0, 00]".
So each o € Ap extends to a homomorphism of semigroups o : A, — (0, oo]. Denote by

(2.9.1) Ap (>1)={ae Ap|a(a) > 1forall o € Ap},
(2.9.2) Ap (21)={ae Ap|a(a) = 1 forall x e Ap}

and similarly for 4}, (>1) and A} (=1). The Borel-Serre partial compactification D of D is
obtained by adjoining, for each rational parabolic subgroup P = G the rational boundary
component ep = D/ A} as the set of limits of the 4} geodesic orbits in D, together with the
Satake topology [Sat], §2 (p. 562), [BS], §7.1, [Z3], §3.7. It is covered by “corners”; the
corner associated to P is

(2.9.3) D(P) =D x4, Ap= 1] eo.
o=p

Then D(P) is an open P(Q)-invariant neighborhood (in D) of the boundary component ep,
on which P(Q) acts in a continuous and component-preserving way. The diffeomorphism F
of equation (2.5.2) extends to a diffeomorphism of manifolds with corners,

(2.9.4) F:% x Ap x Dp = D(P).

The action T, : D — D of any g € G(Q) extends continuously to a mapping

(2.9.5) T,:D— D

which takes the neighborhood D(P) of ep isomorphically to the neighborhood D(YP) of esp
(where 9P = gPg~"'). (The proof of this fact is recalled in §6.3, §6.4.) It follows that the
Borel-Serre compactification X = T'\D is a (compact) manifold with corners, stratified with
one stratum Yp = I'p\ep for each I'-conjugacy class of rational parabolic subgroups P. The
real analytic structure on D extends to a semi-analytic structure on D and passes to a sub-
analytic structure on X. Denote by 7 : D — X the natural projection.

2.10. Reductive Borel-Serre compactification. The reductive Borel-Serre partial
compactification D of D was first described in [Z1], §4.2, p. 190; see also [GHM], §8. It
is the topological space obtained by collapsing each boundary component ep in D to its
reductive quotient Dp (§2.5), together with the quotient topology. (See also [Z3], §3.7.) The

geodesic projection

(2101) 7ZPZD—>DP

is the composition D — ep — Dp. The closure Dp of Dp in D is the reductive Borel-Serre
partial compactification of Dp. Let u: D — D denote the quotient mapping: it is contin-
uous, its restriction to D is the identity, and its restriction to each boundary stratum agrees
with the projection u : Yp — Xp of §2.5. Define
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(2.10.2) D[P] = u(D(P)) = QLDJPDQ

to be the image of the corner associated to P: it is an open P(Q)-invariant neighborhood
of Dp in D on which P(Q) acts in a component-preserving way. The action 7, : D — D
(2.9.5) of any g € G(Q) passes to a mapping T, : D — D which takes the neighborhood
DI[P] of Dp isomorphically to the neighborhood D[9P] of Dsp. It follows that the reductive
Borel-Serre compactification

Y=T\D

is a compact singular space, canonically stratified with one boundary stratum Xp = I'p\Dp
for each I'-conjugacy class of rational parabolic subgroups P = G. The closure Xp of Xp in
X is the reductive Borel-Serre compactification of Xp. There are |Ap| maximal boundary
strata Xy such that Xy o Xp, each corresponding to a maximal (rational) parabolic sub-
group Q = P(Ap — {a}) for o € Ap (cf. §2.4). Then Xp is the intersection

(2.10.3) X, =N Xy
0

of these |Ap| maximal boundary strata.

It is not difficult to see ([Bo3], §11.7 (iii)) that if P and P’ are G(Q)-conjugate but are
not I'-conjugate, then

(2.10.4) Xp Xp = 0.

The identity mapping X — X extends uniquely to a continuous surjection u: X — X
and the subanalytic structure on X passes to a subanalytic structure on X. Denote by
7:D — X the projection. Define X (P)=7(D(P)) and X[P] = 7(D[P]). The following
diagram may be useful in helping to sort out these spaces:

S

7
—_—

ol

(2.105)  ep <= D(P) <

||

Dp < D[P] <

> X(P) o Yp

| )

> X[P] o Xp.

%
=
PRI

o]
>

—_—
T

3. Parabolic neighborhoods and root functions

As in §2, G denotes a connected linear reductive algebraic group defined over Q, D
denotes the associated symmetric space, K’ = AgK(xo) is the stabilizer in G of a fixed base-
point xo € D, I' = G(Q) is an arithmetic group and X = I'\ D. Although the constructions
in this section refer to the reductive Borel-Serre compactification X of X (and the reductive
Borel-Serre partial compactification D of D), they may just as well be applied to the Borel-
Serre compactification X (and the Borel-Serre partial compactification D of D). Rather
than repeat each statement for both compactifications, we will present the RBS case only.

_ 3.1. Parabolic neighborhoods. Let P = G be a rational parabolic subgroup. Let
a:D—Tp\D and f:Ip\D — I'\D = X be the projections. We say that an open set
V < D is I-parabolic (with respect to P) if
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(1) it is invariant under the geodesic action of the semigroup 4p (=1) (2.9.2) and
(2) ifyeCandyV nV +Qthenye nP.

Item (2) means that the covering f:T»\D — X is one to one on the set a(V) so it
takes a(7’) homeomorphically to its image (V) < X. In this case we will also refer to
a(V) = Tp\D (resp. 7(V) = X) as [-parabolic open sets.

) Vv ) Dp

|

D
al_
I'P\D o a(V) o Ip\Dp
X o (V) o Xp

Every stratum Xp admits a fundamental system of I'-parabolic neighborhoods. In section
4.1 we will review a theorem of Saper [Sa] (thm. 8.1) which states the stronger fact that the
closure Xp of each stratum Xp = X admits a fundamental system of T-parabolic neighbor-
hoods.

3.2. Root functions. Let P = G be a rational parabolic subgroup. Each character
o € x4,(Sp) determines a mapping

(3.2.1) £F D — Ry

by f,F(F(u,a,mK)) = o(a) using (2.5.2). The mapping f,” is independent of the choice of
basepoint. For any g’ = u’a’'m’ € P, any b’ € A}, any y € ' n P, and any x € D we have

(3.2.2) fE(g'x - b)) = a(a'b) £F(x).

If o € Ap is a simple root, we say f,F is a root function. If y e T, P’ = yPy~! and if o’ € Ap: is
the root corresponding to o € Ap then, for all x € D,

(3.2.3) 17 (%) = £ ().

The root function f,” : D — (0, 00) extends to a continuous function D[P] — (0, o] (cf. §3.5
below) which passes to a function I'p\ D[P] — (0, co] whose restriction to any I'-parabolic
neighborhood U = X of Xp we also denote by

fFU— (0,00
Similarly the geodesic projection zp : D — Dp (cf. (2.10.1)) extends continuously to a pro-
jection D(P) — Dp and passes to projections D[P] — Dp and I'p\D[P|] — I'»\D whose
restriction to any parabolic neighborhood U < X we denote by

(324) p . U— XP.

The following lemma is a straightforward consequence of the definitions.
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33. Lemma. Let U c X be a parabolic neighborhood of the stratum Xp. Let

{x,} = U be a sequence of points and let y € Xp. The sequence {x,} converges to y in X if
and only if the following hold.

(1) np(x,) — y in Xp and

(2) fF(xy) — oo forallwe Ap. [

3.4. Suppose Q o P is another rational parabolic subgroup of G, corresponding,
say, to a subset J < Ap with Sq < ker(«) for all « € J, so that Ap = i(Ap) I1 J asin (2.4.1).

Let P = vo(P) = Lg be the resulting parabolic subgroup of Ly. It acts transitively on the
boundary component Dy.

Let xe D, say x:uQaéaGul;agmpK} is decomposed according to (2.4.5) with

ag = agpag. Then np(x) = u PagaGmpK 1€ P/K}, = Dy so the following equations hold:

(3.4.1) 1P (x) = afapaP) foralloe Ap,
(3.4.2) fR(x)=i(B)(ap) forall feAy,
(3.4.3) [P (ro(x)) = fP(x) = 2(a2)  forallaet = Ap,

since a(ag) = 1 for all « € J. From this we may conclude:

3.5. Proposition. For all o € Ap, the root function f,F' extends continuously to a func-
tion f;F : D[P] — (0, co] such that, for all x € D we have

(3.5.1) [ (mo(x)) = {ff(x) foroelJ,

ce) foroaeAp —J.

The boundary component Do < D[P] is the set of x € D[P| such that:

fE(x)=0c0 foralloeAp—J,
(3:52) {ff(x) <o foralloael.

3.6. Remarks. Of course similar statements apply to the root function
fF: U — (0, 00] for any parabolic neighborhood U = X of Xp. We think of the “negative
gradient” of the root functions f,” as pointing in the “normal directions” to Xp. For a € J,
—gradf,’ points from Xp “into” Xj.

Xp X, Xp X,

Figure 1. Level curves of f,f for o € i(Ag) and o € J respectively.
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Zucker s vexatious point ([Z1], §3.19) is that for P = Q and for € Ay, the root func-
tions fﬁ and f i(p) 9o not necessarily agree: see (3.4.1) and (3.4.2) above. (In fact, they agree
precisely if i(8)(a¥) = 1, which is to say, if A4 o and Ay, are orthogonal, where Q' o Pisthe
parabolic subgroup complementary to Q.) The nature of the level sets of fﬁ are depicted in
Figure 2.

Figure 2. Level sets of f/fQ.

This shortcoming Will be circumvented by replacing the root function f,” with Saper’s
partial distance function r” (associated to a tiling), which is patched together from the vari-
ous relevant root functlons cf. (4.3.2).

4. Tilings

In this section we recall a construction of Saper [Sa]. An equivalent construction of
Leuzinger [Lel] could be used instead. See also [Ar2] and [L2].

4.1. Tilings of D. As in §2, G denotes a connected linear reductive algebraic group
defined over Q, D denotes the associated symmetric space, K' = AgK(xo) is the stabilizer
in G of a fixed basepoint xy € D, I' = G(Q) is an arithmetic group and X = I'\D. Let 2,
denote the set of proper maximal rational parabolic subgroups of G. For each Q € 2,
choose bg € Ay. The collection b = {bg} of such choices is called a parameter, the set of
which we denote by #. The parameters are partially ordered with b < ciff ap(bg) =< wp(cg)
for all Q € 2, where Ay = {ap} is the simple root associated with the maximal parabolic
subgroup Q. A choice b € # of parameter determines, for any rational parabolic subgroup
P < G a unique element bp € A} such that, for each rational maximal parabolic subgroup
Q o P, the element bpby, ! lies in AQ (cf. §2.4). In other words, log(by) is the orthogonal
projection of log(bp) € ap with respect to any Weyl-invariant inner product on aj.

Recall from [Sa] that a tiling with parameter b € %4 is a cover of the reductive Borel-
Serre partial compactification

(4.1.1) D= [ D"
Pe2

by disjoint sets (called tiles) such that:

(1) The central tile D°= DY is a closed, codimension 0 submanifold with
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corners contained in D. Its closed boundary faces {0”D°} are indexed by P € 2 with
Pc Q< dfDY = 99D0.

(2) Each boundary face 0f DY is contained in the “cross section” F (Up x {bp} x Dp)
where F'is defined in (2.5.2).

(3) Each tile D? = "D - Ap (>1) is obtained from 8”D" by flowing out under the
geodesic action of the cone Ap (>1) (cf. (2.9.1)).

For any rational parabolic subgroup Q, the intersections { D” n Dy} (over all rational
parabolic subgroups P < Q) form a tiling of the reductive Borel-Serre partial compactifi-
cation Dy, whose central tile we denote by

(4.1.2) Dy = D2 Dy.
Then the tile D€ is given by

413) D?={xeD[QlcD|np(x)e Dg and £,2(x) > a(bg)Ve e Ap}
and the boundary face 0¢D° is

(4.1.4)  2D°={xeDl|np(x)e D% and £,2(x) = a(bg)Va e Ap}.

A tiling, if it exists, is uniquely determined by its parameter b € 4, in which case we
say that the parameter is regular. The parameter b is I'-invariant if, for all y € I', we have
bygy1 = 0, (yxo)bQ. The tiling {D?%} is -invariant if ;.)DP = D7 forall y e T. A tiling
is '-invariant if and only if its parameter b is I'-invariant ([Sa], Corollary 2.7). In [Sa],
Thm. 10.1, Saper proves the following.

4.2. Theorem. If the tiling parameter b € %4 is chosen sufficiently large (with respect
to the above partial ordering) and T-invariant, then there exists a unique tiling with parameter
b € 4, and it is T -invariant. Moreover, for any Q € 2 the union

(4.2.1) T(Dg)= ]I D*
PcQ

is an open Tg-invariant parabolic neighborhood of D¢ in D which may be made arbitrarily
small by choosing the parameter b sufficiently large.

Henceforth we shall refer to such a parameter as regular and sufficiently large. Fix
such a parameter b = {by}. Denote the closure of T(Dg) by T(Dy), and the boundary by
0T (Dg) = T(Dg) — T(Dy). Following [Sa], Thm. 8.1 (ii), for each o € Ay, define the par-
tial distance function r2 : T(Dg) — [0,1] by

fQ(x)*la(bQ) for x e D2,
;/-Q X) = o )
(4.2.2) 2 (%) {j”i(};)(x)li(ot)(bP) for x e D?,

whenever P = Q. Here, i : Ap < Ap is the inclusion (2.4.1) and D€ (resp. DF) is the clo-
sure of the tile D2 (resp. DF).
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4.3. Lemma. The following statements hold.

(1) The mapping r2 : T(Dg) — [0,1] is well-defined, continuous, and piecewise ana-
Iytic.

(2) For all w € Ag, the geodesic action by t € Ap (=1) satisfies
(4.3.1) r2(x-t) =r2(x Ya(r) ™!
whenever x € T(Dy).
(3) If xe T(Dy) then
xeDg & rl(x) =0forall weAp,
x € 0T (Dg) < r2(x) = 1 for some o € Ag.
4) If ye T " Q then r2(yx) = r2(x).

(5) If yeT and Q' = yQy~' and if o' € Ag is the simple root corresponding to o € Aq
then

rg (7x) = r2(x).

6) If P<Q and if Ap=1i(Ap)11J as in (2.4.1) then, for all o € Ay and for all
xe T(Dp) = T(Dg) we have

(4.3.2) rf()x)(x) =r2(x).

4.4. Proof. Asin§2.4, write A, = A, AQ with aQ the orthogonal complement to ag
in aj. So the elements bp and by determlned by the parameter b satisfy bp = be for some
bQ € AQ Now suppose that X = uQaQaGuPaP OmpKp e P/Kp=Di 1s decomposed accordlng
to (2.4. 5) Set aj, = aQaP € A}. If x € 0" D" then by property (2), a,, = bp, that is, aQ = by
and a2 ;= bQ Flowmg out under the geodesic action of A4, we see that x e D2ADPAD
implies that a bQ For such a point x and for each o € AQ, we have

[y ) i(@)(bp) = i(@)(agag) " i(2)(boby)
= aag'bo) = £,2(x) " abo)
so both equations (4.2.2) agree on their common domain of definition, proving (1).
By continuity, it suffices to prove (2) for points x € T(Dg). The geodesic action by
1€ Ag (1) preserves the tiles in T(Dg) so (2) may be checked tile by tile. If x € D€ then

FL(x 1) = £2(x)a(r) by (3.2.2). If x e D” for some P = Q, write Ap =i(Ap) Il J as in
(2.4.1), note that Ay (=1) = Ap (21) and compute, for a € Ay,

Sty (x 1) = fi(y (x)i(2)(1) = fifyy (¥)a(1)
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which proves the second statement. Part (3) follows from (3.2.2) for points x € T and from
(3.2.3) for points x € Tp. Part (4) follows from Lemma 3.3 for points x € Ty and from
(3.5.1) for points x € Tp. Part (5) follows from (3.2.3) and part (6) is an immediate conse-
quence of the definition. []

4.5. Tiling of X. Suppose b € 4 is a sufficiently large regular parameter and (4.1.1)
is the associated I'-invariant tiling. Let 7: D — X denote the projection to the reductive
Borel-Serre compactification of X = I'\D. If P, P’ are rational parabolic subgroups of G
then either 7(D) N 7(D*') = § or else they coincide. Hence the collection of images

X =1(D"

forms a decomposition of X whose “tiles” are indexed by the set of I'-conjugacy classes of
rational parabolic subgroups of G. Let X} = X ¢ = 7(D%) be the “central tile.” Denote by

(4.5.1) T(Xp) =7(T(Dp)) = II X~
{R}ep
the resulting neighborhood of Xp in X, and by 0T (Xp) = T(Xp) — T(Xp) its boundary.
(Here, R runs through a set of representatives, one from each I'-conjugacy class { R} of par-
abolic subgroups contained in P.) For all o € Ap the functions r” pass to piecewise analytic
functions on T'(Xp), which we also denote by r’.

Xﬂ

xXe

Xo

Figure 3. Tiles.

Figure 4. Level sets of r2.

4.6. Retraction and exhaustion. Saper proves ([Sa], §6.1) that there exists a unique
I'-equivariant continuous and piecewise analytic “geodesic” retraction R : D — D° which
is the identity on D° such that, for all y € D and for all t € Ap (=1) the following holds:

(4.6.1) R(y-1) = R(y).
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Then R preserves tiles and it passes to a retraction which we also denote by R: X' — X 0. it
has the same property (4.6.1). Define W : X — [0, 1] by

1 if xe X9,
W(x)=q sup{l —r2(x)} if xeXx?
aelp

We refer to W as an exhaustion function because
w10)=Xx° and W i(1)=X - X.

The function W is continuous (and piecewise analytic): If P = Q, write Ap = i(Ap) L1 J as
in (2.4.1). Let P = vo(P) = Lg be the resulting parabolic subgroup of Ly; then Ay = J. If
xe XN X2 then mp(x) e X5 X[ so rf(x) =rf(rp(x)) =1 for all xeJ as in §3.4.
Hence

sup {1 —r,(x)} = sup {1 —r2(x)}.

aeAp aelg
For each boundary stratum Xy the same constructions define a tile-preserving retraction
(4.6.2) Rg:Xp— X))

and an exhaustion function Wp : Xp — [0, 1] with W, '(0) = X and W, (1) = X — Xp.
In fact, the stratum closure Xy is tiled by the collection of intersections X} = Xo n X for
P = Q and

1 if xe Xg,
(4.6.3) Wo(X) = S sup{1 — rP(x)} if xe XJ,

oaeJ
where Ap = i(Ap) 11 J.

4.7. Remarks. We risk a certain amount of confusion by having defined r”(x) so as
to decrease as x — Xp whereas the root function f,”(x) increases as x — Xp. Although
Saper [Sa] actually constructs a tiling of the Borel-Serre compactification X the same
approach gives a tiling of the reductive Borel-Serre compactification X. The collection
{T(Xp),np,rp = n‘ézlx{rf }} of tubular neighborhoods, tubular projections, and tubular

aeAp

distance functions are very much like a “‘system of control data” [Mat], [Gi], [GM3] for the
stratified space X, but there are several important differences. The functions rp are contin-
uous and piecewise analytic but are not smooth. Whenever Q = P we have ngnp = o
however we do not have ronp = rp. For this price we gain an especially strong form of
“local triviality” for the stratification of X: the neighborhood 7'(Xp) is (homeomorphic to)
a mapping cylinder neighborhood of the closure of the stratum Xp. In fact, it is possible
to use the various geodesic actions to construct a (piecewise analytic) homeomorphism
between T'(Xp) and the (open) mapping cylinder of the projection np : 0T (Xp) — Xp. (The
open mapping cylinder of a mapping 7 : A — B is the quotient (A x [0,1) II B) /~ under
the relation (a,0) ~ 7(a).) Analogous statements for other Satake compactifications (such
as the Baily-Borel compactification) are false.
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5. A little shrink

5.1. Asin §2, G denotes a connected linear reductive algebraic group defined over
Q, D denotes the associated symmetric space, K’ = AgK(xo) is the stabilizer in G of a fixed
basepoint xo € D, I' =« G(Q) is an arithmetic group and X = I'\ D. In this section we con-
struct a homeomorphism X — X which moves a neighborhood of the boundary towards
the boundary. When composed with a Hecke correspondence, this will have the effect of
chopping the fixed point set into pieces, each of which is contained in a single stratum of X.
The resulting behavior is much easier to analyze. This “shrink” homeomorphism may be
considered to be a topological analog to Arthur’s truncation procedure.

5.2. Let Qe 2 be a standard proper maximal rational parabolic subgroup of G.
Fix 1€ Ap (>1) so a(f) > 1, where o € Ag is the unique simple root. The geodesic action of
t on D extends continuously to the neighborhood D[Q] (2.10.2) of Dy in the reductive Borel-
Serre partial compactification D of D. This geodesic action even extends continuously to
the neighborhood

D{g} = U D[P]

PcQ

of the closure Dy, where the union is taken over all rational parabolic subgroups P = G
which are contained in Q. (For if P = Q, let i: Ap — Ap be the canonical inclusion. It
follows from (2.4.4) (or [BS], Prop. 3.11) that the geodesic action of the image i(¢) € Ap
agrees with the geodesic action of ¢ € Ay, so it extends continuously to D[P].) We continue
to denote this action by x — x -t for x € D{Q}.

Now fix a sufficiently large ['-invariant regular parameter b € 4 with its resulting til-
ing (4.1.1) and partial distance functions (4.2.2) satisfying Lemma 4.3. Let T(Dy) < D{Q}
denote the neighborhood of Dy (4.2.1) consisting of the union of all tiles which intersect Dy
nontrivially, and let 7(Dy) denote its closure. The geodesic action by € 4 o (>1) preserves
T (Do) since a(t) > 1.

Fix once and for all a smooth non-increasing function p:[0,1] — [0,1] with
pr)=1<r=<1/2and with p(r) =0 < r=1.

p(r)

1

1/2 1

Figure 5. The function p.

Let 12 : T(Dg) — [0, 1) be the partial distance function (4

.2.2) which corresponds to
the unique simple root o € Ag. For ¢ € Ay, (>1) define Sh(Q, 1) : T(

Do) — T(Dg) by
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(5.2.1) Sh(Q, )(x) = x - 1P,

Then by (3.2.2) and (4.3.1),
(5.2.2) r2(Sh(Q,1)(x)) = ,,O(Q(X)OC([)f/?(raQ(X))7
(5.2.3) £.2(Sh(0,1)(x)) :ﬂQ(x)a(t)ﬂ(er(m

for all x e T(Dg). The quantity o(z)” (?() is bounded between 1 and a(?). It equals 1 if and
only if x € dT(Dy), that is, if and only if r2(x) = 1.

If Q' is another maximal rational parabolic subgroup of G, let us write Q' ~ Q if Q’
is G(Q) conjugate to Q. In this case, any choice g € G(Q) of conjugating element induces
the same isomorphism Sqg =~ S(,' so we obtain a corresponding ¢’ € A’Q, and a correspond-
ing mapping Sh(Q',¢') : T(Dg') — T(Dg). Define the shrink Shq(t) : D — D correspond-
ing to conjugates of the standard parabolic subgroup Q by

Sho(1)(x) = {Sh(Q', x if xe T(l_)Qr) for some Q' ~ Q,
X otherwise.

Then Shq(z) is well defined and continuous because T(Dg/) N T(Dg) =0 whenever
Q' ~ Q (and Q' # Q), cf. [Bo3], §11.17 (iii). Moreover, if y € " then

Shq(1)(yx) = yShq(1)(x)

by Lemma 4.3. So (dividing by I'), the homeomorphism Shq(f) passes to a homeomor-
phism which we denote in the same way, Shq(?) : X — X.

5.3. Suppose P < Q is a rational parabolic subgroup of G; set Ap = i(Ag) I1J as in
(2.4.1). It follows from (4.3.1) that for all f# € J and for all x e T(Dp) we have

(5.3.1) r[fSh(Q, 1) (x) = r/‘;(x)

since f(¢) = 1 for any f € J. Now suppose Q, Q, are two standard maximal rational par-
abolic subgroups of G whose intersection P = Q; n Q, is parabolic. Let o; € A(Q;) be the
unique nonzero roots. Choose t; € A/ = A/Q,- with o;(#;) > 1 and let

Sh; = Sh(Qi, t;) : T(Dg,) — T(Dyg,)

denote the resulting two shrinks. It follows by taking P = Q; n Q, in (5.3.1) that the map-
pings Shy and Shy commute on their common domain of definition,

T(DP) = T(DQ]) N T(EQZ)

54. Let P =G be the standard minimal rational parabolic subgroup with
Sy = Sp,/Sc and with simple roots A = {0y, 0,...,%} numbered in any order. Each j
(with 1 < j < r) corresponds to a standard maximal proper rational parabolic subgroup
Q; with split torus S; = Sp,/S¢ and identity component 4] = S; (R)°. Choose t € 4 to be
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dominant and regular. In other words, with respect to the canonical complementary decom-

position (cf. 2.4) Ag = J[ A} (with ker(e;) = ];[ S{) we may write t = £ ...t, where ; € 4]
J o _iF

and o;(t;) = o;(t) > 1. Define Sh(t) : D — D to be the composition

Sh(t) = ShQI (1‘1) o Sth(tz) 0.--0 ShQ,(tr)

where each Shq, (1) : D — D is the shrink defined above, corresponding to conjugates of
the standard parabolic subgroup Q;.

5.5. Proposition. The mapping Sh(t): D — D is independent of the ordering
A =A{ay,00,... 0} of the simple roots. It is a T'-equivariant homeomorphism and passes to a

homeomorphism Sh(t) : X — X with the following properties:

(1) It preserves the tiles and the strata, that is, for each rational parabolic subgroup
P = G, we have Sh(t)(X?) = X and Sh(t)(Xp) = Xp.

(2) Within each tile, it is given by a geodesic action: for each x € X* there exists
b= by e Ap (21) so that Sh(t)(x) = x - b.

(3) It is the identity on each central tile X and mp(Sh(t)(x)) = np(x) € X} for all
xeX?.

(4) It commutes with the geodesic projection, that is, for any rational parabolic sub-
group P = G and for each x € T(Xp) we have np(Sh(t)(x)) = Sh(t) (mp(x)).

(5) 1t is (globally) homotopic to the identity.

(6) For any rational parabolic subgroup P < G and for each o« € Ap and for each
x € T(Xp), by equation (5.2.2) we have:

(5.5.1) rF(Sh(t)(x)) = rf(x)ao(t)fp(rf(x»

where oy € A is the unique root which agrees with o after conjugation and restriction to Sp. If
x € Xt is constrained to lie in the single tile X * then also

(55.2) L (Sh(t)(x)) = £ (x)ap(t)” ). O
We remark that the mapping Sh(t) depends on the choice of regular parameter
(which determines the size of the tiles).
6. Morphisms and Hecke correspondences
6.1. Asin §2, G denotes a connected linear reductive algebraic group defined over
Q, D denotes the associated symmetric space, and K’ = 4K (xo) is the stabilizer in G of a

fixed basepoint xp € D. Let I, T’ = G(Q) be arithmetic subgroups and set X = I'\D and
X' =T"\D.
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6.2. Definition. A mapping f : X' — X is a morphism if there exists g € G(Q) such
that

(1) gT'g~' =T,
(2) [[:gT'g7"] < oo,
(3) f(I''xK'") = TgxK' for any x € G.

The morphism f is determined by the pair (I'’, g) by (3); it is well defined by (1). For
any y € I, ' € T the pair (', ygy’) determines the same morphism. If T is torsion-free then
f is an unramified covering of degree [I" : gT"'g~!] and it is locally an isometry with respect
to the invariant Riemannian metrics on X’ and X induced from any K invariant inner
product on %p (§2.1). Denote by Mor(X”’, X) the set of morphisms X’ — X.

6.3. Lemma. Each morphism f € Mor(X', X) admits unique continuous extensions

f: X' — X to the Borel-Serre compactification and f : X' — X to the reductive Borel-Serre
compactification. The mappings f and f are finite, and they restrict to morphisms on each
boundary stratum. If f(X}) = Xo, if U' and U are T and T-parabolic neighborhoods of X}
and Xg in X' and X respectively, then

(6.3.1) f(mp(x)) = mo(f (x))
forall xe U' ~ f~1(U).

6.4. Proof. Suppose the morphism f: X’ — X is given by the pair (I'',g). Let
T, : D — D denote the action of g on D. It moves the basepoint x; to a new basepoint
X] = gxo with stablhzer K'(x1) = 9K' = gK'g~'. If P is a rational parabolic subgroup and
if Q =8P = gPg~! set Kj(x9) = K' n P and Kp(x1) = K'(x1) n Q. Then T, may also be
described as the mapping

(6.4.1) D = P/Kp(x0) — Q/Kp(x1) =D

which is given by xK,(xg) — gxg‘lKé(xl) by (2.1.3). This intertwines the geodesic actions
of A, and 4 ’Q, that is,

(642)  Ty(x-a) = gxg~'gix,(a)g™ Ky(x1) = gxg~"ix (@)Kp(x1) = Ty(x) - a
where a — a is the canonical identification 4, = 4y, of §2.3. It follows that 7, extends to a

mapping T, : D — D on the Borel-Serre partial compactlﬁcatlon which takes the bound-
ary component ep = P/KpAp to eg = Q/K,Aj and satisfies

(6.4.3) noTy(x) = Ty(mp(x)).

The mapping T, passes to a mapping f : T'\D — I'\ D which is the desired extension.
It maps Yy = [p\ep to Yp = [p\eg by f(TpxKp(xo)Ap) = Logxg™' Kj(x1)Ap, which is a
mapping of degree [Ty : gTpg~!] < co. (Here, Q = 9P.) The extension / may map several
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strata of X' to a single stratum of X: let Q;,Q,,...,Q,, be a set of representatives for the
9T"'-conjugacy classes of rational parabolic subgroups which are I'-conjugate to Q, and set
P, = g*IQ]g Then f maps each stratum Y’ < X' to the stratum Yp X by a morphism
Wthh may be described in a manner 51m11ar to (6.4.1). This shows that £ is finite and that
its restriction to each boundary stratum is a morphism.

Similarly the mapping T, passes to a mapping T,y : D — D on the reductive Borel-
Serre compactification of D, which further passes to a mapping f : I'\D — ['\D. Then f
maps Xp = [p\P/KpAplp to Xg = Tp\Q/KoAoWy by

F(TpxKp(x0)App) = Togxg ' Ko(x1)AoZo.

The degree of this mapping is not obviously finite because the intersection 'y N %p is
nontrivial. By (2.1.2) conjugation by g takes Lp(xo) to Lo(x1). Let Ky (p)(xo)Ap be the
stabilizer in Lp of the basepoint 7p(xg) € Dp and let Ky g)(x1)Ap be the stabilizer in Ly
of the basepoint my(x1) € Dg. Set l"i(P) =vp(I'p) = Lp and T = vo(I'p) = Lyp. Then
XI/’ = ri(m\Lf/KL(p)(X())AP and XQ = FL<Q)\LQ/KL(Q)(X1)AQ with respect to which we
may express f as follows:

f(rli(meL(p)(Xo)AP) I_‘L ng KL( )( )AQ

which has degree [[(g) : gT;(pg™'] < 0. As in the preceding paragraph, the mapping f
will take each of the finitely many strata X }’,[ to the stratum Xy (for I < j < m) by a simi-
larly defined finite morphism. []

6.5. Definition. A correspondence on X =T'\G/K' is an arithmetic subgroup
I = G(Q) together with two morphisms c¢i,¢; € Mor(C, X), where C =T'\D. A point
x € C is fixed if ¢|(x) = c2(x). Two correspondences (ci,c2) : C 3 X and (c},¢5) : C'3 X
are said to be isomorphic if there is an invertible morphism o : C — C’ such that ¢j oo = ¢;
(for j =1,2).

Each g € G(Q) gives rise to a Hecke correspondence C = Clg| 3 X as follows: set
gl =T ng™'Tg, C =T[g]\G/K’, and define

(6.5.1) (c1,02)(T[g]xK") = (CxK', TgxK").

Modifying g by an element of S¢(Q) does not change the Hecke correspondence. By
Lemma 6.3 each correspondence C =3 X has a unique continuous extension C 3 X to the
reductive Borel-Serre compactification, and an isomorphism o« : C — C’ of correspond-
ences C 3 X, C’' 3 X extends uniquely to an isomorphism C — C’ of the extended corre-
spondences.

6.6. Lemma. Let X =T'\D and let g € G(Q). The isomorphism class of the resulting
Hecke correspondence C = Clg] 3 X depends only on the double coset TgT' e T\G(Q)/T.

6.7. Proof. If suffices to verify the statement for the correspondence C =3 X since the
extension to the reductive Borel-Serre compactification exists uniquely. Let y,,y, € [ and
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let g’ = 7,9y, be another element in the same double coset I'gI". Set I'[¢'] =T ng'~'T'g’,
C'=Tl¢g'|\G/K', and define (c¢{,c}) : C' 3 X by

ci(Tlg'|xK") =TxK', (Tg'|xK") =Tg'xK'.
One verifies by direct calculation that the morphism f : C’ — C which is given by
(6.7.1) f(Clg']xK') = T[gly,xK’

is a well-defined isomorphism of correspondences, with inverse given by
SN (TlglxK") = Tlg'ly; 'xK".

6.8. Remark. It can be shown that the mapping (¢, ¢2) : C — X x X is generically
one-to-one. In the event that every element of g~'T'gI' is neat, then this mapping is globally
an embedding. The following proposition says every correspondence is a covering of a
Hecke correspondence.

6.9. Proposition. Let T' = G(Q) be an arithmetic subgroup, C'=T'\D and
(c{,¢5): C'"3X be a correspondence. Then there is a Hecke correspondence
(c1,¢2) : Clg] 3 X and a subgroup T" = T'lg] such that the correspondence C' = X is iso-
morphic to the correspondence

(6.9.1) c" Ll 3 x
where C" = T"\G/K and h(T'"xK) = T'[g]xK.

6.10. Proof. Suppose c¢{(I''xK') =TgixK' and (I'"xK') =TgoxK' where
g’ gj‘l < I are subgroups of finite index. Then g = g2g; ! determines a Hecke correspon-

dence Clg] = I['[g]\D = X. Define I'" = ¢;T"'g;! and C” = I'"\D. Since I'" = I'[g] we ob-
tain a correspondence in “‘standard form”,

(6.10.1) c" L oclglz x

with #(T"xK’) = T'[g]xK’. Define f: C' — C" by f(I''xK') =T"g;xK’. Then f is well
defined, and it is easily seen to be an isomorphism of correspondences. []

6.11. Narrow tilings. Let (c1,c;): C 2 X be a Hecke correspondence defined by
some element g € G(Q), so C=T'\D with " =T[g] =T ng~'Ty. Let b € # be a suffi-
ciently large I'-invariant regular parameter. Then it is also I'’-invariant, it gives rise to
tilings {C2} of C and {X ¢} of X, and the mapping c¢; : C — X takes tiles to tiles
(although the same cannot necessarily be said of ¢;). Let us say this tiling is narrow with
respect to the Hecke correspondence if, for every stratum Cy of C, the following holds:

C] (T(GQ)) N Cz(T(éQ)) F 0 = C](CQ) = Cz(CQ)
and if, in this case, ¢; (T(Cg)) U 2(T(Cyp)) is a I-parabolic neighborhood of X, in X.

6.12. Proposition. Fix a Hecke correspondence C = X. If the T-invariant reqular
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parameter b € A is chosen sufficiently large then the resulting tiling {C?} of C is narrow for
that Hecke correspondence.

6.13. Proof. Let Cg be a stratum of C and suppose c1(Cp) = Xp and ¢»(Cp) = Xp.
Then Q is I'-conjugate to P while gQg~! is I'-conjugate to P’ (cf. Lemma 7.4). In particu-
lar, P and P’ are G(Q)-conjugate, which implies that either Xp = Xp: or Xp N Xp =0
(2.10.4). In the latter case there exist neighborhoods U of Xp and U’ of Xp: which do not
intersect. Choose the tiling parameter so large that 7(Cp) = ¢;1(U) n ¢y ' (U’). Since there
are finitely many strata Cp in C, this amounts to finitely many conditions on the tiling
parameter. On the other hand, if ¢;(Cp) = ¢2(Cp) = Xp, then we may take P = Q. Choose
any parabolic neighborhood U = X of Xy and then choose the tiling so small that
T(Cp) = ¢;"(U) n¢;'(U). This guarantees that ¢ (7(Cp)) U c2(T(Cp)) is a I'-parabolic

setin X. []

7. Restriction to the boundary

7.1. Parabolic Hecke correspondence. As in §2, G denotes a connected linear
reductive algebraic group defined over Q, D denotes the associated symmetric space,
K’ = AgK(xo) is the stabilizer in G of a fixed basepoint xyp € D, I' = G(Q) is an arithmetic
group and X = '\ D. Fix a rational parabolic subgroup P = G and let Xp = [p\Dp = X
be the corresponding stratum in the reductive Borel-Serre compactification of X. Each
y € P(Q) determines a correspondence on a P(Q)-invariant neighborhood of Xp» which we
now describe. Set [, = [p[y] = Tp n y~'Tpy. Define the parabolic Hecke correspondence

(7.1.1) (c1,¢2) : T\D[P| 2 Tp\D[P]

determined by y € P(Q) to be the unique continuous extension of the correspondence
[,\D =3 T'p\D which is given by

(7.1.2) [pxKp — (TpxKp, TpyxKp)

where we identify D = P/K}. It follows from (6.4.2) (by taking P = Q) that this corre-
spondence commutes with the geodesic action of A}, that is,

(7.1.3) ci(x-a)=ci(x)-a

(for i =1,2) for any x e I;\D[P] and for any a € A}. Therefore the parabolic Hecke
correspondence preserves the corner structure near Cp, that is, if Q > P is a rational para-
bolic subgroup then each mapping ¢; takes the stratum I',\Dg < I',\D[P] to the stratum

There is also an associated (global) correspondence, C = I'\D = X = I'\D (where
I"=Tny 'Ty). If V = D[P] = D is a I'-parabolic neighborhood of Dp then it is also a I'’-
parabolic neighborhood of Dp, asis y~! - V. Hence V' n y~!V is also a I'’-parabolic neigh-
borhood of Dp. It follows that, if U = I'»\D[P] = T'p\D is a ['-parabolic neighborhood of
Xp then U’ = ¢;'(U) n ;' (U) = Tp\D is a I'-parabolic neighborhood of Cp = I'p\Dp.
We will say that any correspondence isomorphic to such a U’ 3 U is modeled on the par-
abolic Hecke correspondence (7.1.1).
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U < T\D[P] —= [\D[P] > U
| o ]

U < FIQ\I_) — FP\D > U

|

U < C p— X o> U.

7.2. Now suppose g € G(Q) gives rise to the Hecke correspondence C = Clg| 3 X
with its canonical extension (cj,c2): C 3 X, where C =T[g]\D as in §6.5.1. If P is a
rational parabolic subgroup of G and if Xp denotes the corresponding RBS stratum, then
we may consider the part ¢;!(Xp) of C which lies over this stratum. It will consist of
several RBS boundary strata Cp of C. Some of these boundary strata may be mapped
back to Xp by the mapping c,. In this case, we shall say that the Hecke correspondence
C has a restriction to Xp consisting of the union of those boundary strata Cp such that
(61,02) | CQ : CQ 3XQ.

7.3. Proposition. Let I' = G(Q) be a neat arithmetic group. Let
(61,6‘2) :C = C[g} =X
be the Hecke correspondence which is determined by an element g € G(Q). Let P be a

rational parabolic subgroup of G, with corresponding boundary stratum Xp = X. Decompose
the intersection I'gI" n P into a union of I'p-double cosets,

m
(7.3.1) TgT AP = ][ TpgTp
j=1
with g; € P(Q). Then m < o and, over a sufficiently small parabolic neighborhood of Xp, the

Hecke correspondence C = X breaks into a disjoint union of m correspondences which are
given by g; and which are modeled on the parabolic Hecke correspondences

Iplg)\D[P] 3 Tp\D[P]
Jor j=1,2,....m, where I'plg;] =T n gj’ll“gj N P.
(A similar procedure is described in the adelic setting in [H].) The proof will take the
rest of §7. First we establish a one-to-one correspondence between the components of the
restriction of the Hecke correspondence to Xp and the double cosets which appear in (7.3.1).

Let I'pyI'p < I'gl"' n P be a double coset from (7.3.1). Write y = y,gy, for some y,,y, € I'.
Set I'[g] = ' n g~ 'T'g. Define

(7.3.2) E(Tpylp) = 9Py =g 73 ' Prag.
7.4. Lemma. The mapping E gives a well defined one-to-one correspondence between

(a) double cosets TpyI'p = T'gI' N P,
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(b) I'[g]-conjugacy classes of rational parabolic subgroups Q = E(I'pyI'p) = G such
that

(1) Q is T'-conjugate to P and

(ii) gQg~' is T-conjugate to P,
(c) boundary strata Co = C such that (c1,c2) : Cg 3 Xp.
In particular, this set is finite.

_1.5. Proof of Lemma1.4. First compare the sets (b) and (c). The boundary strata in
C’ are in one-to-one correspondence with I'[g]-conjugacy classes of rational parabolic

subgroups of G, while the boundary strata in X are in one-to-one correspondence with I’
conjugacy classes of rational parabolic subgroups. Condition (i) is equivalent to the state-
ment that ¢; maps Cyp to Xp while condition (ii) is equivalent to the statement that ¢; maps
CQ to Xp.

Now verify that the mapping E is well defined, i.e. that the I'[g]-conjugacy class of
E(Tpg;Tp) = y;Py;! is independent of the choices. Let y' = y}gy| € T'pg;Tp be another ele-

ment in the same double coset, and set Q' = y{P(y{)_l. Since y’ € I'pyl'p, there exists
Vas 7p € ' such that y’ =y, yy,. So y" = p39y] = p,9297175, Which gives

hi=g "% 9=y €9 ' TgnT =Tg].

Then

(7.5.1) W'Qh = () P DO = Q7
which verifies that Q and Q' are I'[g] conjugate.

Next we show that Z is surjective. Suppose that Q and gQg~' are both I'-conjugate to
P. Say, O = y,Py;! and gQg~! = y5'Py, for some 7,7, € . Then

(7.5.2) »gn Py gy =P

so the element y = y,gy, € P(Q) n I'gI’ (since a parabolic subgroup is its own normalizer)
and E(prrp) = Q

Finally we show that E is injective. Suppose y,y’ € g’ n P, say y = y,gy; and
!/ — !/ !/ S t
Y = 72971- o€

Q=yPy' =g 'y3'Ppyg,
—1 — —1
Q' =yP() " =g () "Ppyg.

Suppose Q and Q' are I'[g]-conjugate, say Q = yQ'y~! for some y € I' n g~'T'g. Comparing
these two relations gives
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Q =Py =Py,

_ _ _ —1 _
Q=g "9 "Prg=yg" () Prigr ",

!

from which it follows that s = (y{)fly‘lyl e P and h, = yzgyg‘l(yz)fl € P. Moreover,
h,hy e T'. But ipy’hy = y hence T'py'T'p = I'pylp as claimed. [

7.6. Proof of Proposition 7.3. By Lemma 7.4, the restriction of the Hecke corre-
spondence C = Clg] 3 X to the stratum Xp breaks into a union of m correspondences,
indexed by the elements g1, ¢a, . .., gm. Fix j (with 1 < j < m) and set [[g;] = T ng; 'T'g;
and I'plg;] = I'lg;] N P. The following commutative diagram of correspondences provides
an explicit isomorphism between the parabolic Hecke correspondence given by g; with the
corresponding piece of the Hecke correspondence given by ¢:

Iplg]\D[P] —= T»\D[P]

S

Flg\D —= T\D

/| |

g\D —— TI\D.

The first line is the parabolic Hecke correspondence (7.1.1) defined by g, i.e., it is the
continuous extension of the mapping I'p(g;|xK} — (I'pxKp, I'pg;xK}). The second line is
the Hecke correspondence (6.5.1) defined by g;, i.e. it is the continuous extension of
[lgj]xK' — ([xK',T'gxK'). The vertical mapping f8 (resp. f3;) is described in §3.1; it is a
homeomorphism over any I'-parabolic neighborhood of Xp (resp. over any I'[g;]-parabolic
neighborhood of I'p[g;]\Dp). The top square of this diagram commutes by direct compu-
tation. The third line is the given Hecke correspondence (6.5.1). The vertical mapping f
is the isomorphism of Hecke correspondences given in Lemma 6.6 and equation (6.7.1).
In other words, if g; = y,9y, then f(I'[gj]xK") = I'[g]y,xK’. The bottom square also com-
mutes. This completes the construction of an explicit isomorphism with the parabolic
Hecke correspondence, and hence of the proof of Proposition 7.3. []

8. Counting the fixed points

8.1. Asin §2, G denotes a connected linear reductive algebraic group defined over
Q, D denotes the associated symmetric space, K’ = AgK(xo) is the stabilizer in G of a
fixed basepoint xo € D, I' = G(Q) is an arithmetic group and X = I'\ D. Through this sec-
tion we assume that I is neat. Fix a rational parabolic subgroup P = G, set [p =T n P,
I, =vp(I'p) = Lp(Q) and denote by Xp = I'p\Dp = I'L\Dp the corresponding stratum in
the reductive Borel-Serre compactification X. An element y € P(Q) gives rise to a parabolic
Hecke correspondence (cy,¢2) : [p\D[P] = Tp\D[P] where T, = I'p[y] = Tp 0y~ 'Tpy. Let
Fi = vP(F;,). The restriction Cp 3 Xp of this parabolic correspondence to the boundary
stratum Cp = I';\Dp is given by

(811) (C] , Cz)(FiXKPAP) = (FLXKPAP, FLnypAp)

where 7 = vp(y).
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8.2. Characteristic element. Let us suppose that w € Cp is a fixed point of the para-
bolic Hecke correspondence, that is, ¢;(w) = c2(w). Choose any lift w € Dp of w and write
w = zKpAp € Lp/KpAp. Since the point w = I'; zKpAp is fixed, we have

(821) T zKpAp =T yzKpAp.

Since I' is neat, there exists a unique y € I'; such that the element ¢ = yy fixes the point
w € Dp, that is,

(822) €ZKPAP = yyZKPAP = ZKPAP € Dp.

8.3. Definition. The element e = yy € Lp(Q) is called a characteristic element for the
fixed point w, or the characteristic element corresponding to the lift w of w.

Denote by Fp(e) = Cp the set of fixed points in Cp for which e is a characteristic ele-
ment. We refer to Fp(e) as a fixed point constituent; it may consist of several connected
components. Let Dy, denote the fixed points of the mapping 7, : Dp — Dp which is given
by translation by e. Then Fp(e) is the image of D§ under the projection Dp — Cp. Let
L, — Lp denote the centralizer of e in Lp. We say an element of Lp is elliptic (or is elliptic
modulo 4p) if it is Lp(R)-conjugate to an element of KpAp.

8.4. Proposition. Let e = a.m, € ApMp be the characteristic element corresponding
to a lift w € Dp of the fixed point w € Cp. Then the following statements hold.

(1) The characteristic element e € Lp is semisimple and is elliptic (modulo Ap). The
group L, is reductive, algebraic, and defined over Q. The torus factors a, = a, € Ap are equal
(§2.2). The fixed point constituent Fp(e) is a smooth submanifold of Cp.

(2) If y € P is changed by multiplication by an element u € Up, or if y € Iy, is replaced
by another element of Ty, which also satisfies (8.2.2), or if a different representative z' € Lp of

w € Dp is chosen, then the characteristic element e € Lp does not change.

(3) If a different lift W' € Dp of w is chosen, or if y is changed within its double coset
Ipyl'p then e changes at most by I'r-conjugacy.

(4) The characteristic element e is a rigid invariant of the fixed point set: if w, € Cp is a
one parameter family of fixed points (with t € [0, 1]) and if z, € Dp is a lift to a one parameter
family of points in Dp then the resulting characteristic elements e; do not vary with t.

(5) The group L. acts transitively on D%. Set T.=TynL,, I,=T;, L, and

K =L,n (Z(KPAP)Z_l). Then K contains a maximal compact subgroup of L,. The action
of L. on Dy, induces diffeomorphisms

(8.4.1) Fp(e) = T)\L./K, and ci(Fp(e)) = T \L./K].
The projection Fp(e) — ¢; (Fp(e)) is a covering of degree

(8.4.2) dy=[T,:T) =Ty Ty :vp(Tpny ' Teyp)).
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(6) Conversely, let € < I'LyI'L be any T'r-conjugacy class which is elliptic (modulo Ap).
Then € N T'Ly consists of a single element e', and there exists a fixed point w' € Cp for which
e’ is a characteristic element. In particular, Fp(e') # 0.

Hence the constituents of the fixed point set in Cp are in one-to-one correspondence
with I',-conjugacy classes of elliptic (modulo Ap) elements e € I yT7}.

8.5. Proof. By (8.2.2), e = yy € zKpApz~! which is compact modulo 4p, so e is also
semisimple. The elements ¢ and y are in the same I'z-double coset so they have the same
torus component a, = a, € Ap. Since I' is neat, the group I, acts freely on Dj. This proves
(1). Next, consider (2) and suppose different choices y’ = yu, y’ € I';, and z’ € Lp were made,
with u € UZZP, with w = ZKPAP = Z/KPAP € Dp and, as in (822), Z’KPAP = j//y/Z,KpAP
(where 7' = vp(y')). Then j' = j and

v9zKpAp = zKpAp = y'j'z'KpAp = y'jzKpAp
so y~ 1y e (92)KpAp( 7z)~'. Since Iy is torsion-free, this implies y = 3/, hence the charac-

teristic element e = yy is unchanged. This proves (2). Since I'; is discrete, the characteristic
element is constant in a continuous family of fixed points, which proves (4).

Now consider changing y within its double coset I'pyI'p and consider changing the lift
w € Dp of the fixed point. Let y = y,yp, with y,,7, € I'p. Set j; = vp(y,), 7, = vp(y,) and
y=vp(P). Asin §8.1, the element y determines a Hecke correspondence (¢1,¢2) : Cp2 Xp
as follows: Set FP = rp ﬂy pr, FL = Vp(FP) and CP = FL\DP = FL\LP/KPAP Then
(cl,cz)(l"LprAp) (T.xKpAp, T yxKpAp) for any x € Lp. As in equation (6.7.1), a
isomorphism of correspondences f : Cp — Cp is given by

f(TpxKpAp) = T} 5,xKpAp.

Choose any lift ZKpAp € Dp of the fixed point w = f~!(w) (with Z € Lp). We obtain a new
characteristic element ¢ = yp (for some y € I'7) such that

(8.5.1) 992KpAp = 2KpAp.
We need to show that é = y is I';-conjugate to e = yy. Since f (W) = w we have
T)5,2Kpdp =TizKpAp
so there exists a unique 4 € I'; such that 47,2KpAp = zKpAp or
(8.5.2) 2KpAp =75 'h ' zKpAp.
Substituting (8.5.2) into both sides of (8.5.1) and using (8.2.2) gives
15,5979, 'h ' zKpAp = zZKpAp = yyzKpAp
or

h9,99,9h~ zKpAp = ypzKpAp.
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Since i, h~' € vp(y~'Tpy) = 7~ 'TLy there exists h’ € I’ such that y4~' = h'p, which gives
vy~ i ' (7zKpAp) = yzKpAp.

This implies that y~'/9,79,h’ = 1 since it is both in the group (7z)KpAp( )72)_1 and in I7.
Therefore 1.7 = y~'hy,57,7h~! or

9P = W57, 59,75 = (hpy)ip(hy,)

Thus, the characteristic elements yy and §y are I'z-conjugate, which proves (3).

Now let us prove (5). It is easy to see that L, acts on D§. To see that this action is
transitive, let vy, vy € Dj, say v; = z1KpAp and vy = z,KpAp with z; € Lp (for i =1,2).
Then there exists ki, k> € KpAp so that ez; = z1k; and ez, = zk», hence k| and k, are L-
conjugate (by zozy!). It follows from [Bo3], §24.7 that k; and k, are also KpAp conjugate.
Say, k» = mkym~! for some m € KpAp. Define x = zzmzl‘l. Then v, = xv; and moreover,
x e L, since

1 1 1

xex ' = zzmzflezlm* zgl = zzmklm”zg =e.

This completes the verification that L, acts transitively on Dy,
Using the chosen lift w = zKpAp € Dj, as a basepoint, we obtain a diffeomorphism
L./K] = Dj where K] = L, N (zKpA pz~ 1) is the stabilizer (in L,) of w. This induces a sur-

jection (L, nT'})\L./K, — Fp(e) which we will now show to be injective.

Suppose x1,x; € L, and that x;w, x,w € D, map to the same point in Cp, that is,
[ x1zKpAp = T} x2zKpAp. Then there exists y € I'; so that

(8.5.3) yx1zKpAp = x2zKpAp.

We need to show that y € L,. Acting by e on the left hand side of (8.5.3) and using (8.2.2)
gives the quantity

eye_lexlzKpAp = eye_lxleZKPAp = eye_lxlzKpAp
while acting by e on the right hand side of (8.5.3) gives
exzzKpAp = XZZKPAP = j)XIZKpAp.

Soyleyele (X]Z)KPAP(X]Z)_I. But y~leye~! e I'; so this element is trivial, that is, ye = ey,
hence y € L,. Therefore Fp(e) = I',\Dj. The equality ¢ (Fp(e)) = c2(Fp(e)) = T\L./K] is
similar. Equation (8.4.2) will be proven in §8.6.

Now let us verify part (6). Suppose ¢’ = y,7y; € Lp(Q) is elliptic (modulo 4p). Then
e” is I'L-conjugate to the element e’ = y,7,7 which is also elliptic modulo Ap. There exists
ze Lpsothate’ € zZKpApz~! hence e’zKpAp = zKpAp. In other words, ¢’ is a characteristic
element for the point w' = I';zKpAp € Cp (which is easily seen to be fixed under the Hecke
correspondence). [
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8.6. Proof of (8.4.2). (We refer to the notation of §8.4 and §8.5.) Unfortunately the
arithmetic group T[] = [z » 77 'T.7 may be larger than T'; = vp(Ip N y~'Tpy), so the
correspondence (8.1.1) is not necessarily a Hecke correspondence, but rather it is a covering
of the following Hecke correspondence:

(¢1,6) : Cp =TL[7]\Dp 3 Xp,
FL[f]XKPAP — (FLXKPAP, FLyXKPAP).

This covering ¢ : T;\Dp — I'[J]\Dp has degree d = [I'.[y] : I';]. A point we Cp is fixed
iff the point ¢(w) € Cp is fixed.

Let Fp(e) = Cp be the set of fixed points within this (smaller) Hecke correspon-
dence with characteristic element e. We claim that the restriction of ¢; to F. ple) Cpisa
diffeomorphism: Fp(e) = ¢;(Fp(e)) (for i=1,2). As in (8.4.1) it is clear that
Fp(e) = (TL[7] n L.)\L./K. so it suffices to verify that the inclusion I'.[j] N L, = T, is an
isomorphism. If y, € T, then y; = e~'y,e. But the left side of this equation is in I'; and the
right side is in ~'T'.7, hence y, € I'z[¥], which proves the claim.

In summary, we have a diagram

Cp L) Cp — Xp
U U U
Fple) —— Fple) —— ci(Fp(e))

and in particular the degree d of the covering ¢ coincides with the degree d, of the mapping
Fp(e) — ci(Fp(e)) which gives (8.4.2). [

8.7. Remark. The codimension of F,(e) in Dp is odd if and only if the action of e
reverses orientations in the normal bundle of Fp(e) in Dp. This is because e preserves an
appropriately chosen normal slice through any point in Fp(e), the boundary of which is a
sphere on which e then acts as a diffeomorphism without fixed points, so its Lefschetz
number is 0. In the odd codimension case this sphere is even dimensional, so by the Lef-
schetz fixed point theorem, its action on the top degree cohomology is given by multipli-
cation by —1, that is, it reverses the orientation. In the even codimension case, it preserves
orientation.

9. Hyperbolic properties of Hecke correspondences

9.1. Expanding and contracting roots. As in §2, G denotes a connected linear
reductive algebraic group defined over @, D denotes the associated symmetric space,
K' = AgK(xp) is the stabilizer in G of a fixed basepoint xpe D, I' =« G(Q) is an
arithmetic group and X = I'\D. Throughout this section we fix a Hecke correspondence
(c1,¢2) : C 3 X defined by some element g € G(Q). So C =T'\D with " =T ng~'Tg.

Let P = G be a rational parabolic subgroup and suppose that ¢;(Cp) = ¢2(Cp) = Xp.
By Proposition 7.3, near Cp the correspondence is modeled on a parabolic Hecke corre-
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spondence ['p\D[P| 3 Tp\D[P] (7.1.1) which is determined by some ye P(Q) (where
Ip=Tprny 'Tpy). Suppose y=uya,m, is the Langlands decomposition (2.2.2) of
yeP(Q). If y is allowed to vary within the double coset I'pyI'p then the element a, € Ap
will remain fixed, so we may write ap = a,. We refer to ap as the torus factor associated to
the Hecke correspondence near Cp. The torus factor may be used to define a partition of
the simple roots Ap into three subsets

A} ={oeAp|afap) < 1},

Ap ={oaeAp|afap) > 1},

AS = {aeAp|a(ap) =1},
consisting of those simple roots which are expanding, contracting, or neutral, respectively,
near the stratum Cp. (See also §11.7.) The terminology is motivated by the following fact,

whose proof follows immediately from (3.2.2) and the definition (7.1.2) of the correspon-
dence. For all « € Ap and for all z € T',\ D[P] the root function f,F satisfies:

(9.1.1) 1 (e2(2)) = alap) £, (c1(2))-

Now suppose P = Q are rational parabolic subgroups of G, with Ap = i(Ap) I1 J as
in (2.4.1). Suppose that ¢;(Cp) = ¢2(Cp), giving rise to a torus factor ap € Ap and a
decomposition of Ap into expanding, contracting and neutral roots as above. Then
c1(Cp) = 2(Cp) (by §7.1) so we obtain a torus factor ap € Ap and a decomposition of Ay
into expanding, contracting and neutral roots also.

9.2. Proposition. Suppose that J < A?,. Then:
(1) The torus factors ap = ag are equal; in particular ap lies in the sub-torus Ag < Ap.

(2) The expanding, contracting, and neutral simple roots for P and for Q are related as
follows:

(9.2.1) Ap =i(AD), Ap=i(Ay), A} =i(AP)ILJ.
(3) For all z € T,\D[P] and for all f € Ag we have,

fi(l,)[}) (CZ(Z))

—— = i(f)(ap) = fla :7)
jfi(l};>(01(2))_ (IB)( P) ﬁ( P) )

provided the denominators do not vanish.

In this case we say that Q is a neutral parabolic subgroup containing P and we write
P < Q. Intuitively, the Hecke correspondence is neutral in those directions normal to Cp
which point into Cp; cf. §3.6.

9.3. Proof. Locally near Cp the Hecke correspondence is isomorphic to a parabolic
Hecke correspondence given by some y' = u,sa,m, € Q with torus factor ap = a, € Ap.
In a neighborhood of Cp the correspondence is isomorphic to the parabolic Hecke corre-
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spondence given by some y = uya,m, € P (with ap = a,). Moreover y may be chosen to lie
in the double coset [py'Ty since the correspondence Cp = Xp is the restriction to Cp of
the correspondence Cp =3 Xp; cf. Proposition 7.3. By assumption, o(ap) =1 for all x € J
which implies that ap € Ap. It follows that ap = ap because the homomorphism Q — 4o
(which associates to any z € Q its torus factor a.) kills I'p. Therefore, for any fe Ay
we have: f(ap) = i(f)(ap). This proves (1) and (2). The first equality in part (3) is just
(9.1.1)Q. The last equality in part (3) follows from part (1) and from (9.1.1) (with f.” replaced
by f57). O

9.4. Maximal neutrality. Suppose P = Q < R are rational parabolic subgroups and
that ¢1(Cp) = ¢2(Cp). Write Ap =i(Ap) 11 and Ay = ](AR) I1J for the disjoint union
of (2.4.1). Suppose moreover that P < Q and Q < R, that is, that I c AO and J < AO
Then it follows from Proposition 9.2 that P < R. Hence there is a greatest neutral parabohc
subgroup P’ containing P; in fact it is PT = P(Ag) in the notation of §2.4 and §2.3. It is easy
to see that

(9.4.1) Ay =¢ and AF =i'(A})
(where i’ : Api — Ap is the natural inclusion). Moreover,

(9.4.2) P<Q=P =0Q

10. Structure of the fixed point set

10.1. Asin §2, G denotes a connected reductive linear algebraic group defined over
Q, D= G/K' is its associated symmetric space with basepoint xy € D and stabilizer
K' = AGK(xp), I' = G(Q) denotes an arithmetic subgroup, and X = I'\ D. Throughout this
section we fix a Hecke correspondence (cy, ¢2) : C 3 X defined by some element g € G(Q).
So C =T"\D with " =T ng~'T'g. We also fix a I'-equivariant tiling of D which is narrow
with respect to the Hecke correspondence (cf. §6.11, §4.5), and denote by {C?} and {X 7}
the resulting tilings of C and X respectively. Let F = C be a connected component of the
set of fixed points. The following lemma says that if F spans two strata Cp = Cy then the
Hecke correspondence is neutral in those directions which point from Cp into Cp; cf. §3.6.

10.2. Lemma. Let P<=Q<c G be rational parabolic subgroups and write
Ap = i(Ag) 1 J as in (2.4.1). Suppose F n Co 0 T(Cp) #* 0 (that is, Cg contains fixed points
which lie in the T-parabolic neighborhood T (Cp) of Cp). Then:

(1) J = AY (hence the conclusions of Proposition 9.2 hold).

(2) F n T(Cp) is invariant under the geodesic action of A} (=1).

(3) np(F N T(Cp)) = F, that is, each fixed point in this T"-parabolic neighborhood
projects to a fixed point in Cp.

10.3. Proof. Part (1) follows from (3.5.2) and (9.1.1) by taking ze F n Co n T(Cp)
to be a fixed point. Part (2) follows from (7.1.3). Part (3) follows by continuity. []
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10.4. Proposition. Let F = C be a connected component of the fixed point set. Let Q
be a rational parabolic subgroup and suppose F n Cgo # 0. Let ag € Ag be the torus factor
for this stratum. Let Q' = Q(A%) be the maximal neutral parabolic subgroup containing Q.
Then:

(1) The whole connected component F of the fixed point set is contained in the closure
F (e CQT
of the single stratum C ;.

(2) The Hecke correspondence C 3 X restricts to a correspondence C o 3 X, o on this
stratum-closure. Within this restricted correspondence, near each point ¢ € F, every simple
root is neutral: If P<=Ql, if FNCp£0, if i: Aot — Ap is the inclusion, and if
Ap=1i'"(Agi) 1 J as in (2.4.1) then J = AY.

(3) There exists a neighborhood U(F) = C of the fixed point set such that for all
weAg and for all x e U(F), if x € T(Cyp) and if ¢2(x) € T(Xg) then

(10.4.1) r2(ea(x)) = afag)'r2(ci(x)).

10.5. Remarks. Part (1) does not imply that F n Cp: # 0. In fact, the fixed point
component F may be “reducible’: it does not necessarily coincide with the closure of its
intersection F N Cp with any single stratum Cp. (See §16.1.)

10.6. Proof. Suppose that F has a nontrivial intersection with some other stratum,
say F n Cg # 0. Suppose for the moment that R > Q and that F n Cy contains limit
points from F n Cg, that is,

(10.6.1) (FNCo)nFnCgr=*0.

Then Lemma 10.2 part (1) implies that R is a neutral parabolic subgroup containing Q
so (9.4.2) implies that R = Q', hence FnCr = Fn Cp = F n Cyi. Now we drop the
assumption (10.6.1). Since F is connected, the stratum Cy is related to the stratum Cp
through a chain of strata Cg, (say, 1 < i < m), each having nontrivial intersection with F,
with each step in the chain related to the next by

(FACrR)NFANCg,, #0 or (FACg,)NFnCg *0.
Repeated application of (9.4.2) implies that
(10.6.2) RJf:RT1 —...=R =Q.
So once again, F n Cg = F n Cy. This verifies part (1).
Consider part (2). Since the stratum Cy is preserved by the Hecke correspondence,

the same holds for each larger stratum, especially Cyi. Suppose F n Cp = 0. By (10.6.2),
P’ = Q' so by (9.4.1), Ap = i"(Ayi) T A}.
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Next we verify part (3). Suppose P = Q and suppose F' n Cp + (0. By Proposition 9.2
part (3), for all o € Ag and for all w e T(Co) n ;' (T (X)), the root function f;/, satisfies

(10.6.3) Jity (e2(w)) = alag) £y (c1(w))

where, as in (2.4.1), we have written Ap = i(Ap) I1 J. However this does not yet prove
(10.4.1). The problem is that the partial distance function r2(w) is patched together (4.2.2)
from these root functions fi{;) in a way that depends on which tile contains the point ¢;(w).
So we need to show that the Hecke correspondence preserves the tile boundaries in some
neighborhood U(F) of the fixed point set. This in turn will follow from the neutrality
properties of Lemma 10.2 and Proposition 9.2.

10.7. Lemma. Suppose F < C is a connected component of the Jfixed point set of the
Hecke correspondence C 3 X. Then there exists a neighborhood U(F) < C of F such that
for all we U(F) and for any rational parabolic subgroup P < G,

(10.7.1) c(w) e X¥ < er(w)e X7

10.8. Proof. Assume not. Then there is a sequence of points x; € C converging to F
so that for each i, ¢;(x;) and c¢y(x;) are in different tiles. By taking subsequences if
necessary we may assume the sequence x; converges to some point xo € F, that x; are all
contained in a single tile C* (so ¢1(x;) € X¥) and that ¢, (x;) all lie in a single tile X ¢. Since
c1(x0) e CPnC 9 is a fixed point, the Hecke correspondence must preserve the strata Cp
and Cp (meaning that ¢;(Cp) = c2(Cp) = Xp and ¢;(Cp) = c2(Cp) = Xp) and we may
assume that either P = Q or Q < P. Since the tiling is narrow this implies that F n Cp =+ (),
that F n Cg =+ 0, and that either F n Cp contains limit points from F n Cy (if P = Q) or
else F'n Cyp contains limit points from F n Cp (if Q < P).

Let us first consider the case that P < Q = G, meaning that X¢ = X°. Let ap € Ap
denote the torus factor for the Hecke correspondence near Cp as in §9.1. Then it
follows from Lemma 10.2 that Q = G is a neutral parabolic subgroup containing P, that is,
a(ap) =1 for all « € Ap. Within any I'-parabolic neighborhood W of Xp, the tile X* is
given by (4.1.3):

XP ={xeW|np(x)e Xy and f](x) > a(bp) for all « € Ap}.

Since ¢;(x;) € X it follows that for at least one « € Ap we have:

a(bp) = 1 (e2(xi)) = alap) £ (e1(x2)) = £, (e1(x2)) > a(bp)
(using equation (9.1.1)), which is a contradiction.
Next consider the case P = Q + G. For sufficiently large i the points x; will lie in
some I''-parabolic neighborhood of Cp, and the same argument applied to the sequence

z; = mp(X;) — 2o = mp(Xo) € F N Cy also leads to a contradiction.

The case Q < P may be handled by reversing the roles of P and Q in these arguments.
This completes the proof of Lemma 10.7 and also the proof of Proposition 10.4. []
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11. Modified Hecke correspondence

11.1. Asin §2, G denotes a connected linear reductive algebraic group defined over
@Q, D denotes the associated symmetric space, K’ = AgK(xo) is the stabilizer in G of a
chosen basepoint xo € D, I' = G(Q) is an arithmetic group and X = I"\ D. Throughout this
section we fix a Hecke correspondence (cy, ¢2) : C =3 X defined by some element g € G(Q),
with C=T'\D and T"=T g 'Tg. Let F={we C|c;(w) = ca(w)} denote the fixed
point set. Fix a sufficiently large regular I'-equivariant parameter b € % which is so large
that the resulting tilings {D*} of D, {X*} of X and {C*} of C are narrow (§6.11) with
respect to the Hecke correspondence. Fix t € Ap, (>1) dominant and regular, with resulting
shrink homeomorphism Sh(t) : X — X as in §5. Define the (shrink-) modified correspon-
dence

(11.1.1) (c1,¢5): C3X

by ¢| = ¢; and ¢, = Sh(t) o . Let F = {we C|c|(w) = c(w)} denote the fixed point set
of the modified correspondence.

11.2. Proposition. If'te Ap, (>1) is chosen regular and sufficiently close to 1, then
(11.2.1) FnCog=FnC)

for each stratum Coy = C, and
(11.2.2) cl(F)nXp=c1(F)n X}

for each stratum Xo = X, where Cg (resp. Xg) denotes the central tile in Cg (resp. Xp).

11.3. Proof. The correspondence C has finitely many boundary strata Cp with the
property that ¢;(Cp) = ¢2(Cp). For each such stratum Cp, according to Proposition 7.3, the
Hecke correspondence is locally isomorphic near Cp to a parabolic Hecke correspondence
[,\D[P] 3 T'»\D[P] which is given by some y € P(Q) and to which we may uniquely asso-
ciate a torus factor a, = ap € Ap as in §7.1. Conjugating all these torus factors back to Sp,
gives a collection {ay,as,...,ay} < Ap, of finitely many standard torus factors (some of
which may coincide and some of which may equal 1) associated to the Hecke correspon-
dence g. If te Ap, (>1) is chosen to be regular and sufficiently close to 1 then we
can guarantee that the following condition holds: For all . € A and for alli =1,2,..., N,
if o(a;) <1 then a(a;t) < 1 while if o(a;) = 1 then a(a;t) > 1. Therefore, for any p with
O<p=Zl forallueAandforalli=1,2,...,N, the following holds:

a(a;) < 1= a(a;)a(t)” < 1,
(11.3.1)

ala;) = 1= aa;)a(t)” > 1.
Having made these choices, let us now prove Proposition 11.2. Certainly F N Cg =FnC g
because the shrink acts as the identity on Cg. So we only need to show that F Co c Cg,
that is, we must show that the fixed points of the modified Hecke correspondence which
appear in the stratum Cp are all contained in the central tile of that stratum. Suppose
otherwise and let w e Cp be a fixed point of the modified correspondence which lies in
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some tile C? for P = Q, and P + Q. Since the shrink preserves tiles, it follows that
c1(CP)Yn ey (CP) # 0. The tiling is narrow so this implies that c¢;(Cp) = ¢2(Cp). Set
Ap=1i(Ap)IlJ as in (2.4.1); then J % 0. By Proposition 7.3, locally near Cp we may
replace the Hecke correspondence by a parabolic correspondence: in other words, we
may assume that g € P. Let ap € Ap be the torus factor for the correspondence near Chp,
that is, if g =u,a,m, € UpApMp is the Langlands decomposition then ap =a,. The
point ¢;(w) = ¢j(w) = cj(w) lies in XonX? = X. Since the shrink preserves tiles,
c2(w) € Xo n X7 also.

For any o € Ap,

LE(e5(w)) = £ (ea(w)) ot (£) 1 (24 by (5.5.2)

— a(ap)ao(t)"" D L2 (¢ (w)) by (9.1.1)

where oy € A is the unique simple root which, after conjugation and restriction to Sp,
agrees with o.

This gives a contradiction: First note that p(r(c2(w))) # 0, for otherwise we would
have rf(c2(w)) =1 or ¢2(w) ¢ X”. As the shrink preserves tiles, this would imply that

ch(w) éXP which is absurd. So by (11.3.1) the factor oc(ap)oco(t)”(’f(c“w))) + 1. If we choose
o € J then the assumption ¢;(w) € X implies that f,7(c;(w)) = 0. Therefore the point w
cannot be fixed by the modified correspondence, which proves (11.2.1).

There are finitely many strata Cr such that ¢;(Cgr) = Xp. To prove (11.2.2) it suffices
to show, for each of these strata, that

c(Fn CR)r\XQ:cl(FmCR)ng.

Write FnCr= (FnC%) UF as a disjoint union. Then F is contained in a union of
tiles CR" with R’ = R a proper inclusion. Since ¢; takes tiles to tiles, it follows that
c1(F) n X = 0 hence

cl(FmCR)ngzcl(Fng)r\Xg =c(Fn CY)

= c1(F N Cr) = c1(Fn Cr) N Xp

by (11.2.1). O

11.4. Tangential distance. Choose a regular I'-invariant parameter so that the
associated tiling is narrow (§6.11) with respect to the Hecke correspondence. Choose
te Ap, (>1) to be regular and sufficiently close to 1 as in Proposition 11.2. Suppose Cy is a
stratum of C for which F n Cg # . Then the Hecke correspondence restricts to a corre-
spondence Cp = Xp. Fix e € Ly and let Fy(e) = C¢ denote the set of fixed points in Cyp for
which e is a characteristic element as in §8.2. The corresponding set of fixed points for the
modified Hecke correspondence is the “truncation”

FQO(e) = Fp(e) n Cg.
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Let E = c1(F{(e)) = c1(Fo(e)) n X denote its image in Xp. In this section we construct
a good function which measures the distance from E.

Let Ry, : Xo — Xj and R¢, : Cop — C{ be the retraction(s) and let Wy : Xp — [0, 1]
be the exhaustion function of §4.6. A choice of G-invariant Riemannian metric on D

induces Riemannian metrics on C, X, Cp, and Xp. Define the tangential distance
dE : XQ - [0, OO] by

(1141) dE(X) = WQ(X) +diStXQ (RXQ(X),E)

where disty, denotes the distance in Xy with respect to the Riemannian metric. Then
dz'(0) = E. Although the restriction of the Hecke correspondence to Cy is locally an iso-
metry, composing with Si(t) has the following effect: points near the boundary of X, are
moved even closer to the boundary of X and hence they are moved away from E. This is
the intuition behind the following lemma.

11.5. Lemma. There exists a neighborhood V < Cg ong(e) = Fp(e) n Cg such that
(11.5.1) dg(c5(w)) = de(ci(w))
forallweV.

11.6. Proof. The stratum closure Cop is tiled by the collection of intersections
Cé) =Con C? with P = Q. Let Cg denote the closure of such a tile. Let Uy = Cy be a
neighborhood of the closure Fy(e) so that for any rational parabolic subgroup P = Q,

FQ(e)r\E’g:(Z)(:) Ulr\ég:@.

By Lemma 10.7 we may also assume that the Hecke correspondence preserves tile bound-
aries in U;. The mapping c; preserves tiles, and the points in Fyp(e) are fixed, hence

E=c¢ (FQO(e)) =0 (FQO(e)).

By Proposition 8.4 (6), and for i = 1,2, the mapping c; is one-to-one on Fp(e). Moreover, it
is locally an isometry. It follows that,

(11.6.1) distx, (c1(w), E) = distc, (w, Fg(e)) = disty, (c2(w), E)
for w e Cgp in some neighborhood U, = Cy of FQO(e). The desired neighborhood is
V= U1 N U2 c CQ.

By Proposition 10.4 the restricted correspondence Cp = X is neutral near Fy(e). So
if P = Qandif Fyp(e) nC” + 0 and if Ap = i(Ap) 11 J as in (2.4.1) then by (10.4.1),

(11.6.2) i (ea(w) = 1 (er(w))

for all we Cé) and for all & € J. Moreover, by Lemma 10.7 the correspondence preserves
tiles near F(e), that is, for all w e U; and for all P = Q we have
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we C’g s c(w) e )75 & ow) e /\_’5.
By (7.1.3) the correspondence commutes with the geodesic action of 4p. Therefore
Ry,(c1(w)) = c1(Rc,(w)) and Ry, (c2(w)) = c2(Re,(w)).

Now suppose w € V and w e C} for some P = Q. If P = Q (that is, if w € C lies in
the central tile) then ¢;(w) € Cg) as well, in which case Ry, (¢;(w)) = ¢i(w), Wo(ci(w)) =0,
and ¢;(w) = ¢/(w). Then (11.5.1) follows from (11.6.1) and in fact, equality holds.

Now suppose we V N Cg for some P + Q. Then P = Q, ¢;(Cp) = ¢2(Cp) = Xp by
Proposition 7.3, and locally near Xp this correspondence is isomorphic to a parabolic Hecke
correspondence, that is, we may assume that g € P(Q). In the tile C” the retraction R com-

mutes with the geodesic action of Ap, cf. (4.6.1), and so does the Hecke correspondence,
(7.1.3), hence

Ry (ch(w)) = Ry (Sh(t)ea(w)) = R, (c2(1)) = c2(Re, (w)).
So the second terms in (11.4.1) are equal:
disty, (Ryycs(w), E) = disty, (c2(Re, (W), 2(Fp(e))) = diste, (R, (w), Fp ((e)))
= disty, (¢1 (Rc,(w)), E) = disty, (Rx,c1(w), E)
because both morphisms ¢; and ¢, are local isometries. Now consider the first terms in

(11.4.1). Fix w e Cj. For o€ Ap set p(a) = p(r} (c2(w))). Using (4.6.3), (5.5.1), and (11.6.2)
we find,

Wo(es(w)) =1— itég{rfSh(t)cz(vv)}

— ; P —p(a)

=1- ;relg{ra (c2(w)) oo (t) "}

=1~ inf {1 (c1 () oo(t) "}
: P

2 1—inf{r(ci(w))}

= Wo(ci(w))

which completes the proof of (11.5.1). [

11.7. Hyperbolic correspondences. Recall that the correspondence (cy, ) : Cz3X
is weakly hyperbolic (GM2], [GMS5]) near a connected component F <= C of the fixed point
set, if there is a neighborhood N(F’) = X of the image F' = ¢|(F) = ¢»(F) and an indicator
mapping t = (t1,1) : N(F') — Rx( x Rx¢ such that

(1) the mapping ¢ is proper and subanalytic;

(2) the pre-image of the origin #~!(0) = F’ consists precisely of F’;
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(3) there is a neighborhood N(F) = C so that ¢;(N(F)) = N(F’) (for i = 1,2) and
N(F)nc"(F')nes ' (F) = F;

(4) for any x € N(F),

(Due to an error in [GM2], condition (3) above was omitted from the original definition of
weakly hyperbolic, cf. [GMS5].)

11.8. The modified correspondence is hyperbolic. Choose a tiling parameter b € #
so that the associated tiling is narrow with respect to the Hecke correspondence
(c1,¢2) : C 3 X. Choose te Ap, (>1) to be dominant, regular, and sufficiently close to 1
as in Proposition 11.2 and equation (11.3.1). Let (c],c5) : C 3 X be the modified corre-
spondence.

Suppose Co is a stratum of C for which F n Cg # 0. Then ¢;(Cp) = ¢2(Cg) = Xp.
By Proposition 7.3 we may, locally near Cp, replace the Hecke correspondence with a
parabolic Hecke correspondence determined by some g = uya,m, € Q(Q). For any e € Lo
let Fy(e) = Cp denote the corresponding fixed point constituent: the set of fixed points
in Cp for which e is a characteristic element as in §8.2. By Proposition 11.2 the fixed point
set in Cp of the modified Hecke correspondence is a union of “truncated” constituents
Fg(e) = Fp(e) n Cg (as e varies over elliptic elements in I'7gl;, cf. Proposition 8.4).
(Although FQO(e) may have finitely many connected components we will treat them all
simultaneously.)

Fix such an element e and let E = ¢;(Fg(e)) N X = c1(Fy(e)) be the image in X of
the truncated fixed point constituent as in §11.4. Write Ay = AJQr VA, U AOQ according to
whether the simple root is expanding, contracting, or neutral near Xy as in §7.1. Define
= (I1,12) : T(XQ) — Rgo X Rzo by

n(x) = 3 r2(x) +dp(ng(x)),

ueAE
nx) = 3 r2(x)+ X rf(x).
xel, aeAg

Here,
T(Xg) = T(Xo) n X[Q]

denotes the open neighborhood of Xy on which the above mappings are defined: it consists
of the part of T(Xy) which is contained in those strata Xp such that Q = P.

11.9. Theorem. The mapping (t1,t;) is an indicator mapping, with respect to which
the modified Hecke correspondence is hyperbolic near FQO (e).
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11.10. Proof- The idea is that the composition with the Sh(t) converts neutral direc-
tions (normal to a given stratum) into contracting directions but it does not change the
nature of the expanding or contracting (normal) directions. It converts distances within the
stratum (which are preserved by the Hecke correspondence and hence neutral) into expand-
ing directions.

We must display a neighborhood N (FQO(e)) < C which satisfies conditions (3) and (4)
of §11.7 (but with F replaced by Fg(e)). First we find a neighborhood N; so that condition
(3) holds. Since ¢; : C — X is stratum preserving,

e (E) n T(Co) = ¢ (E) n Cg

where T(Cp) = T(Cgp) n C[Q]. The mapping ¢ : Cyg — Xp is a finite (unramified) cover-
ing. Therefore, if W < Cy is a sufficiently small neighborhood of FQO(e) in Cp then

g (E)yn W = Fg(e).
Take N| = nél(W) N T(Cp). This neighborhood of Fg(e) satisfies condition (3) because
G E)nG E) AN cef(EYnN =i (E)n W = FQO(e)
and the reverse inclusion is obvious.
Now consider the conditions (4). Let ap = a, € A be the torus factor for the corre-

spondence near Cyp. It is easy to check that 7;71(0) n#5!'(0) = E. For any w e T(Cyp) and
for all o € Ap we have

r2(c4(w)) = r@(Sh(t)ea(w)) = ao(t) "Dy (w) by (5.5.1)
— oco(t)fp(r“QCZ(”’»oc(aQ)*ler (e1(w)) by (10.4.1).
IfaeAyu A% then oco(t)7p("“Q"2(W))oc(aQ)f1 < 1 since both factors are <1. This proves that
tes(w) < taep(w).

If o € A, then a(ag) < 1so oco(t)7p(r"QC2(w))oc(aQ)7l > 1 by (11.3.1). Let I = Cy be the
neighborhood of FQO(e) described in Lemma 11.5. Then for all w € 7' (V') we have
dpmocy(w) = demgSh(t)ca(w)
= dpgSh(t)mgca(w) by §5.5(4)
= dgSh(t)camp(w) by (6.4.3)
> dgcimo(w) by (11.5.1)

= dgmgcy(w)

which proves that
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nes(w) = tiep(w)

for all we nél(V). This completes the verification of condition (4) of §11.7. In summary,
the neighborhood

N(Fy(e)) =Ninn,' (V)= C

satisfies both conditions (3) and (4). [

12. Local weighted cohomology with supports

12.1. Quadrants (See [GKM], §7.14, p. 534). As in previous sections we suppose
G is a connected reductive linear algebraic group defined over @ and we denote the
greatest Q-split torus in its center by Sg. Let P be a rational parabolic subgroup with Sp
the greatest Q-split torus in the center of its Levi quotient Lp. Let Ap denote the simple
positive roots of Sp occurring in 9tp = Lie(%p). The elements o € Ap are trivial on Sg and
form a basis of x;,(Sp) < x5, (Sp) where Sp = Sp/Sg. For any subset J = Ap as in §2.4 let
Q = P(J) be the parabolic subgroup containing P for which the corresponding torus

Ss = Spq)

is the identity component of the intersection [ ker(o). Let {z,} be the basis of the cochar-

oael
acter group y,(Sp) ® @ which is dual to the basis Ap so that {a, 75> = d, 4 (with respect
to the canonical pairing -, -»). The cocharacter group y%(Sp/Sy) is spanned by {z, | € J}
while y9(S;/Sg) is spanned by {t, |« € J}, where J = Ap — J denotes the complement.

Fix vp € x(Sp) and J < Ap. Let y ex@(Sp) and suppose that y|Sg = vp|Sg. Then
7 — vp may be regarded as an element of x{,(Sp) so we may define

(12.1.1) L,(y) ={a€Ap|{y —vp, 1> <0},
(12.1.2)  xo(Se)p,. s = {7 €xa(Sp) [ 1,(7) = J and y|S¢ = vp|Sc}-

This last set is called the quadrant of type J. The disjoint union of the 2/4# quadrants,

L 7a(Se)p, = {rexa(Se) 7156 = vriSe}
SAp

is the subset of all characters whose restriction to S agrees with that of vp. Taking J = ()
gives

20(Se)p, 4 = {7 € xa(Se) | 71Se = vp|S and {y — vp,1,> 2 0 for all & € Ap}

which was denoted y;(Sp), in [GHM] and was denoted y¢,(Sp)s,, in [GKM]. It is the

translate by vp of the positive cone ¢ > my,o ¢ with m, = 0. More generally, for J < Ap
aeAp

define X&(SP)gVP(J) to be the translate by vp of the cone { > myo| my = 0}. That is,

aed
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26(SP)y,0) = {7 € x&(Se) | 7Se = ve|Sg and (y — vp,1,) 2 0 forall e J}

= U XED(SP) ’—VP’KJ .
KeJ

Then

(12.1.3) Xa(SP)(VP,JJ = XE@(SP)@P(J) - KUJX&(SP)EVP(K)-

Equation (12.1.3) remains valid if we replace the union on the right hand side by the union
over those K < J such that |K| = |J| — 1.

(This apparently backward notation was chosen so as to simplify the computation in
§12.6. It can be reconciled with the notation of [GHM] as follows. There are |Ap| proper
maximal parabolic subgroups containing P. Each J < Ap corresponds to a collection J
of these maximal parabolic subgroups, with Q e J iff S = [ ker(2). Then the subset

oaeJ

X6 (SP)s,, (s in this paper coincides with the subset x¢)(Sp), 7 in [GHM].)

If H is an Sp module such that Sg acts on H through the character vp|S¢ then one
may define Hy,, | (resp. Hz,,, resp. Hx,,(s)) to be the sum of those weight spaces H, for

which y € )(a(Sp)W” (resp. y € x4(Sp)s,,» resp. 7 E){&(SP)EVP(J)).

12.2. Weighted cohomology. As in §2, let D denote the symmetric space associated
to G, K' = AgK(x() denote the stabilizer in G of a fixed basepoint xo € D, I' = G(Q) be a
neat arithmetic group and X = I'\D. Let G — GL(E) be a finite dimensional irreducible
representation of G on some complex vector space E. It gives rise to a local system
E=(G/K') xr E on X =T'\G/K. Let Py be the standard minimal rational parabolic
subgroup with Sg = Sp,. Fix v € x{,(So) so that v|Sg coincides with the character by which
S¢ acts on E. Then v defines a weight profile in the sense of [GHM]: if Q 2 Py is a standard
rational parabolic subgroup then set vp = v|Sq and

X(ED(SQ)+ = Xa (SQ);vQ = X(ED(SQ)[VQ?(M :

These definitions may be extended to arbitrary rational parabolic subgroups by conjuga-
tion. We obtain from [GHM]| a complex of fine sheaves, W'C*(E) on the reductive Borel-
Serre compactification X of X, whose (hyper)-cohomology groups WYH*(X,E) are the
weighted cohomology groups. Let i : X — X denote the inclusion. Recall from [GHM],
§13 that a choice of basepoint induces an isomorphism

H/(Ri.(E)) ~ H/ (N, E)

between the stalk cohomology at a point x € Xy of the complex of sheaves Ri,(E) and the
Lie algebra cohomology of 9ty. The weighted cohomology complex is obtained by apply-
ing a weight truncation to the complex Ri.(E) with the result that its stalk cohomology
becomes

(12.2.1) H/(W'C*(E)) = H/(Np, E)

2vg*



128 Goresky and MacPherson, Topological trace formula

12.3. Remarks on sheaf theory. In the next few sections we will need to use the for-
malism of the derived category of sheaves, and some relations between the standard func-
tors, for which we refer to [GM4], [GM2], [BoS5], [I], [KS], [GeM]. Specifically, if X is a
subanalytic set we denote by D’(X) the bounded (cohomologically-) constructible derived
category of sheaves of complex vector spaces on X. An element S°* € D?(X) is a complex
of sheaves, bounded from below, whose cohomology sheaves H'(S®) are finite dimen-
sional and are locally constant on each stratum of some subanalytic stratification of X.
The hypercohomology of S* will be denoted H*(S®) and the stalk cohomology at a
point x € X will be denoted H(S*). Denote by S[n]* the shifted sheaf, S[n]” = S"*”. The
derived category D’(X) supports the standard operations of RHom, ®, Rf,, Rfi, f*, and
f'. There are many relations between these functors, of which we mention a few that we
will use:

If /:Y — X is a normally nonsingular embedding ((GM4], §5.4) then there is a
canonical isomorphism

(12.3.1) F1(8%) = f*(S") ® Oxyy[~d]

where (y/y denotes the orientation bundle (or top exterior power) of the normal bundle of
Y in X, and where d denotes the codimension of Y in X. If f: X — pt is the map to a
point then Dy = f*(C) is the dualizing complex. If X is an n-dimensional manifold (or
even a rational homology manifold) then Dy =~ (x[n] where 'y denotes the orientation
bundle.

12.4. Cohomology with supports. Let X be a compact subanalytic set and let S* be a
(cohomologically) constructible complex of sheaves on X. Suppose ¥ = W < X are locally
closed subsets with inclusions

Y- W—>X.
hy Jjw

Define the restriction of S* to Y with compact supports in W to be the complex of sheaves
(12.4.1) B* = hYj;,S".

If Y = {y} is a single point, then the cohomology of this complex is the relative cohomol-
ogy group

(12.4.2) H™(B*) = H"(B, " X, 0B, n W;S"),

where B, is a sufficiently small ball around y (with respect to some subanalytic embedding
in Euclidean space) and 0B, is its boundary.

Now suppose X is the reductive Borel-Serre compactification of a locally symmetric
space X = I'\G/K as in §12.2, and that S* = W'C*(E) is the weighted cohomology sheaf
constructed with respect to some weight profile v and local system E as in §12.2. Let
Y = Xp be some stratum and let W = X, be the closure of a larger stratum, corresponding
to some rational parabolic subgroup Q = P. Form B* = /'j;,W'C*(E) as above. Write
Ap =i(Ap) Il T as in (2.4.1).
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12.5. Theorem. The cohomology sheaf H™ (B®) is isomorphic to the local system on
Xp which is associated to the following Lp-submodule of the 9 p-cohomology,

(12.5.1) H" N (Rp, E)p,, -

12.6. Proof of Theorem 12.5. The proof follows closely the computation [GHM],
§18 of the weighted cohomology of the link .%,. First let us recall some generalities. Each
stratum Xp of the reductive Borel-Serre compactification X is a rational homology mani-
fold. If T" is neat, then each stratum is a smooth manifold. Suppose S°® is a complex of
sheaves whose cohomology sheaves are locally constant on each stratum of X. Let
Y=XpcW=X o as above. The choice of basepoint xo € D determines a basepoint
yeY.Let N, = X be a normal slice (cf. [GM3], §5.4) to the stratum Y at the point y. Let
k:N,n W — X denote the inclusion, and let i, and a, denote the inclusions of y into ¥
and N, n W respectively.

Then the stalk cohomology of B® = /'yj;;,S® is given by

(12.6.1) H"(B*) = H" (it hyjy,S*) = H"(d k*S")
which in turn may be identified with the relative cohomology group

(12.6.2) H"(B,nN,,0B.n N, Xp;S")

(where B, is a sufficiently small ball around y, chosen with respect to some locally defined
subanalytic embedding of X into some Euclidean space).

These isomorphisms are deduced from the following fiber squares

(12.6.3) y — NnW —— N,

ay kw
l‘y J/ J/ J//(N

Y — w — X

hy Jw

where k = kyky . In the case that S* = W"C*® we will compute (12.6.2) using the long exact
cohomology sequence for the pair.

Step 1. Construct an isomorphism of Lp-modules,
(12.6.4)  H (0B, Ny, Xg;W'C*(E)) = H ' (%p, E)p,, /| @ H(Np, E)s,,-
In order to simplify notation, let us choose a labeling {oy,00,...,0,} = Ap of the

simple roots. As in [GHM], §8.8, the link %, = 0B, n N, comes with a natural mapping
§: %, — ! to the s — 1 dimensional simplex,

sl = {(xl,xz,...7x5) eR*|0<x;<1and in = 1}.
i=1
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For any subset J = {1,2,...,s} let J denote its complement. Associated to J there is a
(closed) face of dimension |J| — 1,

by ={xe>’|x;=0forall jeJ}
whose interior we denote by 7. Each > is a vertex of >5~1; the face >y is spanned by the

vertices >y ;3 such that j e J. Let Uy;; = St(>{;;) be the open star of the vertex ;3. These
form a covering of >*~! whose multi-intersections we denote by

Ur= Uy

jed
Then
Uy = St(>9) = U{F°| F is a face of >*"! and F 2,}
is the open star of the interior of the face ;.
If we think of stratifying the simplex >*~! by the interiors of its faces, then the map-

ping  : &, — >*"! is a stratified mapping: for any J < {1,2,...,s} it maps %, N Xp() to
the interior >7 of the face >y, and in particular

gy M A_/Q = 5_1(l>]>.
The fiber over any interior point s € >y is the nilmanifold (T N %p)\%g. As in [GHM],
§18.5, the (weighted) cohomology of %, N X can be computed using the Mayer-Vietoris
spectral sequence for the covering by open stars (for i € 1),

V{,-} = 5_1(U{I-} N l>1)

of the vertices of >;. Set V; = 5’1(U 7 n>r). The groups El"‘b are cohomology groups of
multi-intersections of open sets in this covering, and were computed in [GHM], Lemma
18.5,

EY = @ W”H”(ﬂJV{j};E): @ W'H'(V)E)
JE

[J|=a+1 [J|=a+1
JclI Jcl
_ b
- @ H (m})’E)zVP(J)'
[J|=a+1
JcI

The E; differential is given (up to sign) by inclusion, so the argument of [GHM],
§18.7 applies here as well: the spectral sequence collapses at E>, which has only two possi-
bly nonzero columns: Eg"b = Hb(ﬂtp,E)zvp and, using (12.1.3),

H"(%p, E)-
E\I\fl,h _ ZVp(1) _ Hb N E).,
? Z Hb(th)me) ( ’ )ﬁP’IJ
IK|=I1]-1

Kcl
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which contributes to W'H* (6" St(>/), E) in degree |I| — 1 + b. So we obtain a split short
exact sequence (with ¢ = |I| — 1 + b),

0— H MY (Np, E)p,, ) — WH (L, 0 X; E) — H(Np, E),, — 0
which completes the proof of (12.6.4).

Step 2. Asin [GHM], §18.11, the long exact sequence for the pair (12.6.2) splits into
split short exact sequences,

0— H(B,AN,) — H(dB,n N, n Xg) — H" (B, N,,0B, n N, n Xg) — 0.

But H*(B, " Ny) = H*(B;) = H*(Np, E),, is the stalk cohomology at y of the weighted
cohomology sheaf. This kills the second summand in (12.6.4), leaving

(12.6.5) HJ(B*) = H"(B,A\N,,0B,n N, Xo; WC*(E)) = H" "\(Np, E), ;.

Step 3. We briefly indicate why the isomorphism (12.6.5) extends to an isomor-
phism of flat vector bundles on Xp,

H"(B*) ~ H" (Np, E) pot| X Le/KpAp

(where I'zpy = vp(I' 0 P) is the projection of I' n P to the Levi quotient Lp and where it
acts on H*(9p, E) by conjugation). Let i : X — X denote the inclusion. In [GHM], §17,
special differential forms are used in order to identify the restriction H”(Ri.E) | Xp with the
flat vector bundle

H’“(%p,E) [vp, 9] XFL(P) LP/KPAP.

But each of the cohomology groups appearing in Step 2 (above) is an Lp-submodule of
H*(Np, E) and the corresponding bundle on Xp is a sub-bundle of H* Ri,.(E) | Xp (while the
shift by |7| corresponds to tensoring with a trivial vector bundle on Xp). So it suffices to
verify that the stalk cohomology modules agree at the basepoint, which we have done. []

12.7. Kostant’s theorem. In this section we will use Kostant’s theorem [Ko]| to
explicitly evaluate the cohomology group (12.5.1). Let B = G be a Borel subgroup (over
C), chosen so that B(C) < Py(C) < P(C). Choose a maximal torus T (over C) of G so that

(12.7.1) Sp(C) = Sy(C) = T(C) = BL(C)

where By = BN Lp is the corresponding Borel subgroup of Lp. This gives rise to
root systems ®g = ®(G(C),T(C)) and @, =®(Lp(C),T(C)) with positive roots
@ = ©(%g(C), T(C)) and &} = O, NP, (determined by the Borel subgroups B = G
1

= >

and By, < Lp respectively). Let pp = 5
ae®f

Let Wg= W(G(C),T(C)) denote the Weyl group of G(C) and let
Wp = W(Lp(C),T(C)) denote the Weyl group of Lp(C). The choice of B determines a
length function # on Ws. Let W) < W denote the set of Kostant representatives: the
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unique elements of minimal length from each of the cosets Wpx € Wp\ Wg. As in [Sp], §10.2
or [Vo], §3.2.1, it may also be described as the set

W = {we Wo |w! () = B}
(and depends on the choice of By, < Lp).

If p € x*(T(C)) is By-dominant, let us write V;* for the irreducible Lp-representation
with highest weight . Let Az € y* (T((D)) be the highest weight of the irreducible represen-
tation E of G. Kostant’s theorem states that for all w e W}!, the weight w(iz + pp) — pp is
Bp-dominant, and that as an Lp-module, the cohomology group H'(Np, E) is isomorphic
to

DUV iapp)—py | W € Wp and £(w) = i}.

If w e W then the character w(Ap + pg) — pg — v of Sy is trivial on S so we may define

(12.7.2) Liw) = {aeAp|{(w(is + pg) — pg — V) |Sp, t2) < 0}

where {z,} form the basis of the cocharacter group y2(Sp) which is dual to the basis Ap of
simple roots, cf. (12.1.1). So in the notation of (12.1.1),

I,(w) = L,(y) where y = (w(Zs + pg) — pg) | Sp.

To summarize we have:

12.8. Proposition. Let P be a standard rational parabolic subgroup of G. Let
vp = V|Sp € x,(Sp) be the character which is determined by the weight profile v € y¢,(So).
Let Jp denote the highest weight of the irreducible representation E of G. Let I < Ap be a
subset corresponding to a choice of standard rational parabolic subgroup Q > P. Then Kos-
tant’s theorem determines an isomorphism of graded Lp-modules,

(12.8.1) H*Rp,E)y = @ VEo o [=£(w)]
) (fv)jl
where the sum is taken over all w e Wy such that I,(w) = I, and where VL[ m|) means that

the irreducible Lp-module VL appears in degree m.

13. Lefschetz numbers

13.1. In this section we recall the Lefschetz fixed point theorem for hyperbolic cor-
respondences from [GM2], §10.3.

Suppose C, X and Y are compact subanalytic spaces and that
c=(c1,c3): C— X x Y is a subanalytic mapping. (The bars are used so that the
notation here will agree with that in the rest of the paper.) Let S* € D?(X) be a (bounded
from below) complex of (cohomologically) constructible sheaves on X and let T* € D’(Y)
be a (bounded from below) complex of (cohomologically) constructible sheaves on Y. Since
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¢ is proper we have ¢, = ¢. A lift of the correspondence C to the sheaf level ([Ve], [GI],
[Bo5]) is a morphism

(13.1.1) D : ;T — c}S°.

Such a morphism induces a homomorphism H*(Y;T*) — H*(X;S*) as follows. First
apply (c1), and adjunction to obtain a morphism

(13.1.2) (c1),63T* — (c1),6}S® — S°.

Let p: X — ptand ¢ : Y — pt be the map to a point. Then the diagram

Y
|
t

o
— b
p

XxY
ﬂ]J/
X

is a fiber square so there is an adjunction natural transformation [GM2], (2.6b),
q1(m2), — p«(m1),. Apply ¢ to the adjunction morphism T® — (¢3),c;T® and use (13.1.2) to
obtain

—_

qT* — qi(c2), ;T = qi(m2),,cc; T®

— po(m)c.e3 T = po(er),e; T — p,S°.

This morphism induces the desired mapping on cohomology. (It may also be constructed
by applying pi(c2), to (13.1.1) rather than ¢.(c;),.)

In what follows, we suppose X =Y and S* =T*, so ¢ = (¢j,¢2): C - X x X is a
correspondence on X and @ : ¢;S* — ¢|S°® is a lift to the sheaf level. The Lefschetz fixed
point theorem states that the resulting Lefschetz number

L(S*,C)=> Tr(®*: H(X;S") — H'(X;S")) =Y L(S*,C,F)

iz0

is a sum of locally defined contributions L(S*, C, F), one for each connected component
F < C of the fixed point set of the correspondence C.

Let F = C be a connected component of the fixed point set and suppose that the cor-
respondence C is weakly hyperbolic (§11.7) near F’ = ¢;(F) = c»(F) with indicator map-
ping t: W — Rx X Rxo. (This means that W < X is a neighborhood of F’, that 7 is a
proper subanalytic mapping such that 1~1(0,0) = F’, and that for all x € ¢c; /(W) n & 1(W)
we have f1¢1(x) < t1¢c2(x) and ty¢1(x) = tr¢2(x).) Denote by /4 and j the inclusions

F' i (Rag x 0D L X

of F’ into the “expanding set” or ‘“unstable manifold” F~ = t~!(Rx( x {0}), and of F~
into X.
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Let A* = /'j*(S*) as in §12.4. Then the lift ® determines a lift P’ : ¢;A* — ¢|A® which,
by adjunction, induces an endormorphism ¥ : A* — A® (which covers the identity mapping
on F'). In [GM2] we prove:

13.2. Theorem. The contribution L(S®, C,F) of F to the global Lefschetz number
L(S*, C) is given by

L(S*,C.F) =S (=1)Tr(¥": H(F;A") — H'(F';A")).

i>0

m
Moreover, if F'= [[ F, is stratified so that the pointwise Lefschetz number
. o=1 ) )
n(x) = > (=1)"Tr(¥; : H{(A®) — H.(A")) is constant on each stratum, then the local
iZ0
contribution is the sum over strata,

(13.2.1) u&dmzém@Mm

where x, € F, and where y,. denotes the Euler characteristic with compact supports. (See
[KS], Prop. 9.6.12 for a related result.) The right hand side of (13.2.1) is the Euler charac-
teristic y(F’;n) of the constructible function n(x), as discussed in [Mac].

13.3. Morphisms and weighted cohomology. In this section we show how to lift
any morphism to the weighted cohomology sheaf. As in §2, G denotes a connected linear
reductive algebraic group defined over Q, D denotes the associated symmetric space,
K’ = AgK(xo) is the stabilizer in G of a fixed basepoint xo € D, I' = G(Q) is a neat arith-
metic group and X =T'\D. Asin §12.2 let 7: G — GL(E) be a finite dimensional irreduc-
ible representation on some complex vector space. It gives rise to the local coefficient
system (flat homogeneous vector bundle) E = (G/K’) xr E which is the quotient of
(G/K') x E under the equivalence relation (xK',v) ~ (yxK’,7(y)v) for all y e I'. Denote
by [xK',v] € E the resulting equivalence class. Let Py be the standard minimal rational
parabolic subgroup with Sy = Sp,. Fix v € 1, (Sy) so that v|S¢g coincides with the character
by which S¢ acts on E and let W'C*(X;E) denote the resulting weighted cohomology
complex of sheaves on X.

Suppose I'" = T is a subgroup of finite index, set C = I''\G/K, and let /' : C — X be
a morphism, i.e., there exists & € G(Q) such that /T'A~' = T and f(I''xK) = I'hxK. Let
E’' — C be the local coefficient system on C which is determined by the representation
7: G — GL(E). The morphism f is covered by a mapping E' — E of local systems given
by [xK,v] — [hxK,t(h)v]. This mapping is easily seen to be well defined, and it induces an
isomorphism of local systems E' =~ f*(E) on C. Since f : C — X is an unramified finite
covering, it further induces a canonical quasi-isomorphism of the sheaves of smooth dif-
ferential forms with coefficients in this local system, /*Q*(X;E) — Q*(C;E’).

The morphism f : C — X admits a unique continuous extension f:C — X to the
reductive Borel-Serre compactifications (Lemma 6.3). If ic : C — C and iy : X — X denote
the inclusions then the adjunction mapping [GM2], equation (2.5a),
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[ (ix),Q (X E) = (ic)./ Q" (X;E) = (ic) ,Q°(C; E)
is a quasi-isomorphism. It is easy to see that this induces a quasi-isomorphism
(13.3.1) F"W'C*(X;E) — W'C*(C;E’)

of weighted cohomology sheaves. (In fact the whole construction of the weighted coho-
mology sheaf on X pulls back to the construction of weighted cohomology on C.)

13.4. Hecke correspondences and weighted cohomology. Let g € G(Q). Then g gives
rise to a Hecke correspondence (cj, ¢;) : C — X. Here, C is the reductive Borel-Serre com-
pactification of C = I'’"\G/K with ' = I' n g~ 'T'g. Both mappings ¢; and c, are finite so
there are natural isomorphisms of functors ¢; = ¢: and (¢;), = (¢;), (for i = 1,2). From the
preceding paragraph we obtain a canonical lift

(13.4.1) ®: c;W'C*(X;E) — &iW'C*(X;E)
to the weighted cohomology sheaves, which is given by the composition
GW'C*(X;E) = W'C*(C;E) = c;W'C*(X;E) = ¢,W'C*(X;E).

13.5. Computation of the local contribution. For the remainder of §13, fix a Hecke
correspondence C 3 X which is determined by some element g € G(Q). Fix a regular I'-
equivariant parameter b € % which is so large that the resulting tilings {D*} of D, {X*} of
X and {C?} of C are narrow (§6.11) with respect to the Hecke correspondence. Choose
te Ap, (>1) to be regular, dominant, and sufficiently close to 1 as in Proposition 11.2, with
resulting shrink homeomorphism Sh(t), and let (c{,c;) : C 3 X be the resulting modified
correspondence. It is easy to see that Sh(t)"(W'C®) = W'C*® so we may consider (13.4.1) to
be a lift of the modified correspondence as well.

Suppose the Hecke correspondence preserves some stratum Cp. According to Propo-
sition 7.3, locally near Cp the correspondence is isomorphic to the parabolic Hecke corre-
spondence I'p\D[P] = T'p\D[P] which is given by some y € P(Q) n I'gI" and to which we

. - At — 0 .
may associate a decomposition Ap = A, UA, U A, of the simple roots. Suppose that Cp
contains fixed points and denote by Fp(e) = Cp the set of fixed points with characteristic
element e € [, 51, < Lp(Q).

By Proposition 8.4 the torus factor a. € Ap of e coincides with the torus factor a,
so the set A} (resp. Ap, resp. A%) consists of those simple roots « € Ap for which a(a,) < 0
(resp. >0, resp. =0). Hence we may write A} = A} (e) (resp. Ay = Ap(e), resp. A = Aj(e)).

As in §12.7, choose a Borel pair T(C) = B(C) so that (12.7.1) holds. Assume the

local system E arises from an irreducible representation of G with highest weight
1 .

ip€x*(T(C)). Let pp == > aeyx*(T(C)) denote the half-sum of the positive roots. Let

r=[Cop:T nUp). “2c¥

13.6. Theorem. The contribution to the Lefschetz number from the fixed point con-
stituent Fp(e) is:
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(13.6.1) 1y (Fp(e))(—1)2! ZW (1™ Te(e VL )
L(n=A%(©)

where I,(w) is defined in (12.7.2).

In [GKM], §7.14 the Lefschetz formula in the adelic setting is described but not
proven. The missing ingredient is the proof of the formula for the local contribution Ly(y)
which appears on page 534. (This formula differs slightly from (13.6.1) because the factor
rx.(Fp(e)) is absorbed by the orbital integral in [GKM].) Theorem 13.6 thus provides the
proof of this formula, so it completes the proof of Theorem B (7.14) of [GKM]. The proof
of Theorem 13.6 will occupy the rest of this section.

13.7. The nilmanifold correspondence. The Hecke correspondence C = X extends to
a correspondence on the Borel-Serre compactification

(13.7.1) C3X

which is compatible with the projection x : X — X to the reductive Borel-Serre compacti-
fication. Let w’ € Fp(e) and set w = ¢;(w") = ¢(w'). The restriction of the correspondence
to the relevant Borel-Serre stratum is given by

(13.7.2) Y} = Tp\P/KpAp = Yp = [p\P/KpAp,
(1373) FI/).X?KPAP = (FP.XKPAP, prprAp).

(Here, T = Tp n y~'Tpy.) The fibers Np = u~'(w) = Yp and Nj = (u/) "' (W) < Y}, are
nilmanifolds isomorphic to I';\%p and TI,,\% respectively, where I’y = I'p n%p and
I, =T,n%p=Tny 'Tyy. So the correspondence 13.7.1 restricts to a correspondence
Np 3 Np which will be described below. The following diagram may help in sorting out
these spaces.

Np —= Np Y —= Y»p C — X
A N T S B
w o —= w Cpr —— Xp C — X

13.8. Lemma. Let¢: Lp — GL(H *(Np, E)) denote the adjoint representation of the
Levi quotient Lp on the Lie algebra cohomology of Np. Let w' € Fp(e) be a fixed point in Cp
with characteristic element e € Lp. Then the nilmanifold correspondence (cy,c2) : Np 3 Np
induces a mapping (c1),c; : H*(Np,E) — H*(Np,E) on cohomology which, under the
Nomizu-van Est isomorphism H*(Np,E) =~ H*(ONp, E) may be identified with the homomor-
phism

ré(e”!)
where r = [Ty : T,)].

13.9. Proof- First we find equations for the nilmanifold correspondence. Choose a
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lift xKpAp e D =P/KpAp of the fixed point w' = IpxKpAp%p € Cp. This determines a
parametrization of the nilmanifold Np by

(1391) F@[\@/ — NP (= YP == FP\P/KPAP,
(1392) FWZ = FPZXKPAP,

and similarly I);,\% — N, by I';,z — TpzxKpAp.

Since w' is fixed, we have I'px%pKpAp = I'pyx%pKpAp hence there exists y € I'p and
u € Up so that yyuxKpAp = xKpAp, in other words, so that yyu fixes the point xKpAp in
the Borel-Serre boundary component P/KpAp. Then e = vp(yy) = vp(yyu) is the charac-
teristic element of the fixed point w’. Define I'),\% =3 T, \% by

(13.9.3) Tz (Tuz, Tu(py)zu () 7).

A simple calculation shows that the following diagram commutes:

(13.9.3)
l“é/\% — I,\%

(13.9.2)} %(13.9.2)

N}/) ——= Np

l (13.7.3) l

Next we will apply the theorem of Nomizu [Nol] and van Est [E] to this correspon-
dence. The local system E — X which is defined by the representation 7: G — GL(E)
extends canonically to a local system on the Borel-Serre compactification X. Its restric-
tion to the nilmanifold Np is given by the quotient E|Np = % xr, E under the relation
(z,0) ~ (yz,7(y)v) (for y € Ty, z € Up, and v € E). The complex Q°(Np, E) of smooth E-
valued differential forms on Np consists of sections of the (flat) vector bundle

C.(NP,E) = %P XTp C.(mp, E)

where C*(p, E) = Home (A*9ip, E) is the complex of Lie algebra cochains. Let ¢ be the
representation of P on this complex: if A* Ad(p) : A*9tp — A*Itp denotes the adjoint action
of p € P on the exterior algebra of 9tp, then

¢(p)(s) = t(p) o s 0 A" Ad(p).

Denote by

(13.9.4)
Q (Up,E) ={w:Up — C*(Np, E) | w(ux) = ¢p(u)w(x) for all u,x € Up}

the complex of (left) #p-invariant E-valued differential forms on %p. Such a differential
form is determined by its value s = w(1) € C*(Np, E), and it passes to a differential form



138 Goresky and MacPherson, Topological trace formula

on Np. Denote by Q2 (Np,E) the collection of all such “left”-invariant differential forms.
The Nomizu-van Est theorem ([Nol], [E]) states that the inclusion Q, (Np,E) — Q°(Np,E)
induces an isomorphism on cohomology. In summary we have a diagram

mv

C*(Np,E) = Q8. (Up,E) = Q. (Np,E) — Q*(Np,E)

mv mv

of isomorphisms and quasi-isomorphisms. Although the group P does not act on the vector
bundle C*(Np,E), it does act on the complex Q2 (Np,E) = Qp (%p, E) of invariant sec-
tions by

(p- o)) =¢(p) " @(pxp™)
and the group %p acts on this complex by
(u-)(x) = w(xu).

If we Q: (Np,E) is given by (13.9.4) then by (13.9.3) its pullback by ¢; is given by

mv

c3(@)(2) = () o(()zu () 7").

Evaluating at z = 1 and using the fact that w is left invariant,

c3(@)(1) = )" g(m) " (1),

Let s =w(1) e C*(Np, E), suppose ds =0 and let [s] € H*(Np, E) be the resulting coho-
mology class. Since %p acts trivially on this cohomology,

¢;(Is]) = ¢e) "5

where e = vp(yy) is the characteristic element of the fixed point w. Finally, observe that
the pushforward mapping (c1), : H*(Np,E) — H*(Np,E) is given by multiplication by
r = [y : T,]. This completes the proof of Lemma 13.8. []

13.10. Proof of Theorem 13.6. We will apply the Lefschetz fixed point formula to the
modified Hecke correspondence. By Proposition 11.2, after modifying the correspondence
by composing with S#(t), the fixed point constituent Fp(e) becomes “truncated”, that is, it
becomes replaced by the intersection Fp(e) = Fp(e) n Ch of Fp(e) with the central tile in
Cp. Denote by 0F° = Fp(e)n an its intersection with the boundary of the central tile. Set
F' = ¢\ (Fp(e)) = c2(Fp(e)). Set E=F'nXp = c¢;(Fp(e)) and 0E = F' n Xy = ¢;(0F°).
(Having used up all the letters some time ago, we temporarily re-use the notation E here,
hoping the reader will not confuse it with the local system.) Note that E — JE is diffeo-
morphic to F'.

By Theorem 11.9 the (modified) Hecke correspondence is weakly hyperbolic near
Fp(e) and an indicator mapping (defined in a neighborhood U < X of F') is given by

(13.10.1) mp(z{mﬂmmngw+zgm)

+ -
aedA, xeAp aeA)
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Let Q o P be the rational parabolic subgroup corresponding to the subset / = A} = Ap

consisting of the simple roots for which the Hecke correspondence is (strictly) expanding

Then, in the notation of (2.4.1), Ap = z(AQ) 1 A}. The partial distance function r/” vanishes

on the stratum XQ whenever « € A, U AY, cf. (3. 5 2). Hence Xp N U = 171 (Rxg x {O}) is the
“expanding set” of the correspondence.

According to Theorem 13.2 we need to compute the stalk cohomology (at points
w € E) of the sheaf

A* =1j*"W'C*(E)
where
E 7 )? 7» X.
This is best accomplished by decomposing 4,

E—>F/—>XP—>XQ—>X
h] I’lz h3 J

Then B® = /;j*W'C*(E) is the sheaf studied in Theorem 12.5, where we have taken
I = A}, Tts stalk cohomology is locally constant on Xp and was shown to be

H\(B*) = H/ """ (%p,E),, ALl
Since £, is a smooth closed embedding we have a canonical quasi-isomorphism (12.3.1)
C* = I5B* = h;(B*) ® O[]
where ¢ = dim(Xp) — dim(F’' n Xp) and where O is the orientation bundle (i.e. the top
exterior power) of the normal bundle of F' n Xp in Xp. The complex C* is constructible

with respect to the stratification of X, meaning that its cohomology sheaves are locally
constant on Xp, hence also on E. But E is a manifold with boundary, so

(13.10.2) W, C* = iC* | (E — OF)
is obtained by first restricting to the interior £ — JE and then extending by 0. (Here,
i : E— OE — E denotes the inclusion.) Thus the cohomology of /;C* is the compactly sup-
ported cohomology H!(E — 0E;C*) ~ H!(F';C*).

Next we must compute the pointwise Lefschetz number n(w) for w € E, that is, the

alternating sum of the traces on the stalk cohomology of A* =/ C*. By (13.10.2) it is 0
when w e 0E, so let we E — 0E. Then

(13.10.3) HI(C*) = H “(h3B* ® )

(13.10.4) = H™ % (9p, E)py, ps) ® Oy

By §8.6, the mapping ¢, : Fp(e) — F' is a covering of degree
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d, = [FL N )7’111)7 : VP<FP ) y’ll“py)].
Near each fixed point w’ € ¢! (w) the Hecke correspondence acts on the 9ip-cohomology

through the homomorphism r¢(e~!) (using Lemma 13.8), and by §8.7 it acts on @,, by
(—1)¢. Summing these contributions over the d, different points in ¢ !(w) gives

(13.105)  n(w) = dor(—1)" A (=1) S (=1) Tr(g(e ™) H' (Rp, BNy, p0)

i=0
A+ /(v —
(13.10.6) = dor(=1)™ S (=1 Tele ™ V)
ve W,
1,(v)=A}

by Proposition 12.8. The contribution arising from Fp(e) is this quantity times
1(E — 0E) = x.(F'). However (by §8.6), x.(Fp(¢)) = dey.(F') which absorbs the factor of
d, in (13.10.6) and therefore completes the proof of Theorem 13.6. []

14. Proof of Theorem 1.5

14.1. As in §2, G denotes a connected reductive linear algebraic group defined
over @, D = G/K' is its associated symmetric space with basepoint xo € D and stabilizer
K' = AgK(xo). Let I' € G(Q) denote an arithmetic subgroup which we assume to be neat,
and X = I'\D. Throughout this section we fix a Hecke correspondence (cj,¢3) : C3X
defined by some element g € G(Q). So C =T'\D with I" =T ng~'T'g. We also fix a I'-
equivariant tiling of D which is narrow with respect to the Hecke correspondence. Choose
te Ap, (>1) in accordance with Proposition 11.2.

Let F = C denote the (full) fixed point set of the Hecke correspondence C = X and
let E denote the (full) fixed point set of the modified Hecke correspondence (11.1.1). Then

F=][[FnCp and E=][FnC}
{P} {P}

where the union is over the strata of C, that is, over I'’-conjugacy classes of rational para-
bolic subgroups P < G. Each F n C} is a union of connected components of E by Propo-
sition 11.2. The Lefschetz fixed point theorem (Theorem 13.2) may be used to write the
Lefschetz number as a sum over these individual strata.

14.2. Contribution from a single stratum. Let P = G be a rational parabolic sub-
group and suppose that ¢;(Cp) = ¢2(Cp) = Xp. By Proposition 7.3, in a neighborhood of
Cp the correspondence is isomorphic to the parabolic Hecke correspondence determined by
some y € ['g[' n P and moreover (in this neighborhood) the fixed points of the modified
correspondence coincide with those of £~ Cp = F n C).

If Fp(e) denotes the set of fixed points in Cp with characteristic element e € Iy,
then by Proposition 8.4,

(14.2.1) FnCp=]]Fr(e) and En Cp=]]Fple)nCy
{e} {e}
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where the union is over I'z-conjugacy classes of elements {e} = I';yI; which are elliptic
modulo Ap. (Here, I, = vp(I' n P) < Lp and y = vp(y).) For each such conjugacy class
{e}, the set Fp(e) consists of finitely many connected components, say, F, Fy, ..., F,. The
contribution to the Lefschetz number from the component F; is given by Theorem 13.6. By
(8.4.1) (see also §8.6, §15.8),

2e(F) = 1.(Fp(€)) = 1 (T\Le/K,).

s

1

J
So the contribution to the Lefschetz number from the stratum Cp = Xp is

(14.2.2)

Ah /(w —
L(P,y) = Y £(TAL/K)r(=D)* 52 (=1 Tr(e s V0,000,
{e} we WPl
I(w)=A}(e)

where the index set for the first sum is the same as that for the union in (14.2.1). This
quantity L(P, y) depends only on the local system E, the choice of parabolic subgroup P
and the element y € P.

14.3. Sum over strata. Let Py, P,,..., P, denote a collection of representatives, one
from each I'-conjugacy class of rational parabolic subgroups P < G. These index the strata
of X. For each such i the intersection I'gI" n P; decomposes:

g nP; = ]_[ Tpyilp,.
J

Lemma 7.4 gives a one-to-one correspondence between this collection {y;;} and strata Cj;
of C such that ¢;(Cy) = ¢2(Cy). Moreover the restriction of the Hecke correspondence to a
neighborhood of Cj; is locally isomorphic to the parabolic Hecke correspondence defined
by y; so the local contribution to the Lefschetz number from Cj equals the number
L(P;, yj;) given in (14.2.2). In summary, the total Lefschetz number is

t

(14.3.1) L(g) = >_ > L(Pi, yy)

=1
as claimed in Theorem 1.5. [

14.4. Another formula. If a little expansion S/(t) " is used instead of the shrink, this
will convert neutral directions normal to each stratum into expanding directions, and it will

convert the tangential distance into a contracting direction. An indicator mapping replac-
ing (13.10.1) is

(0= X rf@), X ) +deme(v).

+UA? ael,
aeA,UAp P

This changes the nature of the sheaf A* with the result that the Euler characteristic (rather
than the Euler characteristic with compact supports) appears in the formula. So, in equa-
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tion (14.3.1), the contribution L(P, y) (14.2.2) from the stratum Cp =3 Xp will be replaced
by the quantity

+ 0 )
LB ) = SO M TAL/K) - 5 (DT K ,)-)
e we W,
L(w):Aqu?,

where the summations are over the same index sets as in (14.2.2), and where A}, = A} (e)
and A% = A)(e).

15. Remarks on the Euler characteristic

As in §2, G denotes a connected linear reductive algebraic group defined over Q; D
denotes the associated symmetric space; Sg denotes the greatest (-split torus in the
center of G; Ag = SG(IR)O denotes the identity component of its real points; K' = AgK
is the stabilizer in G of a fixed basepoint xo € D; I' = G(Q) is an arithmetic group, and
X =T\D.

15.1. Proposition. Suppose (G/S¢)(R) does not contain a compact maximal torus.
Then y(X) = y.(X) =0, that is, both the Euler characteristic and the Euler characteristic
with compact supports vanish.

The proof will appear in §15.6.

15.2. Lemma. Let X =T'\G/KAg. Then the Euler characteristic and the Euler char-
acteristic with compact supports coincide: y(X) = y.(X).

15.3. Proof. Let X denote the Borel-Serre compactification of X. Topologically, it
is a manifold with boundary 0X = X — X. Since H/(X) = H(X,0X), it suffices to show
that y(0X) = 0. The boundary 0.X is a union of finitely many boundary strata Yp, each of
which fibers over the corresponding stratum Xp (of the reductive Borel-Serre compactifi-
cation) with fiber a nilmanifold Np (cf. §2.5, 13.7). So x(Yr) = x(Np)y(Xp) = 0. It follows
from Mayer-Vietoris that (0X) = 0. [

For completeness we also include a proof of the following often-cited fact.

15.4. Lemma. Suppose the real Lie group G/Ag does not contain a compact maximal
torus. Then the Euler form vanishes identically on X.

15.5. Proof. By replacing G by the algebraic group °G (and noting that
X =T'\°G/K), we may assume that Sg is trivial. Let g = T @ p be the Cartan decomposi-
tion of Lie(G) corresponding to the choice K of maximal compact subgroup. Choose a K-
invariant inner product on p. This determines a G-invariant Riemannian metric on
D = G/K which passes to a Riemannian metric on X. Let Q be the curvature form of the
torsion-free Levi-Civita connection which is associated to this metric. The resulting Euler
form Eu is defined to be 0 if dim(D) is odd. If dim(D) = 2k then Eu is the G-invariant
differential form on D whose value at the basepoint x; is



Goresky and MacPherson, Topological trace formula 143
Eu(xl, yl,XZ, j)z, e ,Xk, yk) = P(Q(Xl, ))1)7 e ,Q(Xk, yk))

(for any xi,...,y,€p=TyD), where P is the polarization of the Pfaffian
Pf: End(p)” — R. (Here, End(p)~ denotes the skew-adjoint endomorphisms of p.) The
form Eu on D passes to a differential form on X = I'\ D, which is the Euler form for X.

Let Ad: K — GL(p) be the adjoint representation and let ad : f — End(p)™~ be its
derivative. We claim that det (ad(k)) = 0 for any k € f. Modify k by conjugacy if necessary,
so as to guarantee that k lies in a maximal torus t — g which is stable under the Cartan
involution ((Wal, §1.2, 1.3). Then t =1, ®t_ with t; = fand t < p. By assumption, t_
contains a nonzero vector Z, and ad(k)(¢) = [k, ¢] = 0, which proves the claim.

The principal K-bundle G — D = G/K admits a canonical G-invariant connection
((KN], Chapt. IT, Thm. 11.5). Its curvature form w € .«/(D, ) is the G-invariant differen-
tial form whose value at the basepoint xy is given by wo(p,, p») = —[P;, p»| € T for any
D1, P> € p. By a theorem of Nomizu [No2], for any real representation 4 : K — GL(E), the
resulting connection in the associated G-homogeneous vector bundle E = G xx E coincides
with the torsion-free metric (Levi-Civita) connection of any G-invariant metric on E. Its
curvature is the G-invariant End(E)-valued differential form whose value at the basepoint
is Qg = A’ o wg where ' : T — End(E) is the differential of 1. Taking 2 = Ad : K — GL(p)
as above gives Qo(p,, p,) = —ad([p;, p,]). By the above claim, this has determinant 0
hence its Pfaffian vanishes also. Therefore the Euler form is zero on D, so it is also zero on
X. O

15.6. The proof of Proposition 15.1 is then a consequence of the following classical
result of Harder [H] (a more streamlined proof of which may be found in [Le2]).

15.7. Theorem. The Euler characteristic y(X) is given by the integral over X of the
Euler form with respect to any invariant Riemannian metric on X. []

15.8. Euler characteristic of a fixed point component. Now suppose that Xp = X
is a boundary stratum corresponding to a rational parabolic subgroup P = %pLp. Let
Fp(e) = Xp be the set of fixed points with some fixed (elliptic) characteristic element
eeLp(Q). Let L, be the centralizer of e in Lp. By (8.4.1), Fp(e) =~ T'\L./K. where
Il =T, nL, and where K/ = L, " (z(KpAp)z~') (for appropriate z). By (8.4.2),

(15.8.1) %e(TA\Le/K,) = dey(Te\Le/K;)

where I, =T, nL, and d, = [[, : Fe’] This expression has the following merit. The con-
tribution (14.2.2) to the Lefschetz number from the stratum Cp depends on the subgroup
[, = T'p. However once this expression (15.8.1) has been substituted into (14.2.2), the
dependency on this subgroup I'y, occurs only in the two integers r and d,.

15.9. Descent. Let S, be the greatest Q-split torus in the center of L, and let 4, be
the identity component of its group of real points. As explained in [GKM], §7.11, the group
K/ does not necessarily contain S¢(R), so although Fp(e) is not necessarily a “locally sym-
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metric space” in the sense of §2, it fibers over the locally symmetric space I',\L./K A4, with
fiber 4,/ Ap which is diffeomorphic to a Euclidean space. Therefore

Ze(Fp(e)) = (=)™l Ar)y (D\Lo/KoAe) = (—1) ™ A7) dy (DA Lo /Ko Ae)

(where K, = L, n (zKpz™1)).

Now suppose that Lp/A4p does not contain a compact maximal torus. According to
the preceding remarks, y.(Cp) = y.(Xp) = 0. However the contribution (14.2.2) to the
Lefschetz number from the stratum Cp does not necessarily vanish. Assuming Lp/A4p does
not contain a compact maximal torus, the same will be true of L,/Ap. If, moroever,
Ap = A, then y.(Fp(e)) = 0. However if Ap differs from 4., it is possible that y (Fp(e)) + 0
(in which case Fp(e) is necessarily non-compact since it is fibered by 4./A4p as described
above). See Example 16.4 in which L, = A4, and Fp(e) = A,/ Ap is the orbit of a split torus.
In such cases it is possible to re-attribute the contribution (14.2.2) from the stratum
Cp 3 Xp to smaller strata in the correspondence. This procedure is carried out in [GKM],
p. 531, resulting in a Lefschetz formula in which the only nonzero contributions come from
strata Cp =3 Xp such that Lp has a compact maximal torus.

15.10. In the adelic setting, the Euler characteristic with compact support y, (Fp(e))
can be expressed in terms of orbital integrals (cf. [GKM], §7.11 and §7.14).

16. Examples and special cases

16.1. Reducible fixed point components. For G = SL(3,R), D= G/K, and
I' = SL(3,7Z) a neat principal congruence subgroup, the reductive Borel-Serre compactifi-
cation X contains a singular 0-dimensional stratum Xp corresponding to the standard Borel
subgroup B. This stratum is contained in the closures of the strata Xp, and Xp, corresponding
to the standard maximal parabolic subgroups P, P, containing B. Let g be a generic

element of G(Q) N %(P;) n % (P>) which is not in I, for example,

1 0 12
g=10 1 o0
00 1

Let C 3 X be the resulting Hecke correspondence. Then these three strata X P, Xp,, and Xp
are fixed by the correspondence. However points in X which are sufficiently close to these
strata are not fixed.

16.2. Middle weight for Sp,. Let G = Sp,, fix a neat arithmetic subgroup I' = G(Q),
and choose a Hecke correspondence C = X which is determined by some g € G(Q). If P is
a minimal parabolic subgroup of G then its Levi quotient Lp = Sp is a maximal split torus
and the boundary stratum Cp consists of a single point. Suppose this point is an isolated
fixed point of the Hecke correspondence. Let e be its characteristic element. The vector
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space x¢,(Sp) has a basis consisting of the simple roots Ap = {a, f}. Let {#,, 3} be the dual
basis of y2(Sp), so that {B,13> =1, {B,1,»> = 0 and the same with o and 8 interchanged.
See Figure 6.

B // \\ s 4 {/
<.,

2 (Sp) %(Sp)

Figure 6. Simple roots and dual basis.

Let us take E to be the trivial local system, and the weight profile v = —pjy to be the
middle weight (where pj is the half-sum of the positive roots). The cohomology H*(9tp, C)
decomposes into a sum of 1-dimensional weight spaces,

Vs = H'®) (R, C)

as w € W varies over the elements of the full Weyl group. These weights are the dots in the
left hand part of Figure 7, in which the origin is at —pg. For each weight space indexed by a
given w € W we have indicated the corresponding set

I,(w) = {0 € Ap|<wpg, tyy < 0}

of simple roots. The cohomology H*(9tp) is divided into four “quadrants’ according to the
value of I,(w).

If necessary, project the characteristic element e to the identity component Ap of the
torus Sp(R) and let 7 € Ap = Lie(A4p) denote its log. The right hand half of Figure 7 may
be identified with the Lie algebra 21p. The chamber containing ¢ determines the expanding-
contracting nature of the Hecke correspondence near this fixed point. In each chamber we
have indicated the set of expanding roots,

Aj(e) = {0 e Ap|0(1) <0}

(where now 6 € Ap has been identified with a homomorphism 2p — R). The Lie algebra
Ap is divided into four “quadrants” according to the value of A} (e) (although we have not
indicated which quadrant contains a given “wall”).
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4 ) / \ | e
,// ° 1
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2*(Sp) %+(Sp)

Figure 7. Diagram of 7,(w) and of A} (e).

Theorem 13.6 states that the portion of H*(9tp) which contributes to the
Lefschetz number at this fixed point depends on the quadrant in which 7 = log(e) lies: if
A} (e) = J = Ap then only the portion of H*(9tp) which lies in the quadrant indexed by J
contributes to the Lefschetz number. A further degree shift by |J| occurs when this portion
H*(9p);,, 5 1s identified (in Theorem 12.5) with the local weighted cohomology with
supports.

It is a remarkable fact that, globally in the Hecke correspondence, the fixed points
occur in Weyl group orbits. Assuming 7 is regular (does not lie on a wall) then, after sum-
ming over all the fixed points, each chamber will appear the same number of times. It is the
sum of these local contributions over a W-orbit of fixed points ((GKM], p. 529, last para-
graph) which gives rise to the combinatorial formula for the averaged discrete series char-
acters as described in [GKM].

16.3. Very positive and very negative weights. Let i : X — X denote the inclusion.
Suppose the weight profile v = —oo (or is very negative). Then the weight truncation does
nothing, and the weighted cohomology sheaf W'C*(E) =~ Ri.(E) becomes the “full” direct
image of E. For any stratum Xy, I,(w) = 0 for any w e WQ‘. Theorem 13.6 then says that
a fixed point stratum F n Cp (with characteristic element e) makes a contribution to the
Lefschetz number only if Ag(e) = (0, which is to say, only if the Hecke correspondence is
either contracting or neutral in every direction normal to the stratum Xp.

In this case the local contribution to the Lefschetz number may be expressed in terms
of the character of the finite dimensional representation G — GL(E). We briefly recall the
argument in [GKM], §7.18. The quantity Z( 1) Tr(e”'; H (Mp, E)) is equal to Tr(e™!; E)
times the following quantity:

S(=1) Tr(e ', AT(95)) = det(1 — Ad(e); Rp(C))

i

= I (1-7'() TT )~

+ +
oed; wed;

= Ap(e) det(e; 9tp) (—1)4m¥r
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where Ap(e) = [] (1 —o'(e)) denotes the (partial) Weyl denominator. (These quantities
ue®;

may be further expressed in terms of |DE(e)|, op(e), and yg(e) using [GKM], (7.16.11),
(7.18.3) and [GKM], p. 497.)

Similarly, suppose the weight profile is v = +o0 or is a very large positive weight. The
stalk cohomology (at a point x € X/ in some boundary stratum Xy) of the weighted coho-
mology sheaf W'C*(E) vanishes because the weight truncation (12.2.1) kills everything. In
this case, the weighted cohomology sheaf is quasi-isomorphic to the sheaf Ri(E) which is
obtained as the extension by 0 of the local system E. Its cohomology is the compact support
cohomology H}(X;E) of the locally symmetric space. For any stratum Xy, according to
(12.7.2), I,(w) = Ag for any w e WQI. Theorem 13.6 then says that a fixed point stratum
F n Cg (with characteristic element e € Lp) makes a contribution to the Lefschetz number
only if Ag(e) = Ap, that is, only if the Hecke correspondence is strictly expanding in all
directions normal to the stratum Xy. Then the same quantity > (—1)' Tr(e™'; H'(Np, E))
occurs in the formula, but with a (possibly) different sign. i

In these cases (of v = +00) the Lefschetz formula of Franke [F] can be recovered, cf.
[GKM], §7.17, 7.18.

16.4. Hyperbolic 3-space. For G(R) = SL,(C) the symmetric space D = G/K may
be identified with hyperbolic 3-space. If I is a torsion-free arithmetic group, then X = I'\D
is a hyperbolic 3-manifold. The group G does not contain a compact maximal torus. Con-
sequently, y(X) =0 (cf. §15.1). However, when X is not compact, there exists a Hecke
correspondence on X whose fixed point set consists of a smooth curve which passes from
one cusp to another cusp. The Euler characteristic of this fixed point set is not zero,
although the Euler form vanishes identically. The fixed point set is not a “locally symmetric
space” in the sense of §2.1 because it contains (and in fact consists of ) a Euclidean factor,
cf. §15.9. It is possible to find particular weight profiles such that the (global) Lefschetz
number of this correspondence on the weighted cohomology is nonzero. However, the
formula [GKM] (thm. 7.14.B) would attribute the contribution from this fixed curve to the
cusps, rather than to the interior stratum. This re-attribution is a result of equation (7.14.2)
of [GKM].

16.5. Nielsen fixed point theory. Suppose X is a compact manifold with fundamental
group I' = 71 (X, xp). Let ' : X — X be a self-map. A choice of path from the basepoint x
to its image f(xo) determines a homomorphism ¢ : ' — I'. Two elements y,,y, € I are
said to be ¢-conjugate if there exists y € I' so that y, = yy1¢(y)_l. Let (I'), denote the set of
¢-conjugacy classes in I and let R(I"), be the vector space of finite formal linear combina-
tions of such classes. For each connected component F' of the fixed point set of f, let
L(F) € R denote the contribution of F to the Lefschetz number L, that is,

L=3(=1)'Tr(f": H'(X) — H'(X)) = ;L(F).

The Nielsen theory (see [GN]) assigns

® a ¢-conjugacy class {F} e (I'), to each connected component F of the fixed point
set, and
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® a (cohomologically defined) Nielsen number N({y}, f) to each ¢-conjugacy class
{7} such that

(16.5.1) {‘}Z(r) Ny Nt = ZF:L(F){F} e R(T),

thereby ‘“‘refining” the Lefschetz fixed point formula. (The sum on the left is over ¢-
conjugacy classes and the sum on the right is over connected components of the fixed point
set.)

Now suppose that X = I'\ D is a compact locally symmetric space. Fix g € G(Q) and
let C 3 X be the resulting Hecke correspondence. Let (I'gI"), be the set of I'-conjugacy
classes of elements e € I'gl". Let E be the local system corresponding to a representation
7: G — GL(E). Theorem 1.5 then says that the Lefschetz number of this correspondence
is:

(16.5.2) L= %){(F(e))tr(r(e)_l;E).

Here, the sum is taken over all conjugacy classes {e} € (I'gI");, and F(e) denotes the set
of fixed points which have characteristic element equal to e. This set is empty unless e is
elliptic (modulo Ag). If F(e) is not empty, then it is compact.

It turns out that if the local system E is trivial, and if the correspondence C =3 X is
actually a self-map f : X — X then the terms in (16.5.2) are exactly the terms in the Niel-
sen formula (16.5.1). The group I' may be identified with the fundamental group 7; (X, xo).
The Hecke correspondence is actually a self-map iff the element g normalizes I". In this
case, the automorphism ¢: I — I' is given by conjugation: ¢(y) = gyg~'. Finally, the
association a — ag (for a € I') determines a one-to-one correspondence

(F)(p — (T'gl);.

There is a slightly more general Nielsen formula for correspondences, also with coefficients
in a local system. The terms in this formula again coincide with the terms in the sum
(16.5.2).
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