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The topological trace formula

By Mark Goresky and Robert MacPherson at Princeton

Abstract. The topological trace formula is a computation of the Lefschetz number
of a Hecke correspondence C acting on the weighted cohomology groups, defined in
[GHM], of a locally symmetric space X. It expresses this Lefschetz number as a sum of
contributions from fixed point components of C on the reductive Borel Serre compactifi-
cation of X. The proof uses the Lefschetz fixed point formula of [GM2].

1. Introduction

1.1. The goal. Although this paper is self contained, it is actually the fourth in a
series of five papers ([GM1], [GM2], [GHM], this paper, and [GKM]) in which we derive a
formula for the Lefschetz number of a Hecke correspondence acting on the weighted coho-
mology groups of any locally symmetric space X. For various reasons, the publication of
this paper was delayed for many years, and it is now appearing after [GKM], which logi-
cally depends on results from this paper.

In [GM1] the formula is described (without proof ) for the special case of locally
symmetric spaces associated to Spð4;RÞ.

In [GM2] we address the general topological problem of determining the contribution
from a single fixed point component to the Lefschetz number of an arbitrary ‘‘weakly hyper-
bolic’’ correspondence acting on a complex of sheaves on a compact stratified space. (An
error [GM2] is corrected in §11.7 of the present paper.)

In [GHM] we construct a family of (complexes of ) sheavesWnC�ðX ;EÞ on the reduc-
tive Borel Serre compactification X of the locally symmetric space X, with coe‰cients in a
local system E. The (hyper) cohomology of this complex is the weighted cohomology
W nH �ðX ;EÞ. For various choices of n the weighted cohomology may be identified with the
ordinary cohomology H �ðX ;EÞ, the compact support cohomology H �c ðX ;EÞ, the L2 coho-
mology H �ð2ÞðX ;EÞ (when it is finite dimensional), or with Franke’s weighted L2 cohomol-

ogy [F], [N]. The goal is (a) to apply the formula of [GM2] to the action of a Hecke
correspondence C½g� on the weighted cohomology W nH �ðX ;EÞ, and (b) to sum these
contributions over all the fixed point components in X , so as to obtain a formula for the
Lefschetz trace of C½g� on the weighted cohomology.



For part (a) one must verify that each Hecke correspondence C½g� is ‘‘weakly hyper-
bolic’’ in the sense of [GM2], and this is the first main result of the present paper, Theorem
11.9. In the process, we describe some of the rich geometry of Hecke correspondences and
their fixed points. In Theorem 13.6, the second main result of this paper, we complete part
(a) by describing the local contribution to the Lefschetz number in terms of roots and
weights.

For part (b), one may sum the contributions from the fixed point components of X in
either the adelic setting or the discrete group setting. This is accomplished in the adelic
setting using orbital integrals, in [GKM], Theorem 7.14 (p. 535). Theorem 7.14 of [GKM]
uses Theorem 13.6 of the present paper as its starting point: it occurs as the expression for
LQðgÞ on page 534 of [GKM].

When the L2 cohomology of X is finite dimensional (the equal rank case), the Lef-
schetz number of the Hecke correspondence C½g� acting on the L2 cohomology H �ð2ÞðX ;EÞ
was computed by J. Arthur in [Ar1], [Ar3] using the trace formula. In this case the L2 coho-
mology coincides with the ‘‘middle’’ weighted cohomology (see [GHM]), so we obtain an
independent computation of this Lefschetz number. In [GKM], it was shown that these two
computations agree. Consequently, the present paper completes an independent proof of
Arthur’s formula.

In the (slightly more general) discrete group setting, the fixed points can be explicitly
‘‘counted’’ using double cosets. This is accomplished in Proposition 8.4 which some geo-
meters may find to be more accessible than the orbital integrals of [GKM] (although they
are in fact equivalent). As a consequence, we obtain a Lefschetz formula, Theorem 1.5 (the
third main result of this paper), in the discrete group setting. These matters will now be
described in more detail.

1.2. Geometric overview. For the purposes of this introduction, a locally symmetric

space X is a complete connected Riemannian manifold with finite volume and non-positive
curvature, such that every point p A X has a neighborhood Up with a Cartan symmetry: an
isometry Up ! Up that takes p to itself and induces minus the identity on the tangent space
to X at p. As for any manifold, we have X ¼ GnD where D is the simply connected cov-
ering space of X and G is the fundamental group of X. Because X has nonpositive curva-
ture, it follows that D is a Riemannian symmetric space of noncompact type, that is, the
metric product of a negatively curved symmetric space from Cartan’s classification, and a
Euclidean factor Rn. The discrete group G acts by Riemannian automorphisms of D. We
assume that this action is ‘‘arithmetic’’ (see §1.3).

Correspondences. We are interested in the automorphisms of X. A morphism

f : X ! Y of locally symmetric spaces is a local isometry; i.e. a map f that restricts to an
isometry Up ! Uf ðpÞ for appropriate choices of neighborhoods. Topologically, a morphism
is a covering map of finite degree. There are finitely many morphisms X ! X . Instead, we
consider a correspondence on X, i.e. a locally symmetric space C together with two mor-
phisms c1 and c2 from C to X. We can think of ðc1; c2Þ : CxX as a multi-valued function,
whose values at p A X are the points in the set c2

�
c�11 ðpÞ

�
. There is a rich supply of corre-

spondences. They include the Hecke correspondence, see §1.3.

Lefschetz numbers. Consider a cohomology theory of X, such as the L2 cohomology
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Hi
ð2ÞðXÞ. A correspondence ðc1; c2Þ : CxX acts on Hi

ð2ÞðX Þ by sending a di¤erential form

o to C �o ¼ ðc1Þ�ðc2Þ
�o. (The map ðc1Þ� adds the di¤erential form over the sheets of the

finite covering map c1.) It is believed that the induced maps C � : Hi
ð2ÞðXÞ ! Hi

ð2ÞðX Þ carry
deep number theoretic significance. One would like to compute them. Unfortunately, this
is too di‰cult. Even the rank of Hi

ð2ÞðXÞ is too hard to compute in most cases. As often

happens, however, a more accessible goal is the computation of the Lefschetz number

LðCÞ ¼
P
i

ð�1Þ i Tr
�
C � : Hi

ð2ÞðX Þ ! Hi
ð2ÞðXÞ

�
:

Our goal is to use the Lefschetz fixed point theorem to express the Lefschetz number

LðCÞ ¼
P
F

LðFÞ

as a sum over fixed point components F of some local contribution LðFÞ.

Compactifying X. The first obstacle is the fact that X is, in general, non-compact.
(When X is compact, the Lefschetz formula was described by M. Kuga and J. H. Sampson
[Ku].) There is no hope for a Lefschetz fixed point formula on a noncompact space. To see
this, consider the example where X ¼ C is the complex line with the self map that sends
x A X to xþ 1. The Lefschetz number for ordinary cohomology is 1. But there are no fixed
points, so the right hand side is 0 no matter how LðFÞ is interpreted. There are similar
examples for L2 cohomology and locally symmetric spaces X.

The solution is to pass to a compactification X of X. We need a compactification
X OX satisfying:

(1) The L2 cohomology of X can be expressed locally on X .

(2) The correspondence ðc1; c2Þ : CxX extends to a compactified correspondence
ðc1; c2Þ : CxX .

(3) The singularities of X are simple enough to allow a calculation of LðFÞ.

Remarks on these properties. In (1), ‘‘expressed locally’’ means that the L2 coho-
mology is the cohomology of a complex of sheaves on X . For (2), we want a functorially
constructed compactification C of C. The map C � on L2 cohomology should be induced by
a lift of the complex of sheaves to C. Properties (1) and (2) together will imply that there
exists an expression LðCÞ ¼

P
LðFÞ for LðCÞ as a sum of contributions LðFÞ over fixed

point components F of C, by applying the fixed point theorem of Grothendieck and Illusie
[GI].

A lot of e¤ort has gone in to constructing various compactifications of X. Most of
these fail some of the criteria, however. For example, the toroidal compactification
[AMRT] for Hermitian X satisfies (3) but neither (1) nor (2). The Borel-Serre compactifi-
cation [BS] satisfies (2) and (3) but not (1). (It does satisfy (1) in the case of ordinary coho-
mology rather than L2 cohomology. In this case, U. Weselmann, following suggestions of
G. Harder, has carried out the Lefschetz computations ([We]).)
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It is likely that (for su‰ciently high rank) any compactification satisfying (1) and (2)
must be singular. A well known example is the Baily-Borel compactification for Hermitian
X. This satisfies (1) because of the Zucker conjecture (i.e. the Looijenga [Lo], Saper-Stern
[SaS] theorem) which expresses the L2 cohomology of X on the Baily-Borel compactifica-
tion as the intersection cohomology, which is the cohomology of a complex of sheaves (see
[GM4]). It satisfies (2) because it is functorial. However, the singularities of the Baily-Borel
compactification are as complex as a locally symmetric space only slightly smaller than X

and are too complicated to allow a direct computation of LðFÞ.

The first miracle is that there is a compactification satisfying all three properties: the
reductive Borel-Serre compactification X (defined for all X, Hermitian or not). In the Her-
mitian case, it may be thought of as a (non algebraic) partial resolution of singularities
of the Baily-Borel compactification. The reductive Borel-Serre compactification satisfies
property (2) because it is functorial with respect to morphisms of locally symmetric spaces.
So in the diagram ðc1; c2Þ : CxX , the space C is the reductive Borel-Serre compactifica-
tion of C. It satisfies property (1) because of the existence of weighted cohomology described
below, and it satisfies property (3) because its singularities may be explicitly constructed
from certain nilmanifolds (see §1.4).

Weighted cohomology. The Lefschetz fixed point formula of this paper is for the
weighted cohomology groups W nHiðX ;EÞ where X is any locally symmetric space and E is
a local system over it. These were introduced in [GHM]. The weighted cohomology is the
cohomology of a complex of sheaves WnC�ðEÞ. Therefore it satisfies property (1) men-
tioned above.

The weighted cohomology groups W nHiðX ;EÞ depend on an auxiliary param-
eter n called a weight profile. When X has finite dimensional L2 cohomology, then
W nHiðX ;EÞ ¼ Hi

ð2ÞðX ;EÞ provided the weight profile n is chosen to be the ‘‘middle

weight’’ ([GHM], [N]), so our formula includes the L2 case. Another weight profile gives
the ordinary cohomology of X. A. Nair [N] has shown that for any weight profile, the
weighted cohomology W nHiðX ;EÞ is equal to J. Franke’s ‘‘weighted L2 cohomology’’ [F]
for a particular weight function. For a leisurely account of the properties of weighted coho-
mology, see the introduction to [GHM].

The Lefschetz formula. Even on a compact space with mild singularities, the fixed
point contribution LðFÞ is usually too di‰cult to compute. The second miracle is that on
the reductive Borel-Serre compactification X , each correspondence is hyperbolic. A formula
for the contributions LðFÞ for hyperbolic correspondences was developed in [GM1], [GM2]
expressly for the application in this paper to Hecke correspondences. A related result in a
di¤erent language, which applies to functions (rather than correspondences) was disocvered
in [KS], Prop. 9.6.12.

The rest of the introduction proceeds as follows. The next section enumerates the
fixed point components and determines their topology. Section 1.4 describes the local con-
tribution from each fixed point component, and §1.5 adds them up to give the Lefschetz
number LðCÞ.

1.3. The structure of a correspondence on X. The theory of correspondences on X is
very self-referential. The reductive Borel-Serre compactification X is a stratified space
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whose strata are themselves locally symmetric spaces. The closure of such a stratum is its
reductive Borel-Serre compactification. The fixed point components of a correspondence on
X are (almost) locally symmetric. A correspondence restricted to a stratum of X is itself a
correspondence.

Obtaining X from G. In order to be precise, we need the language of algebraic
groups. We use boldface symbols for linear algebraic groups, and Roman symbols for their
Lie group of real points, for example, G ¼ GðRÞ. Throughout this paper we fix a reductive
linear algebraic group G defined over the rational numbers Q. The symmetric space D for G

is defined to be G=SGK . Here K is a maximal compact subgroup of G and SG is the greatest
Q-split torus in the center of G. The group G acts on D by Riemannian automorphisms.
Let X ¼ GnD ¼ GnG=SGK , where GHGðQÞHG is assumed to be a neat arithmetic sub-
group. This is the arithmeticity assumption on the locally symmetric space X of §1.2. By
results of Margulis, in most cases the arithmeticity assumption is automatically satisfied.
(The space D may have Euclidean factors because G may have a part of its center that
is split over R but not over Q. After dividing by G, these Euclidean factors will become
wound into tori.)

Rational parabolic subgroups P of G. If P is a rational parabolic subgroup, let LP

be its Levi quotient; let nP : P! LP be the projection; let UP be the unipotent radical; let
SPOLP be the maximal Q-split torus in the center of LP; and let DP be the set of simple
roots occurring in NP ¼ LieðUPÞ. Let KP ¼ K XLP be the maximal compact subgroup of
LP which corresponds to K; set GP ¼ GXP; and GL ¼ nPðGPÞ.

The reductive Borel-Serre compactification X (§2.10). The strata of X are indexed by
G-conjugacy classes of rational parabolic subgroups P of G. The stratum XP OX corre-
sponding to the conjugacy class containing a parabolic P is the locally symmetric space
GLnDP, where DP ¼ LP=SPKP is the symmetric space of the Levi factor LP. If POQ then
the stratum XP is contained in the closure XQ of XQ (which is the reductive Borel-Serre
compactification of XQ).

Hecke correspondences. Let g A GðQÞ. Let G 0HGX g�1Gg be a subgroup of finite
index. This data determines a correspondence ðc1; c2Þ : C½g;G 0�xX as follows. Let
C½g;G 0� ¼ G 0nD. The mapping c1 is obtained by factoring the projection d1 : D! GnD ¼ X

through C½g;G 0� which may be done since G 0HG. The mapping c2 is obtained by factoring
the projection d2 : D! GnD through C½g;G 0�, where d2ðxÞ ¼ d1ðgxÞ. Such a factoring
exists because G 0H g�1Gg.

It is a fact (Proposition 6.9) that every correspondence may be obtained in this way.
For the maximal choice G 0 ¼ GX g�1Gg, the resulting correspondence is called a Hecke

correspondence and is denoted C½g�xX . Up to isomorphism, this correspondence depends
only on the double coset GgG A GnGðQÞ=G (cf. Lemma 6.6).

The correspondence C½g;G 0�xX is a covering of the correspondence C½g�xX of
degree d ¼ ½G : G 0�. The action of C½g;G 0� on weighted cohomology is simply d times the
action of C½g�. So, without loss of generality, we may concentrate on computing the Lef-
schetz number of the Hecke correspondence C½g� for a fixed double coset GgG A GnGðQÞ=G.

The correspondence on a stratum of X. Each Hecke correspondence C½g�xX has a
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unique continuous extension to the reductive Borel-Serre compactification C½g�xX . Every
boundary stratum CQ of C½g� will be a correspondence taking a boundary stratum of X to
another one. Since we are interested in fixed points, we want to classify those CQ which
take a stratum XP OX to itself. There is one of these for every double coset GPgiGP in
the intersection PXGgG (Proposition 7.3). It is isomorphic to a correspondence of the
form C½gi;G 0L� as described above, but with G replaced by LP. (Here gi ¼ nPðgiÞ A LP and
G 0L ¼ nPðGPX g�1i GgiÞHLP.)

Fixed point components. The fixed point set (sometimes called the coincidence set) of
a correspondence ðc1; c2Þ : CxX is by definition the set of points in C on which the two
maps c1 and c2 agree.

The fixed point set of the correspondence C½g;G 0�xX (before compactification)
breaks up into constituent pieces FðeÞ indexed by G conjugacy classes of elliptic (modulo
SG) elements e A GgG (§8.2). The piece FðeÞ corresponding to the conjugacy class contain-
ing e is the space G 0enGe=K

0
e , where Ge is the centralizer of e in G, G 0e ¼ G 0XGe, and

K 0e ¼ GeX
�
zðSGKÞz�1

�
where zAGK A D ¼ G=AGK is a fixed point of the action of e on

D. (Such a point exists since e is elliptic (§8.4).) The constituent FðeÞ is a finite union of
spaces, each of which is almost a locally symmetric space for the group Ge. (It may have
infinite volume because it may have Euclidean factors that are not wound into tori.)

Applying this result to the boundary stratum XP, in conjunction with the calculation
(§1.3) of the part of the correspondence C½g� which preserves XP, we get a group theoretic
enumeration of all the fixed points of C½g� which lie over points in XP: For each choice of a
double coset GPgiGPHGgGXP, and for each conjugacy class of elliptic (modulo SP) ele-
ments e in GLgiGL, there is a fixed point constituent FPðeÞ. (It is a smooth submanifold of
the stratum CQ of C½g� which is determined by the double coset GPgiGP as in §1.3.) Sum-
ming over G conjugacy classes of rational parabolics P gives the complete enumeration of
fixed points of C½g�.

The topology of the fixed point set. There are finitely many constituents FPðeÞ of the
fixed point set and they are disjoint. Unfortunately however they may not be topologically
isolated from each other. If XP 0 OXP, then the closure of FPðeÞ can contain points in some
FP 0 ðe 0Þ. So a single connected component of the fixed point set may have a very compli-
cated structure. This phenomenon is the main source of technical di‰culty of this paper.
(The only real limit we have found on the possible complexity of a connected component of
the fixed point set is Proposition 10.4.) We get around this problem by composing the
correspondence with a mapping, very close to the identity, which shrinks a neighborhood
of the singularity set X � X into the singularity set, and which does something similar on
the closure of each stratum of X . This has the e¤ect of ‘‘truncating’’ each connected com-
ponent of the fixed point set into pieces each of which is contained in a single stratum of X
(a process which may be considered as a sort of topological analog to Arthur’s truncation
procedure). The Lefschetz number of this ‘‘modified’’ Hecke correspondence is equal to
that of the original one. We prove that the modified Hecke correspondence is hyperbolic.
The resulting formula (Theorem 1.5) would be the same if no truncation were used, how-
ever the proof would be more technical.

1.4. Calculating the local contribution L(F ). Let E be a finite dimensional repre-
sentation of G, and let E be the associated local system over X. Denote by P0 a fixed min-
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imal (‘‘standard’’) rational parabolic subgroup of G and by S0 a maximal Q-split torus in
the center of its Levi factor. Then SG OS0. A weight profile n A w�QðS0Þ (§12.2) is a (quasi-)
character of S0 whose restriction to SG coincides with the character by which SG acts on E.
The Hecke correspondence C½g�xX has a canonical lift (§13.1) to the weighted cohomol-
ogy sheaf WnC�ðEÞ, so it induces a homomorphism on weighted cohomology whose Lef-
schetz number

LðC½g�Þ ¼
P
if0

ð�1Þ i Tr
�
C½g�;W nHiðX ;EÞ

�
ð1:4:1Þ

is what we want to compute.

Hyperbolicity of the correspondence. Let us assume for the moment that the fixed
point set is topologically the disjoint union of the constituent pieces FPðeÞ. This is not
always the case, but the formula we obtain is nevertheless always valid, as explained in
§1.3.

We focus on a single stratum XP which is preserved by the correspondence, and
on a single stratum of the correspondence C corresponding to a single double coset
GPgiGP HPXGgG. Within this stratum, we focus on a single constituent FPðeÞ of the fixed
point set. Each stratum XQ which contains XP in its closure correspondence to a rational
parabolic subgroup Q containing P, and therefore to a unique subset I HDP. The empty
subset corresponds to XP itself and the largest subset DPODP corresponds to X. Let ae be
the projection of e to the identity component AP of SPðRÞ. The elements of DP are rational
characters of SP so we may define

DþP ðeÞ ¼ fa A DP j aðaeÞ < 1g:

Let XQ be the stratum containing XP which corresponds to the subset DþP ðeÞODP. The
correspondence C½g� is hyperbolic near FPðeÞ (11.7), with ‘‘expanding’’ (or ‘‘unstable’’)
set XQ (Theorem 11.9, §13.10). In other words, near FPðeÞ the Hecke correspondence is
‘‘expanding’’ in those directions normal to XP which point into XQ.

Let F 0 ¼ c1
�
FPðeÞ

�
¼ c2

�
FPðeÞ

�
HXP and let Le be the centralizer of e in LP. There

are di¤eomorphisms (Proposition 8.4),

FPðeÞGG 0enLe=K
0
e and F 0GGenLe=K

0
e

where K 0e ¼ Le X zðKPAPÞz�1 (for appropriately chosen z A LP), Ge ¼ Le XGL, and
G 0e ¼ Le XG 0L. The projection FPðeÞ ! F 0 is a covering of degree de ¼ ½Ge : G

0
e� (cf. §8.6).

It follows from the Lefschetz fixed point theorem of [GM2] that the local contribution
is given by

L
�
FPðeÞ

�
¼ wcðF 0Þ

P
if0

ð�1Þ i Tr
�
C½g�� : Hi

xðA�Þ ! Hi
xðA�Þ

�

(see Theorem 13.2). Here A� ¼ h !j �WnC�ðEÞ where h is the inclusion F 0 ,! XP ,! XQ and
j is the inclusion XQ ,! X ; Hi

xðA�Þ denotes its stalk cohomology at x A F 0; and wc denotes
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the Euler characteristic with compact supports. See the introduction to [GM2] for a geo-
metric account of hyperbolic correspondences.

The stalk cohomology. Let c denote the codimension of F 0 in XP and let O be the top
exterior power of the normal bundle of F 0 in XP. Let r denote the index ½GPXUP : G 0P XUP�
where G 0P ¼ GPX g�1i GPgi.

The stalk cohomology of the sheaf A� at a fixed point x A F 0HXP is given by (13.10.4)
and Proposition 12.8:

H �x ðA�ÞG
L

w AW 1
P

InðwÞ¼DþP ðeÞ

VL
wðlBþrBÞ�rB ½�lðwÞ � jD

þ
P ðeÞj � c�nOx:ð1:4:2Þ

The Hecke correspondence C½g� acts on the first factor by rde times the action of e�1 and it
acts on the second factor by ð�1Þc, cf. (13.10.5). We now describe the other symbols in this
formula.

Let T be a maximal torus (over C) in G, and let B be a Borel subgroup (over C) of G
containing T. These may be chosen as in §12.7 so that S0ðCÞHTðCÞ and so that BHP0.
Let WG ¼W

�
GðCÞ;TðCÞ

�
denote the Weyl group of G. The choice of B determines posi-

tive roots FþG ¼ Fþ
�
GðCÞ;TðCÞ

�
, and a length function l on WG. Let W

1
P HWG denote the

set of Kostant representatives: the unique elements of minimal length from each of the co-
sets WPx A WPnWG, where WP ¼W

�
LPðCÞ;TðCÞ

�
, (§12.7). The sum in (1.4.2) is over those

v A W 1
P such that the set

InðwÞ ¼
�
a A DP j

�
wðlB þ rBÞ � rB � n; ta

�
< 0

�
coincides with the set DþP ðeÞ defined above (after conjugating P so as to contain B). Here, as
in §12.7, lB denotes the highest weight of the representation E, and ftag form the basis of
the cocharacter group wQ� ðSP=SGÞ which is dual to the basis DP of the simple roots. Also,
rB denotes the half-sum of the positive roots FþG . The product

�
vðlB þ rBÞ � rB � n; ta

�
makes sense: the restriction

�
vðlB þ rBÞ � rB � n

�
jSP is trivial on SG and hence defines an

element of w�ðS 0PÞnQ which can then be paired with ta. For any B-dominant weight b, the
symbol VL

b denotes the irreducible LP-module with highest weight b A w�
�
TðCÞ

�
and

VL
b ½�m� means that the module VL

b is placed in degree m.

The geometry behind this formula is roughly this: Consider the intersection of a small
neighborhood of x in X with the largest stratum X. This intersection will deformation
retract to the nilmanifold ðGXUPÞnUP. The cohomology of this intersection with coe‰-
cients in E coincides with the NP cohomology by Van Est’s theorem, which is computed
by Kostant’s theorem to be

L
w AW 1

P

V L
wðlBþrBÞ�rB ½�lðwÞ�. The cut-o¤

�
InðwÞ ¼ DþP ðeÞ

�
and the

degree shift (by lðwÞ þ jDþP ðeÞj) come from the computation of h !j �WnC�ðEÞ in §12. The
integer r is the ramification index: the degree of the mapping c1 when it is restricted to this
nilmanifold (§13.9).

By adding the contributions L
�
FPðeÞ

�
over all the fixed point constituents FPðeÞ we

arrive at the final result in this paper. It is proven in §14.
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1.5. Theorem. Let g A GðQÞ. Let C½g�xX be the resulting Hecke correspondence.
Fix a weight profile n A w�QðS0Þ. The Lefschetz number LðC½g�Þ (1.4.1) is given by

P
½P�

P
i

P
feg

rwcðG 0enLe=K
0
eÞð�1Þ

jDþP ðeÞj P
w AW 1

P

InðwÞ¼DþP ðeÞ

ð�1ÞlðwÞ Trðe�1;VL
wðlBþrBÞ�rBÞ:

The first sum is over a choice of representative P, one from each G-conjugacy class of
rational parabolic subgroups of G. For such a P, set GgGXPðQÞ ¼

‘
i

GPgiGP (where

GP ¼ GXPðQÞ and where gi A PðQÞ). The second sum is over these finitely many double
cosets. Set gi ¼ nPðgiÞ A LP and GL ¼ nPðGPÞ. The third sum is over a choice of representa-
tives e, one from each GL-conjugacy class of elliptic (modulo SP) elements e A GLgiGL. The
rest of the notations are explained above.

There are various ways to rewrite the Lefschetz formula; see §14.4, §15.8 and §15.9.

1.6. Adelic formulation. One of the main goals of the series of papers [GM1],
[GM2], [GHM], [GKM], and the present paper is Theorem 7.14.B (p. 535) of [GKM], an
expression for the Lefschetz number LðC½g�Þ in the adelic setting. If the weight profile n is
the ‘‘middle’’ weight (and if the rank of G equals the rank of K) then the weighted coho-
mology coincides with the L2 cohomology, and this formula coincides with Arthur’s for-
mula [Ar1] (Theorem 6.1). If the weight profile n ¼ �y then the weighted cohomology
coincides with the ordinary ‘‘full cohomology’’ H �ðX ;EÞ and this formula coincides with
Franke’s formula [F] (thm. 21, p. 273). The paper [GKM] uses the above Theorem 1.5 as
its starting point (see the remarks following Theorem 13.6), then modifies it using three
main steps.

(1) The quantity rwcðG 0enLe=K
0
eÞ which appears in Theorem 1.5, and the sum

P
i

over

double cosets GPgiGPHGgGXP (which precedes it) are replaced by an orbital integral.

(2) If LP=AP does not contain a compact maximal torus, then the stratum CP makes
no contribution to Arthur’s formula or to Franke’s formula. The same holds for the general
formula in Theorem 7.14.B of [GKM]. However fixed points in such a stratum may make a
nonzero contribution to the formula in Theorem 1.5 above. In [GKM], §7.14 the method of
descent is used to re-attribute such a contribution to smaller strata CQ for which LQ=AQ

does admit a compact maximal torus. See also §15.8 of this paper.

(3) Theorem 1.5 above involves a sum over parabolic subgroups, while Theorem
7.14.B of [GKM] involves a sum over Levi subgroups. This is achieved in [GKM] (p. 529)
by grouping together the contributions from those parabolic subgroups with a given Levi
factor. (This has the remarkable e¤ect of grouping together fixed points with di¤erent
contracting-expanding behavior.) In [GKM] it is shown that the resulting contribution
from a single Levi subgroup may be interpreted in terms of the (Harish-Chandra) character
of a certain admissible representation. In the case of the middle weight, this fact gives rise
to a combinatorial formula for the stable discrete series characters, which is the second
main result of [GKM]. (Although this discrete series character formula was discovered by
comparing Arthur’s formula to Theorem 1.5, the statement and proof of the character
formula in [GKM] is independent of the part of the paper dealing with Lefschetz numbers.)
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1.7. Related literature. Besides the articles listed above, and an extensive literature
on the co-compact case, we mention several other closely related papers. The Lefschetz
formula in the rank one case was studied by Moscovici [Mo] and Barbasch-Moscovici
[BaM], also by Bewersdor¤ [Be] and Rapoport [R]. In [St], M. Stern gave a general Lef-
schetz formula for Hecke correspondences. We do not easily see how to compare his for-
mula with ours. In [Sh] S. Shokranian, following the outline in [GKM], describes a formula
for the Lefschetz numbers of Hecke operators on twisted groups. We wish to draw atten-
tion to Langlands’ article [L1], in which the expanding and contracting nature of the fixed
points on the boundary was first isolated (see especially Proposition 7.12, p. 485).
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�
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2. Notation and terminology

2.1. Locally symmetric spaces. Linear algebraic groups will be represented by bold-
face symbols (e.g., G, S) and their real points will be in Roman type (e.g., G ¼ GðRÞ,
S ¼ SðRÞ). Throughout this paper we fix a connected reductive linear algebraic group G

defined over Q. Denote by SG the greatest Q-split torus in the center of G, and let
AG ¼ SGðRÞ0 denote the identity component of the group of real points of SG. Following
[BS], §1.1 let

0G ¼
T
w

kerðw2Þ

be the intersection of the kernels of the squares of all the rationally defined characters
w : G! GL1. Then

0G is normal in G; it contains every compact subgroup and every
arithmetic subgroup of G, and G ¼ AG � 0G. Let KHGðRÞ be a maximal compact sub-
group and define D ¼ G=KAG. We refer to D as the ‘‘symmetric space’’ associated to G.
The derived group Gð1Þ is semisimple and K ð1Þ ¼ Gð1ÞXK is a maximal compact subgroup.
The space D is di¤eomorphic to the Cartesian product of the Riemannian symmetric space
Dð1Þ ¼ Gð1Þ=K ð1Þ with A0=AG where A0 is the identity component of the greatest R-split
torus in the center of G. Both GðRÞ and 0G act transitively on D, an action which we usu-
ally denote by ðg; xÞ 7! gx or g:x but occasionally it will be necessary to refer to this action
as a mapping, in which case we write

Tg : D! Dð2:1:1Þ

for g A G. (For most geometric questions involving the symmetric space D, one could
replace G by 0G, however there are Hecke correspondences for G which do not necessarily
come from 0G.) For each x A D the stabilizer KðxÞ of x in 0G is a maximal compact sub-
group of 0G so we obtain a G-equivariant di¤eomorphism

cx : G=AGKðxÞ ! D:

The choice of KHG corresponds to a ‘‘standard’’ basepoint x0 A D. We write
K ¼ Kðx0Þ and K 0 ¼ AGKðx0Þ. An element x A G is elliptic modAG (often shortened to
‘‘elliptic’’) if it is GðRÞ-conjugate to an element of K 0. There is a unique ‘‘algebraic’’ Cartan
involution y ¼ yx0

: G ! G whose fixed point set is K. If x1 A D is another basepoint with
x1 ¼ gx0 then the Cartan involution for the new basepoint is given by

yx1ðyÞ ¼ gyx0ðg�1ygÞg�1ð2:1:2Þ

and the composition c�1x1
cx0

: G=AGKðx0Þ ! G=AGKðx1Þ is given by

yAGKðx0Þ 7! yg�1AGKðx1Þ:ð2:1:3Þ

Let g ¼ kl p be theG1 eigenspace decomposition of y in LieðGÞ. The Cartan involution y

preserves 0G and determines a decomposition of its Lie algebra, 0g ¼ kl 0p. Then 0p may
be canonically identified with the tangent space Tx0D. Any choice of K-invariant inner
product on 0p induces a G-invariant Riemannian metric on X.

Throughout this paper we also fix an arithmetic subgroup GHGðQÞ and denote by
t : D! X ¼ GnD the projection to the locally symmetric space X.
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2.2. Parabolic subgroups. Fix a rationally defined parabolic subgroup PHG. We
have the following groups:

(1) UP ¼ the unipotent radical of P; NP ¼ LieðUPÞ its Lie algebra.

(2) RdP ¼ the Q split radical of P.

(3) LP ¼ the Levi quotient; nP : P! LP the projection.

(4) MP ¼ 0LP ¼
T
w

kerðw2Þ.

(5) SP ¼ RdP=UP.

(6) AP ¼ SPðRÞ0 the identity component of the set of real points.

(7) GP ¼ GXP, GL ¼ GLðPÞ ¼ nPðGPÞHMP.

(8) KP ¼ K XP, KL ¼ KLðPÞ ¼ nPðKPÞHMP, K
0
P ¼ K 0XP ¼ KPAG.

The torus SP may also be identified as the greatest Q-split torus in the center of LP. It
contains SG and we denote the quotient by S 0P ¼ SP=SG, with corresponding identity
component A 0P ¼ S 0PðRÞ

0 ¼ AP=AG. We identify A 0P with the subgroup AP X 0G to obtain a
canonical decomposition AP ¼ A 0PAG.

The group of real points of the Levi quotient is the direct product, LP ¼MP � AP.
For any x A P write nPðxÞ ¼ nMðxÞnAðxÞ for its MP and its AP components and write nA 0 ðxÞ
for the further projection of nAðxÞ to the quotient A 0P ¼ AP=AG. The group P acts transi-
tively on D with isotropy K 0P ¼ AGKP ¼ StabPðx0Þ.

The choice of standard basepoint x0 A D with associated Cartan involution y : G! G

determines a unique y-stable lifting [BS], §1.9, i ¼ ix0
: LP ! P. Denote the image by

LPðx0Þ ¼ iðLPÞ. We obtain liftings of subgroups, APðx0Þ ¼ iðAPÞ and MPðx0Þ ¼ iðMPÞ.
Thus the choice x0 A D of basepoint determines a canonical Langlands’ decomposition

P ¼ UPAPðx0ÞMPðx0Þð2:2:1Þ

and we write

g ¼ ugagmgð2:2:2Þ

where ug ¼ ginPðg�1Þ, ag ¼ inAðgÞ, and mg ¼ inMðgÞ for any g A P. The groups KP HP and
KLðPÞ ¼ nPðKPÞ are canonically isomorphic, in fact,

KP ¼ iðKLðPÞÞHMPðx0ÞHLPðx0Þ:ð2:2:3Þ

By abuse of notation we will usually write KPHLP. If x1 A D is another basepoint with
associated Cartan involution yx1 : G! G then, by (2.1.2), the associated yx1 -stable lifting
ix1 : LP ! P is given by

ix1ðyÞ ¼ giðyÞg�1ð2:2:4Þ

where g A P is any element such that g � x0 ¼ x1 A D. The geodesic action of Borel and Serre
[BS], §3 is the right action of AP on D which is given by
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ðzK 0PÞ � a ¼ ziðaÞK 0P A D ¼ P=K 0Pð2:2:5Þ

for any a A AP and z A P. It is well defined since iðAPÞ commutes with K 0P, and it passes to
an action of A 0P ¼ AP=AG. The geodesic action commutes with the (left) action of P, and it
is independent of the choice of basepoint, by (2.1.3). It is not an action by isometries.

For g ¼ ugagmg A P as in (2.2.2), the element ag A AP is called the torus factor of g.
We will often use without mention the following fact: if g ¼ ugagmg A GXP then ag ¼ 1.

2.3. Roots. Fix once and for all a minimal rational parabolic subgroup P0 HG.
The parabolic subgroups PPP0 are called standard. Let S0 ¼ iðSP0

Þ be the lift of SP0
. Let

F ¼ QFðS0; gÞ denote the rational relative roots of g with respect to S0. The unipotent
radical UP0

determines a linear order on the root system QF such that the positive roots are
those occurring in N0 ¼ LieðUP0

Þ. Let D denote the resulting collection of simple roots.
Each subset I HD corresponds to a unique standard parabolic subgroup P0ðIÞIP0 ([BS],
§4, [Bo3], §14.17, §21.11) such that SP0ðIÞH kerðaÞ for all a A I .

Suppose PHG is any rational parabolic subgroup. Then P is GðQÞ-conjugate
to a unique standard parabolic subgroup P0ðIÞ. Any choice of conjugating element
P ¼ gP0ðIÞg�1 gives rise to the same (canonical) isomorphism SP GSP0ðIÞ. The elements
of D� I give rise (by conjugation and restriction to SP) to the set DP of simple roots of SP

occurring in NP. The roots a A DP are trivial on SG and form a basis for the character
module wQðS 0PÞ ¼ w�ðSP=SGÞnZ Q. Rather than follow the common practice of identify-
ing DP with D� I we will, for any a A DP denote by a0 A D the unique simple root which
agrees with a after conjugation and restriction to SP.

2.4. Two parabolic subgroups. If PHQ are rational parabolic subgroups then
P ¼ nQðPÞ is a rational parabolic subgroup of LQ, with unipotent radical UP ¼ UP=UQ.
The y-stable lifts of the Levi quotients satisfy LPðx0ÞHLQðx0Þ and we have a diagram

UQ H UP H P H Q???y
???y

???y
???ynQ

1 H UP=UQ H P H LQ???y
???y

???yn
P

1 H 1 H LP

with nQnP ¼ nP. The inclusion RdQHRdP induces an injection SQ ,! SP which agrees
with the inclusion SPðx0ÞISQðx0Þ. It follows from (2.4.4) below that the geodesic action
of A 0Q on D agrees with the restriction (to A 0QHA 0PÞ of the geodesic action of A 0P on D (cf.
[BS], prop. 3.11). Each a A DQ is the restriction to SQ of a unique simple root iðaÞ A DP. The
association i : DQ ! DP is injective, so DP is the disjoint union

DP ¼ iðDQÞ q J with SQ ¼
� T
a A J

kerðaÞ
�0
:ð2:4:1Þ

Among rational parabolic subgroups containing P, the group Q is determined by the set J,
and we will write Q ¼ PðJ Þ. The subset JHDP of simple roots may be identified with
the set
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J ¼ DPð2:4:2Þ

of simple roots DP of S 0
P
¼ S

P
=SQ occurring in NP ¼ LieðUPÞ. (Although the projection nP

induces a canonical isomorphism SPGS
P
, the torus SP corresponds to the parabolic sub-

group PHG so S 0P ¼ SP=SG while S
P
corresponds to the parabolic subgroup PHLQ so

S 0
P
¼ S

P
=SQ.)

A certain amount of confusion arises from the fact that A 0Q has two natural comple-
ments in A 0P. One is the identity component A 0Q 0 of the group of real points of the torus
S 0Q 0 ¼ SQ 0=SG where

SQ 0 ¼
� T
a A iðDQÞ

kerðaÞ
�0

HSP:

Then SQ 0 is the (identity component of ) the center of the Levi quotient of the largest par-
abolic subgroupQ 0IP such that QXQ 0 ¼ P, which we refer to as the parabolic subgroup
containing P that is complementary to Q. We therefore refer to the complementary decom-

position A 0P ¼ A 0QA
0
Q 0 . The other complement is

A
Q
P ðx0Þ ¼ A 0PXMQðx0Þ

whose Lie algebra a
Q
P is the orthogonal complement to a 0Q in a 0P with respect to any

Weyl-invariant inner product on a 0P. We will usually identify the quotient AP=AQ ¼ A 0P=A
0
Q

with this second complement, A
Q
P , and we will refer to the orthogonal decompositions

A 0P ¼ A 0QA
Q
P and AP ¼ AQA

Q
P .

The canonical Langlands decompositions of P and Q are related as follows: Set
UPðx0Þ ¼ ix0

ðUP=UQÞ. Note that MPðx0ÞHMQðx0Þ and AQ ¼ A 0QAG. If

P ¼ UP½A
Q
P ðx0ÞAG�MPðx0Þð2:4:3Þ

is the canonical Langlands decomposition of P, then

P ¼ ½UQUPðx0Þ�½AQðx0ÞAQ
P ðx0Þ�MPðx0Þð2:4:4Þ

¼ UQAQðx0Þ½UPðx0ÞAQ
P ðx0ÞMPðx0Þ�:ð2:4:5Þ

The first is the canonical Langlands decomposition of P while the second is the decompo-
sition of P which is induced from the canonical Langlands decomposition of Q.

2.5. Boundary strata. Fix a rational parabolic subgroup PHG. Define

(1) the Borel-Serre boundary component eP ¼ D=A 0P (quotient under geodesic
action),

(2) the Borel-Serre boundary stratum YP ¼ GPneP,

(3) the reductive Borel-Serre boundary component

DP ¼ UPneP ¼ P=KPAPUP ¼ LP=KPAP ¼MP=KPAG;

(4) the reductive Borel-Serre boundary stratum XP ¼ GPnDP ¼ GLðPÞnDP.

The projection nP : P! LP induces a projection m : eP ! DP which passes to a projection
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m : YP ! XP. Writing YP ¼ GPnP=KPAP and XP ¼ GLðPÞnLP=KPAG, the mapping m is just
mðGPxKPAPÞ ¼ GLðPÞnPðxÞKPAG.

As in [Bo4], §4.2, the Langlands’ decomposition (2.2.1) determines a (basepoint-
dependent) di¤eomorphism,

F ¼ FP : UP � A 0P �DP ! D ¼ P=K 0Pð2:5:1Þ

by

Fðu; a;mKLÞ ¼ uix0ðaÞix0
ðmÞKPð2:5:2Þ

where u A UP, a A A 0P, and m A MP. With respect to the coordinates defined by the di¤eo-
morphism F, the mapping m is the projection to the third factor. The (left) action of g A P

and the (right) geodesic action of b A A 0P on D are given by

g:ðu; a;mKLÞ � b ¼
�
guix0nPðg�1Þ; nAðgÞ:ab; nMðgÞ:mKL

�
ð2:5:3Þ

(where u A UP, a; b A A 0P, and m A MP), as may be seen by applying the function F to both
sides of this equation. For any fixed b A A 0P the set FðUP � fbg �DPÞHD is called a ca-

nonical cross section; it is a single orbit of the group

0P ¼
T
w

kerðw2Þ ¼ UPMP;

the intersection being taken over all rationally defined characters w : P! GL1. The pull-
back by F of the canonical Riemannian metric on D is given ([Bo4], §4.3) by the orthogonal
sum,

F �ðds2Þ ¼
P
b AF

a�2bhbðzÞl da2l ds2Mð2:5:4Þ

where ds2M is the canonical Riemannian metric on DP as determined by the Killing form for
MP, where F denotes the set of roots of UP with respect to AP, and hbðzÞ is a smoothly
varying metric on the root space ub.

2.6. The flat connection ([GHM], §7.10). For any point x ¼ gK 0P A D with g ¼ uam

decomposed according to (2.2.1), define the submanifold

Mx ¼ FPðfug � fag �DPÞ ¼ u:ix0
ðaÞ:ix0

ðMPÞKP HD:ð2:6:1Þ

2.7. Lemma. The manifold Mx is perpendicular to the fibers of the mapping

nP : D! DP. The restriction nPjMx is an isometry. The submanifolds Mx form the horizontal

submanifolds of a flat connection on the fiber bundle m : eP ! DP, which is independent of the

choice of basepoint and is invariant under the action of GP and which therefore passes to a flat

connection on m : YP ! XP.

2.8. Proof. Perpendicularity follows from (2.5.4). Also, by (2.5.4), the mapping nP is
an isometry. Finally the flat connection is GP-invariant because by (2.5.3) the action of
g A GP on D is given by

g � ðu; a;mKLÞ ¼
�
guix0

nPðg�1Þ; a; nMðgÞ:mKL

�
ð2:8:1Þ

which does not mix the factors. r
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2.9. Borel-Serre compactification. In this section we recall basic facts from [BS]. Let
PHG be a rational parabolic subgroup. The elements of DP determine a canonical iso-

morphism ([BS], §4.2) A 0PG ð0;yÞ
DP which extends to a unique partial compactification,

A 0P G ð0;y�
DP :

So each a A DP extends to a homomorphism of semigroups a : A 0P ! ð0;y�. Denote by

A 0P ð>1Þ ¼ fa A A 0P j aðaÞ > 1 for all a A DPg;ð2:9:1Þ

A 0P ðf1Þ ¼ fa A A 0P j aðaÞf 1 for all a A DPgð2:9:2Þ

and similarly for A 0P ð>1Þ and A 0P ðf1Þ. The Borel-Serre partial compactification ~DD of D is
obtained by adjoining, for each rational parabolic subgroup PHG the rational boundary
component eP ¼ D=A 0P as the set of limits of the A 0P geodesic orbits in D, together with the
Satake topology [Sat], §2 (p. 562), [BS], §7.1, [Z3], §3.7. It is covered by ‘‘corners’’; the
corner associated to P is

DðPÞ ¼ D�A 0
P
A 0P ¼

‘
QPP

eQ:ð2:9:3Þ

Then DðPÞ is an open PðQÞ-invariant neighborhood (in ~DD) of the boundary component eP,
on which PðQÞ acts in a continuous and component-preserving way. The di¤eomorphism F

of equation (2.5.2) extends to a di¤eomorphism of manifolds with corners,

F : U� AP �DPGDðPÞ:ð2:9:4Þ

The action Tg : D! D of any g A GðQÞ extends continuously to a mapping

~TTg : ~DD! ~DDð2:9:5Þ

which takes the neighborhood DðPÞ of eP isomorphically to the neighborhood DðgPÞ of egP

(where gP ¼ gPg�1). (The proof of this fact is recalled in §6.3, §6.4.) It follows that the
Borel-Serre compactification ~XX ¼ Gn ~DD is a (compact) manifold with corners, stratified with
one stratum YP ¼ GPneP for each G-conjugacy class of rational parabolic subgroups P. The
real analytic structure on D extends to a semi-analytic structure on ~DD and passes to a sub-
analytic structure on ~XX . Denote by ~tt : ~DD! ~XX the natural projection.

2.10. Reductive Borel-Serre compactification. The reductive Borel-Serre partial
compactification D of D was first described in [Z1], §4.2, p. 190; see also [GHM], §8. It
is the topological space obtained by collapsing each boundary component eP in ~DD to its
reductive quotient DP (§2.5), together with the quotient topology. (See also [Z3], §3.7.) The
geodesic projection

pP : D! DPð2:10:1Þ

is the composition D! eP ! DP. The closure DP of DP in D is the reductive Borel-Serre
partial compactification of DP. Let m : ~DD! D denote the quotient mapping: it is contin-
uous, its restriction to D is the identity, and its restriction to each boundary stratum agrees
with the projection m : YP ! XP of §2.5. Define
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D½P� ¼ m
�
DðPÞ

�
¼

S
QPP

DQð2:10:2Þ

to be the image of the corner associated to P: it is an open PðQÞ-invariant neighborhood
of DP in D on which PðQÞ acts in a component-preserving way. The action Tg : ~DD! ~DD
(2.9.5) of any g A GðQÞ passes to a mapping Tg : D! D which takes the neighborhood
D½P� of DP isomorphically to the neighborhood D½gP� of DgP. It follows that the reductive
Borel-Serre compactification

X ¼ GnD

is a compact singular space, canonically stratified with one boundary stratum XP ¼ GPnDP

for each G-conjugacy class of rational parabolic subgroups PHG. The closure XP of XP in
X is the reductive Borel-Serre compactification of XP. There are jDPj maximal boundary
strata XQ such that XQIXP, each corresponding to a maximal (rational) parabolic sub-
group Q ¼ PðDP � fagÞ for a A DP (cf. §2.4). Then XP is the intersection

XP ¼
T
Q

XQð2:10:3Þ

of these jDPj maximal boundary strata.

It is not di‰cult to see ([Bo3], §11.7 (iii)) that if P and P 0 are GðQÞ-conjugate but are
not G-conjugate, then

XP XXP 0 ¼ j:ð2:10:4Þ

The identity mapping X ! X extends uniquely to a continuous surjection m : ~XX ! X

and the subanalytic structure on ~XX passes to a subanalytic structure on X . Denote by
t : D! X the projection. Define XðPÞ ¼ ~tt

�
DðPÞ

�
and X ½P� ¼ tðD½P�Þ. The following

diagram may be useful in helping to sort out these spaces:

eP H DðPÞ H ~DD 			!~tt ~XX I X ðPÞ I YP???y
???y

???ym m

???y
???y

???ym

DP H D½P� H D 			!
t

X I X ½P� I XP:

ð2:10:5Þ

3. Parabolic neighborhoods and root functions

As in §2, G denotes a connected linear reductive algebraic group defined over Q, D
denotes the associated symmetric space, K 0 ¼ AGKðx0Þ is the stabilizer in G of a fixed base-
point x0 A D, GHGðQÞ is an arithmetic group and X ¼ GnD. Although the constructions
in this section refer to the reductive Borel-Serre compactification X of X (and the reductive
Borel-Serre partial compactification D of D), they may just as well be applied to the Borel-
Serre compactification ~XX (and the Borel-Serre partial compactification ~DD of D). Rather
than repeat each statement for both compactifications, we will present the RBS case only.

3.1. Parabolic neighborhoods. Let PHG be a rational parabolic subgroup. Let
a : D! GPnD and b : GPnD! GnD ¼ X be the projections. We say that an open set
V HD is G-parabolic (with respect to P) if
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(1) it is invariant under the geodesic action of the semigroup AP ðf1Þ (2.9.2) and

(2) if g A G and gV XV 3j then g A GXP.

Item (2) means that the covering b : GPnD! X is one to one on the set aðVÞ so it
takes aðVÞ homeomorphically to its image tðVÞHX . In this case we will also refer to
aðVÞHGPnD (resp. tðVÞHX ) as G-parabolic open sets.

D I V I DP

a

???y
???y

???y
GPnD I aðVÞ I GPnDP

b

???y
???yG

???yG
X I tðVÞ I XP:

Every stratum XP admits a fundamental system of G-parabolic neighborhoods. In section
4.1 we will review a theorem of Saper [Sa] (thm. 8.1) which states the stronger fact that the
closure XP of each stratum XPHX admits a fundamental system of G-parabolic neighbor-

hoods.

3.2. Root functions. Let PHG be a rational parabolic subgroup. Each character
a A w�QðS 0PÞ determines a mapping

f P
a : D! R>0ð3:2:1Þ

by f P
a

�
Fðu; a;mKLÞ

�
¼ aðaÞ using (2.5.2). The mapping f P

a is independent of the choice of
basepoint. For any g 0 ¼ u 0a 0m 0 A P, any b 0 A A 0P, any g A GXP, and any x A D we have

f P
a ðgg 0x � b 0Þ ¼ aða 0b 0Þ f P

a ðxÞ:ð3:2:2Þ

If a A DP is a simple root, we say f P
a is a root function. If g A G, P 0 ¼ gPg�1 and if a 0 A DP 0 is

the root corresponding to a A DP then, for all x A D,

f P 0

a 0 ðgxÞ ¼ f P
a ðxÞ:ð3:2:3Þ

The root function f P
a : D! ð0;yÞ extends to a continuous function D½P� ! ð0;y� (cf. §3.5

below) which passes to a function GPnD½P� ! ð0;y� whose restriction to any G-parabolic
neighborhood U HX of XP we also denote by

f P
a : U ! ð0;y�:

Similarly the geodesic projection pP : D! DP (cf. (2.10.1)) extends continuously to a pro-
jection DðPÞ ! DP and passes to projections D½P� ! DP and GPnD½P� ! GPnD whose
restriction to any parabolic neighborhood U HX we denote by

pP : U ! XP:ð3:2:4Þ

The following lemma is a straightforward consequence of the definitions.

Goresky and MacPherson, Topological trace formula 95



3.3. Lemma. Let U HX be a parabolic neighborhood of the stratum XP. Let

fxngHU be a sequence of points and let y A XP. The sequence fxng converges to y in X if

and only if the following hold:

(1) pPðxnÞ ! y in XP and

(2) f P
a ðxnÞ !y for all a A DP. r

3.4. Suppose QIP is another rational parabolic subgroup of G, corresponding,
say, to a subset JHDP with SQ H kerðaÞ for all a A J, so that DP ¼ iðDQÞ q J as in (2.4.1).
Let P ¼ nQðPÞHLQ be the resulting parabolic subgroup of LQ. It acts transitively on the
boundary component DQ.

Let x A D, say x ¼ uQa
0
QaGuPa

Q
PmPK

0
P is decomposed according to (2.4.5) with

aQ ¼ a 0QaG. Then pQðxÞ ¼ uPa
Q
P aGmPK

0
P A P=K 0P ¼ DQ so the following equations hold:

f P
a ðxÞ ¼ aða 0Qa

Q
P Þ for all a A DP;ð3:4:1Þ

f
Q
b ðxÞ ¼ iðbÞða 0QÞ for all b A DQ;ð3:4:2Þ

f Pa
�
pQðxÞ

�
¼ f P

a ðxÞ ¼ aðaQ
P Þ for all a A J ¼ DP;ð3:4:3Þ

since aða 0QÞ ¼ 1 for all a A J. From this we may conclude:

3.5. Proposition. For all a A DP, the root function f P
a extends continuously to a func-

tion f P
a : D½P� ! ð0;y� such that, for all x A D we have

f P
a

�
pQðxÞ

�
¼ f P

a ðxÞ for a A J;

y for a A DP � J:



ð3:5:1Þ

The boundary component DQHD½P� is the set of x A D½P� such that:

f P
a ðxÞ ¼y for all a A DP � J;

f P
a ðxÞ <y for all a A J:



ð3:5:2Þ

3.6. Remarks. Of course similar statements apply to the root function
f P
a : U ! ð0;y� for any parabolic neighborhood U HX of XP. We think of the ‘‘negative
gradient’’ of the root functions f P

a as pointing in the ‘‘normal directions’’ to XP. For a A J,
�grad f P

a points from XP ‘‘into’’ XQ.

XQ 0

XP XQ

XQ 0

XP XQ

Figure 1. Level curves of f P
a for a A iðDQÞ and a A J respectively.
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Zucker’s vexatious point ([Z1], §3.19) is that for PHQ and for b A DQ, the root func-
tions f

Q
b and f P

iðbÞ do not necessarily agree: see (3.4.1) and (3.4.2) above. (In fact, they agree

precisely if iðbÞðaQ
P Þ ¼ 1, which is to say, if A 0Q 0 and A 0Q are orthogonal, where Q 0IP is the

parabolic subgroup complementary to Q.) The nature of the level sets of f Q
b are depicted in

Figure 2.

This shortcoming will be circumvented by replacing the root function f P
a with Saper’s

partial distance function rPa (associated to a tiling), which is patched together from the vari-
ous relevant root functions; cf. (4.3.2).

4. Tilings

In this section we recall a construction of Saper [Sa]. An equivalent construction of
Leuzinger [Le1] could be used instead. See also [Ar2] and [L2].

4.1. Tilings of D. As in §2, G denotes a connected linear reductive algebraic group
defined over Q, D denotes the associated symmetric space, K 0 ¼ AGKðx0Þ is the stabilizer
in G of a fixed basepoint x0 A D, GHGðQÞ is an arithmetic group and X ¼ GnD. Let P1

denote the set of proper maximal rational parabolic subgroups of G. For each Q A P1

choose bQ A A 0Q. The collection b ¼ fbQg of such choices is called a parameter, the set of
which we denote by B. The parameters are partially ordered with be c i¤ aQðbQÞe aQðcQÞ
for all Q A P1, where DQ ¼ faQg is the simple root associated with the maximal parabolic
subgroup Q. A choice b A B of parameter determines, for any rational parabolic subgroup
PHG a unique element bP A A 0P such that, for each rational maximal parabolic subgroup
QIP, the element bPb

�1
Q lies in A

Q
P (cf. §2.4). In other words, logðbQÞ is the orthogonal

projection of logðbPÞ A a 0P with respect to any Weyl-invariant inner product on a 0P.

Recall from [Sa] that a tiling with parameter b A B is a cover of the reductive Borel-
Serre partial compactification

D ¼
‘
P AP

DPð4:1:1Þ

by disjoint sets (called tiles) such that:

(1) The central tile D0 ¼ DG is a closed, codimension 0 submanifold with

XQ 0

XP XQ XP 0

Figure 2. Level sets of f
Q
b .
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corners contained in D. Its closed boundary faces fqPD0g are indexed by P A P with
PHQ, qPD0 H qQD0.

(2) Each boundary face qPD0 is contained in the ‘‘cross section’’ FðUP � fbPg �DPÞ
where F is defined in (2.5.2).

(3) Each tile DP ¼ qPD0 � AP ð>1Þ is obtained from qPD0 by flowing out under the
geodesic action of the cone AP ð>1Þ (cf. (2.9.1)).

For any rational parabolic subgroupQ, the intersections fDP XDQg (over all rational
parabolic subgroups POQ) form a tiling of the reductive Borel-Serre partial compactifi-
cation DQ, whose central tile we denote by

D0
Q ¼ DQXDQ:ð4:1:2Þ

Then the tile DQ is given by

DQ ¼ fx A D½Q�HD j pQðxÞ A D0
Q and f Q

a ðxÞ > aðbQÞEa A DQgð4:1:3Þ

and the boundary face qQD0 is

qQD0 ¼ fx A D j pQðxÞ A D0
Q and f Q

a ðxÞ ¼ aðbQÞEa A DQg:ð4:1:4Þ

A tiling, if it exists, is uniquely determined by its parameter b A B, in which case we
say that the parameter is regular. The parameter b is G-invariant if, for all g A G, we have
bgQg�1 ¼ agQg�1ðgx0ÞbQ. The tiling fDQg is G-invariant if gDP ¼ DgPg�1 for all g A G. A tiling
is G-invariant if and only if its parameter b is G-invariant ([Sa], Corollary 2.7). In [Sa],
Thm. 10.1, Saper proves the following.

4.2. Theorem. If the tiling parameter b A B is chosen su‰ciently large (with respect

to the above partial ordering) and G-invariant, then there exists a unique tiling with parameter

b A B, and it is G-invariant. Moreover, for any Q A P the union

TðDQÞ ¼
‘

POQ

DPð4:2:1Þ

is an open GQ-invariant parabolic neighborhood of DQ in D which may be made arbitrarily

small by choosing the parameter b su‰ciently large.

Henceforth we shall refer to such a parameter as regular and su‰ciently large. Fix
such a parameter b ¼ fbQg. Denote the closure of TðDQÞ by TðDQÞ, and the boundary by
qTðDQÞ ¼ TðDQÞ � TðDQÞ. Following [Sa], Thm. 8.1 (ii), for each a A DQ, define the par-

tial distance function rQa : TðDQÞ ! ½0; 1� by

rQa ðxÞ ¼
f Q
a ðxÞ

�1aðbQÞ for x A DQ;

f P
iðaÞðxÞ

�1
iðaÞðbPÞ for x A DP;

(
ð4:2:2Þ

whenever PHQ. Here, i : DQ ,! DP is the inclusion (2.4.1) and DQ (resp. DP) is the clo-
sure of the tile DQ (resp. DP).

Goresky and MacPherson, Topological trace formula98



4.3. Lemma. The following statements hold.

(1) The mapping rQa : TðDQÞ ! ½0; 1� is well-defined, continuous, and piecewise ana-

lytic.

(2) For all a A DQ, the geodesic action by t A AQ ðf1Þ satisfies

rQa ðx � tÞ ¼ rQa ðxÞaðtÞ
�1ð4:3:1Þ

whenever x A TðDQÞ.

(3) If x A TðDQÞ then

x A DQ , rQa ðxÞ ¼ 0 for all a A DQ;

x A qTðDQÞ , rQa ðxÞ ¼ 1 for some a A DQ:

(4) If g A GXQ then rQa ðgxÞ ¼ rQa ðxÞ.

(5) If g A G and Q 0 ¼ gQg�1 and if a 0 A DQ 0 is the simple root corresponding to a A DQ

then

r
Q 0

a 0 ðgxÞ ¼ rQa ðxÞ:

(6) If PHQ and if DP ¼ iðDQÞ q J as in (2.4.1) then, for all a A DQ and for all

x A TðDPÞHTðDQÞ we have

rPiðaÞðxÞ ¼ rQa ðxÞ:ð4:3:2Þ

4.4. Proof. As in §2.4, write A 0P ¼ A 0QA
Q
P with a 0Q the orthogonal complement to a

Q
P

in a 0P. So the elements bP and bQ determined by the parameter b satisfy bP ¼ bQb
Q
P for some

b
Q
P A A

Q
P . Now suppose that x ¼ uQa

0
QaGuPa

Q
PmPKP A P=KP ¼ D is decomposed according

to (2.4.5). Set a 0P ¼ a 0Qa
Q
P A A 0P. If x A qPD0 then by property (2), a 0P ¼ bP, that is, a

0
Q ¼ bQ

and a
Q
P ¼ b

Q
P . Flowing out under the geodesic action of A 0Q we see that x A DQXDPXD

implies that aQ
P ¼ b

Q
P . For such a point x and for each a A DQ, we have

f P
iðaÞðxÞ

�1
iðaÞðbPÞ ¼ iðaÞðaQaQ

P Þ
�1
iðaÞðbQbQ

P Þ

¼ aða�1Q bQÞ ¼ f Q
a ðxÞ

�1aðbQÞ

so both equations (4.2.2) agree on their common domain of definition, proving (1).

By continuity, it su‰ces to prove (2) for points x A TðDQÞ. The geodesic action by
t A AQ ðf1Þ preserves the tiles in TðDQÞ so (2) may be checked tile by tile. If x A DQ then
f Q
a ðx � tÞ ¼ f Q

a ðxÞaðtÞ by (3.2.2). If x A DP for some PHQ, write DP ¼ iðDQÞ q J as in
(2.4.1), note that AQ ðf1ÞHAP ðf1Þ and compute, for a A DQ,

f P
iðaÞðx � tÞ ¼ f P

iðaÞðxÞiðaÞðtÞ ¼ f P
iðaÞðxÞaðtÞ
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which proves the second statement. Part (3) follows from (3.2.2) for points x A TQ and from
(3.2.3) for points x A TP. Part (4) follows from Lemma 3.3 for points x A TQ and from
(3.5.1) for points x A TP. Part (5) follows from (3.2.3) and part (6) is an immediate conse-
quence of the definition. r

4.5. Tiling of X . Suppose b A B is a su‰ciently large regular parameter and (4.1.1)
is the associated G-invariant tiling. Let t : D! X denote the projection to the reductive
Borel-Serre compactification of X ¼ GnD. If P;P 0 are rational parabolic subgroups of G
then either tðDPÞX tðDP 0 Þ ¼ j or else they coincide. Hence the collection of images

X P ¼ tðDPÞ

forms a decomposition of X whose ‘‘tiles’’ are indexed by the set of G-conjugacy classes of
rational parabolic subgroups of G. Let X 0

P ¼ XG ¼ tðD0
PÞ be the ‘‘central tile.’’ Denote by

TðXPÞ ¼ t
�
TðDPÞ

�
¼

‘
fRgOP

X Rð4:5:1Þ

the resulting neighborhood of XP in X , and by qTðXPÞ ¼ TðXPÞ � TðXPÞ its boundary.
(Here, R runs through a set of representatives, one from each G-conjugacy class fRg of par-
abolic subgroups contained in P.) For all a A DP the functions rPa pass to piecewise analytic
functions on TðXPÞ, which we also denote by rPa .

4.6. Retraction and exhaustion. Saper proves ([Sa], §6.1) that there exists a unique
G-equivariant continuous and piecewise analytic ‘‘geodesic’’ retraction R : D! D0 which
is the identity on D0 such that, for all y A DP and for all t A AP ðf1Þ the following holds:

Rðy � tÞ ¼ RðyÞ:ð4:6:1Þ

XQ 0

XQ 0

XP

XP

X 0

XQ

XQ

XP 0

XP 0

Figure 3. Tiles.

XQ 0

XP XQ XP 0

Figure 4. Level sets of rQa .
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Then R preserves tiles and it passes to a retraction which we also denote by R : X ! X 0; it
has the same property (4.6.1). Define W : X ! ½0; 1� by

WðxÞ ¼
1 if x A X 0;

sup
a ADQ

f1� rQa ðxÞg if x A XQ:

8<
:

We refer to W as an exhaustion function because

W�1ð0Þ ¼ X 0 and W�1ð1Þ ¼ X � X :

The function W is continuous (and piecewise analytic): If PHQ, write DP ¼ iðDQÞ q J as
in (2.4.1). Let P ¼ nQðPÞHLQ be the resulting parabolic subgroup of LQ; then DP ¼ J. If

x A X P XXQ then pQðxÞ A X P
Q XX 0

Q so rPa ðxÞ ¼ rPa
�
pQðxÞ

�
¼ 1 for all a A J as in §3.4.

Hence

sup
a ADP

f1� rPa ðxÞg ¼ sup
a ADQ

f1� rQa ðxÞg:

For each boundary stratum XQ the same constructions define a tile-preserving retraction

RQ : XQ ! X 0
Qð4:6:2Þ

and an exhaustion function WQ : XQ ! ½0; 1� with W�1
Q ð0Þ ¼ X 0

Q and W�1
Q ð1Þ ¼ XQ � XQ.

In fact, the stratum closure XQ is tiled by the collection of intersections X P
Q ¼ XQXX P for

POQ and

WQðxÞ ¼
1 if x A X 0

Q;

sup
a A J
f1� rPa ðxÞg if x A X P

Q ;

(
ð4:6:3Þ

where DP ¼ iðDQÞ q J.

4.7. Remarks. We risk a certain amount of confusion by having defined rPa ðxÞ so as
to decrease as x! XP whereas the root function f P

a ðxÞ increases as x! XP. Although
Saper [Sa] actually constructs a tiling of the Borel-Serre compactification ~XX the same
approach gives a tiling of the reductive Borel-Serre compactification X . The collection
fTðXPÞ; pP; rP ¼ max

a ADP

frPa gg of tubular neighborhoods, tubular projections, and tubular

distance functions are very much like a ‘‘system of control data’’ [Mat], [Gi], [GM3] for the
stratified space X , but there are several important di¤erences. The functions rP are contin-
uous and piecewise analytic but are not smooth. Whenever QOP we have pQpP ¼ pQ
however we do not have rQpP ¼ rQ. For this price we gain an especially strong form of
‘‘local triviality’’ for the stratification of X : the neighborhood TðXPÞ is (homeomorphic to)
a mapping cylinder neighborhood of the closure of the stratum XP. In fact, it is possible
to use the various geodesic actions to construct a (piecewise analytic) homeomorphism
between TðXPÞ and the (open) mapping cylinder of the projection pP : qTðXPÞ ! XP. (The
open mapping cylinder of a mapping p : A! B is the quotient

�
A� ½0; 1Þ q B

�
=@ under

the relation ða; 0Þ@ pðaÞ.) Analogous statements for other Satake compactifications (such
as the Baily-Borel compactification) are false.
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5. A little shrink

5.1. As in §2, G denotes a connected linear reductive algebraic group defined over
Q, D denotes the associated symmetric space, K 0 ¼ AGKðx0Þ is the stabilizer in G of a fixed
basepoint x0 A D, GHGðQÞ is an arithmetic group and X ¼ GnD. In this section we con-
struct a homeomorphism X ! X which moves a neighborhood of the boundary towards
the boundary. When composed with a Hecke correspondence, this will have the e¤ect of
chopping the fixed point set into pieces, each of which is contained in a single stratum of X .
The resulting behavior is much easier to analyze. This ‘‘shrink’’ homeomorphism may be
considered to be a topological analog to Arthur’s truncation procedure.

5.2. Let Q A P1 be a standard proper maximal rational parabolic subgroup of G.
Fix t A A 0Q ð>1Þ so aðtÞ > 1, where a A DQ is the unique simple root. The geodesic action of
t on D extends continuously to the neighborhood D½Q� (2.10.2) of DQ in the reductive Borel-
Serre partial compactification D of D. This geodesic action even extends continuously to
the neighborhood

DfQg ¼
S

PHQ

D½P�

of the closure DQ, where the union is taken over all rational parabolic subgroups PHG

which are contained in Q. (For if PHQ, let i : AQ ! AP be the canonical inclusion. It
follows from (2.4.4) (or [BS], Prop. 3.11) that the geodesic action of the image iðtÞ A AP

agrees with the geodesic action of t A AQ, so it extends continuously to D½P�.) We continue
to denote this action by x 7! x � t for x A DfQg.

Now fix a su‰ciently large G-invariant regular parameter b A B with its resulting til-
ing (4.1.1) and partial distance functions (4.2.2) satisfying Lemma 4.3. Let TðDQÞHDfQg
denote the neighborhood of DQ (4.2.1) consisting of the union of all tiles which intersect DQ

nontrivially, and let TðDQÞ denote its closure. The geodesic action by t A A 0Q ð>1Þ preserves
TðDQÞ since aðtÞ > 1.

Fix once and for all a smooth non-increasing function r : ½0; 1� ! ½0; 1� with
rðrÞ ¼ 1, re 1=2 and with rðrÞ ¼ 0, r ¼ 1.

Let rQa : TðDQÞ ! ½0; 1Þ be the partial distance function (4.2.2) which corresponds to
the unique simple root a A DQ. For t A A 0Q ð>1Þ define ShðQ; tÞ : TðDQÞ ! TðDQÞ by

rðrÞ

1

1=2 1
r

Figure 5. The function r.
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ShðQ; tÞðxÞ ¼ x � trðr
Q
a ðxÞÞ:ð5:2:1Þ

Then by (3.2.2) and (4.3.1),

rQa
�
ShðQ; tÞðxÞ

�
¼ rQa ðxÞaðtÞ

�rðrQa ðxÞÞ;ð5:2:2Þ

f Q
a

�
ShðQ; tÞðxÞ

�
¼ f Q

a ðxÞaðtÞ
rðrQa ðxÞÞð5:2:3Þ

for all x A TðDQÞ. The quantity aðtÞrðr
Q
a ðxÞÞ is bounded between 1 and aðtÞ. It equals 1 if and

only if x A qTðDQÞ, that is, if and only if rQa ðxÞ ¼ 1.

If Q 0 is another maximal rational parabolic subgroup of G, let us write Q 0@Q if Q 0

is GðQÞ conjugate to Q. In this case, any choice g A GðQÞ of conjugating element induces
the same isomorphism SQGSQ 0 so we obtain a corresponding t 0 A A 0Q 0 and a correspond-

ing mapping ShðQ 0; t 0Þ : TðDQ 0 Þ ! TðDQÞ. Define the shrink ShQðtÞ : D! D correspond-

ing to conjugates of the standard parabolic subgroup Q by

ShQðtÞðxÞ ¼ ShðQ 0; t 0Þx if x A TðDQ 0 Þ for some Q 0@Q;

x otherwise.




Then ShQðtÞ is well defined and continuous because TðDQ 0 ÞXTðDQÞ ¼ j whenever
Q 0@Q (and Q 03Q), cf. [Bo3], §11.17 (iii). Moreover, if g A G then

ShQðtÞðgxÞ ¼ gShQðtÞðxÞ

by Lemma 4.3. So (dividing by G), the homeomorphism ShQðtÞ passes to a homeomor-
phism which we denote in the same way, ShQðtÞ : X ! X .

5.3. Suppose POQ is a rational parabolic subgroup of G; set DP ¼ iðDQÞ q J as in
(2.4.1). It follows from (4.3.1) that for all b A J and for all x A TðDPÞ we have

rPb ShðQ; tÞðxÞ ¼ rPb ðxÞð5:3:1Þ

since bðtÞ ¼ 1 for any b A J. Now suppose Q1;Q2 are two standard maximal rational par-
abolic subgroups of G whose intersection P ¼ Q1 XQ2 is parabolic. Let ai A DðQiÞ be the
unique nonzero roots. Choose ti A A 0i ¼ A 0Qi

with aiðtiÞ > 1 and let

Shi ¼ ShðQi; tiÞ : TðDQi
Þ ! TðDQi

Þ

denote the resulting two shrinks. It follows by taking P ¼ Q1 XQ2 in (5.3.1) that the map-

pings Sh1 and Sh2 commute on their common domain of definition,

TðDPÞ ¼ TðDQ1
ÞXTðDQ2

Þ:

5.4. Let P0 HG be the standard minimal rational parabolic subgroup with
S 00 ¼ SP0

=SG and with simple roots D ¼ fa1; a2; . . . ; arg numbered in any order. Each j

(with 1e je r) corresponds to a standard maximal proper rational parabolic subgroup
Qj with split torus S 0j ¼ SPj

=SG and identity component A 0j ¼ S 0j ðRÞ
0. Choose t A A 00 to be
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dominant and regular. In other words, with respect to the canonical complementary decom-
position (cf. 2.4) A 00 ¼

Q
j

A 0j (with kerðajÞ ¼
Q
i3j

S 0i ) we may write t ¼ t1t2 . . . tr where tj A A 0j

and ajðtjÞ ¼ ajðtÞ > 1. Define ShðtÞ : D! D to be the composition

ShðtÞ ¼ ShQ1
ðt1Þ � ShQ2

ðt2Þ � � � � � ShQr
ðtrÞ

where each ShQj
ðtjÞ : D! D is the shrink defined above, corresponding to conjugates of

the standard parabolic subgroup Qj.

5.5. Proposition. The mapping ShðtÞ : D! D is independent of the ordering

D ¼ fa1; a2; . . . ; arg of the simple roots. It is a G-equivariant homeomorphism and passes to a

homeomorphism ShðtÞ : X ! X with the following properties:

(1) It preserves the tiles and the strata, that is, for each rational parabolic subgroup

POG, we have ShðtÞðX PÞ ¼ X P and ShðtÞðXPÞ ¼ XP.

(2) Within each tile, it is given by a geodesic action: for each x A X P there exists

b ¼ bx A AP ðf1Þ so that ShðtÞðxÞ ¼ x � b.

(3) It is the identity on each central tile X 0
P and pP

�
ShðtÞðxÞ

�
¼ pPðxÞ A X 0

P for all

x A X P.

(4) It commutes with the geodesic projection, that is, for any rational parabolic sub-

group PHG and for each x A TðXPÞ we have pP
�
ShðtÞðxÞ

�
¼ ShðtÞ

�
pPðxÞ

�
.

(5) It is (globally) homotopic to the identity.

(6) For any rational parabolic subgroup PHG and for each a A DP and for each

x A TðXPÞ, by equation (5.2.2) we have:

rPa
�
ShðtÞðxÞ

�
¼ rPa ðxÞa0ðtÞ

�rðrPa ðxÞÞð5:5:1Þ

where a0 A D is the unique root which agrees with a after conjugation and restriction to SP. If
x A X P is constrained to lie in the single tile X P then also

f P
a

�
ShðtÞðxÞ

�
¼ f P

a ðxÞa0ðtÞ
rðrPa ðxÞÞ: rð5:5:2Þ

We remark that the mapping ShðtÞ depends on the choice of regular parameter
(which determines the size of the tiles).

6. Morphisms and Hecke correspondences

6.1. As in §2, G denotes a connected linear reductive algebraic group defined over
Q, D denotes the associated symmetric space, and K 0 ¼ AGKðx0Þ is the stabilizer in G of a
fixed basepoint x0 A D. Let G;G 0HGðQÞ be arithmetic subgroups and set X ¼ GnD and
X 0 ¼ G 0nD.
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6.2. Definition. A mapping f : X 0 ! X is a morphism if there exists g A GðQÞ such
that

(1) gG 0g�1 HG,

(2) ½G : gG 0g�1� <y,

(3) f ðG 0xK 0Þ ¼ GgxK 0 for any x A G.

The morphism f is determined by the pair ðG 0; gÞ by (3); it is well defined by (1). For
any g A G, g 0 A G 0 the pair ðG 0; ggg 0Þ determines the same morphism. If G is torsion-free then
f is an unramified covering of degree ½G : gG 0g�1� and it is locally an isometry with respect
to the invariant Riemannian metrics on X 0 and X induced from any K invariant inner
product on 0p (§2.1). Denote by MorðX 0;XÞ the set of morphisms X 0 ! X .

6.3. Lemma. Each morphism f A MorðX 0;XÞ admits unique continuous extensions
~ff : ~XX 0 ! ~XX to the Borel-Serre compactification and f : X 0 ! X to the reductive Borel-Serre

compactification. The mappings ~ff and f are finite, and they restrict to morphisms on each

boundary stratum. If f ðX 0PÞ ¼ XQ, if U
0 and U are G 0 and G-parabolic neighborhoods of X 0P

and XQ in X 0 and X respectively, then

f
�
pPðxÞ

�
¼ pQ

�
f ðxÞ

�
ð6:3:1Þ

for all x A U 0X f �1ðUÞ.

6.4. Proof. Suppose the morphism f : X 0 ! X is given by the pair ðG 0; gÞ. Let
Tg : D! D denote the action of g on D. It moves the basepoint x0 to a new basepoint
x1 ¼ gx0 with stabilizer K 0ðx1Þ ¼ gK 0 ¼ gK 0g�1. If P is a rational parabolic subgroup and
if Q ¼ gP ¼ gPg�1 set K 0Pðx0Þ ¼ K 0XP and K 0Qðx1Þ ¼ K 0ðx1ÞXQ. Then Tg may also be
described as the mapping

D ¼ P=K 0Pðx0Þ ! Q=K 0Qðx1Þ ¼ Dð6:4:1Þ

which is given by xK 0Pðx0Þ 7! gxg�1K 0Qðx1Þ by (2.1.3). This intertwines the geodesic actions
of A 0P and A 0Q, that is,

Tgðx � aÞ ¼ gxg�1gix0ðaÞg�1K 0Qðx1Þ ¼ gxg�1ix1ðâaÞK 0Qðx1Þ ¼ TgðxÞ � âað6:4:2Þ

where a 7! âa is the canonical identification A 0P GA 0Q of §2.3. It follows that Tg extends to a
mapping ~TTg : ~DD! ~DD on the Borel-Serre partial compactification, which takes the bound-
ary component eP ¼ P=K 0PA

0
P to eQ ¼ Q=K 0QA

0
Q and satisfies

pQ ~TTgðxÞ ¼ ~TTg

�
pPðxÞ

�
:ð6:4:3Þ

The mapping ~TTg passes to a mapping ~ff : G 0n ~DD! Gn ~DD which is the desired extension.

It maps Y 0P ¼ G 0PneP to YQ ¼ GQneQ by ~ff
�
G 0PxK

0
Pðx0ÞA 0P

�
¼ GQgxg

�1K 0Qðx1ÞA 0Q, which is a

mapping of degree ½GQ : gG 0Pg
�1� < y. (Here, Q ¼ gP.) The extension ~ff may map several
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strata of ~XX 0 to a single stratum of ~XX : let Q1;Q2; . . . ;Qm be a set of representatives for the
gG 0-conjugacy classes of rational parabolic subgroups which are G-conjugate to Q, and set
Pj ¼ g�1Qjg. Then ~ff maps each stratum Y 0Pj

H ~XX 0 to the stratum YQH ~XX by a morphism
which may be described in a manner similar to (6.4.1). This shows that ~ff is finite and that
its restriction to each boundary stratum is a morphism.

Similarly the mapping ~TTg passes to a mapping Tg : D! D on the reductive Borel-
Serre compactification of D, which further passes to a mapping f : G 0nD! GnD. Then f

maps X 0P ¼ G 0PnP=KPAPUP to XQ ¼ GQnQ=KQAQUQ by

f
�
G 0PxKPðx0ÞAPUP

�
¼ GQgxg

�1KQðx1ÞAQUQ:

The degree of this mapping is not obviously finite because the intersection G 0PXUP is
nontrivial. By (2.1.2) conjugation by g takes LPðx0Þ to LQðx1Þ. Let KLðPÞðx0ÞAP be the
stabilizer in LP of the basepoint pPðx0Þ A DP and let KLðQÞðx1ÞAQ be the stabilizer in LQ

of the basepoint pQðx1Þ A DQ. Set G 0LðPÞ ¼ nPðG 0PÞHLP and GLðQÞ ¼ nQðGQÞHLQ. Then
X 0P ¼ G 0LðPÞnLP=KLðPÞðx0ÞAP and XQ ¼ GLðQÞnLQ=KLðQÞðx1ÞAQ with respect to which we
may express f as follows:

f
�
G 0LðPÞxKLðPÞðx0ÞAP

�
¼ GLðQÞgxg

�1KLðQÞðx1ÞAQ

which has degree ½GLðQÞ : gG
0
LðPÞg

�1� <y. As in the preceding paragraph, the mapping f

will take each of the finitely many strata X 0Pj
to the stratum XQ (for 1e jem) by a simi-

larly defined finite morphism. r

6.5. Definition. A correspondence on X ¼ GnG=K 0 is an arithmetic subgroup
G 0HGðQÞ together with two morphisms c1; c2 A MorðC;X Þ, where C ¼ G 0nD. A point
x A C is fixed if c1ðxÞ ¼ c2ðxÞ. Two correspondences ðc1; c2Þ : CxX and ðc 01; c 02Þ : C 0xX

are said to be isomorphic if there is an invertible morphism a : C ! C 0 such that c 0j � a ¼ cj
(for j ¼ 1; 2).

Each g A GðQÞ gives rise to a Hecke correspondence C ¼ C½g�xX as follows: set
G½g� ¼ GX g�1Gg, C ¼ G½g�nG=K 0, and define

ðc1; c2ÞðG½g�xK 0Þ ¼ ðGxK 0;GgxK 0Þ:ð6:5:1Þ

Modifying g by an element of SGðQÞ does not change the Hecke correspondence. By
Lemma 6.3 each correspondence CxX has a unique continuous extension CxX to the
reductive Borel-Serre compactification, and an isomorphism a : C ! C 0 of correspond-
ences CxX , C 0xX extends uniquely to an isomorphism C ! C 0 of the extended corre-
spondences.

6.6. Lemma. Let X ¼ GnD and let g A GðQÞ. The isomorphism class of the resulting

Hecke correspondence C ¼ C½g�xX depends only on the double coset GgG A GnGðQÞ=G.

6.7. Proof. If su‰ces to verify the statement for the correspondence CxX since the
extension to the reductive Borel-Serre compactification exists uniquely. Let g1; g2 A G and
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let g 0 ¼ g1gg2 be another element in the same double coset GgG. Set G½g 0� ¼ GX g 0�1Gg 0,
C 0 ¼ G½g 0�nG=K 0, and define ðc 01; c 02Þ : C 0xX by

c 01ðG½g 0�xK 0Þ ¼ GxK 0; c 02ðG½g 0�xK 0Þ ¼ Gg 0xK 0:

One verifies by direct calculation that the morphism f : C 0 ! C which is given by

f ðG½g 0�xK 0Þ ¼ G½g�g2xK 0ð6:7:1Þ

is a well-defined isomorphism of correspondences, with inverse given by
f �1ðG½g�xK 0Þ ¼ G½g 0�g�12 xK 0.

6.8. Remark. It can be shown that the mapping ðc1; c2Þ : C ! X � X is generically
one-to-one. In the event that every element of g�1GgG is neat, then this mapping is globally
an embedding. The following proposition says every correspondence is a covering of a
Hecke correspondence.

6.9. Proposition. Let G 0HGðQÞ be an arithmetic subgroup, C 0 ¼ G 0nD and

ðc 01; c 02Þ : C 0xX be a correspondence. Then there is a Hecke correspondence

ðc1; c2Þ : C½g�xX and a subgroup G 00HG½g� such that the correspondence C 0xX is iso-

morphic to the correspondence

C 00 !h C½g�xXð6:9:1Þ

where C 00 ¼ G 00nG=K and hðG 00xKÞ ¼ G½g�xK .

6.10. Proof. Suppose c 01ðG 0xK 0Þ ¼ Gg1xK
0 and c 02ðG 0xK 0Þ ¼ Gg2xK

0 where
gjG

0g�1j HG are subgroups of finite index. Then g ¼ g2g
�1
1 determines a Hecke correspon-

dence C½g� ¼ G½g�nDxX . Define G 00 ¼ g1G
0g�11 and C 00 ¼ G 00nD. Since G 00HG½g� we ob-

tain a correspondence in ‘‘standard form’’,

C 00 !h C½g�xXð6:10:1Þ

with hðG 00xK 0Þ ¼ G½g�xK 0. Define f : C 0 ! C 00 by f ðG 0xK 0Þ ¼ G 00g1xK
0. Then f is well

defined, and it is easily seen to be an isomorphism of correspondences. r

6.11. Narrow tilings. Let ðc1; c2Þ : CxX be a Hecke correspondence defined by
some element g A GðQÞ, so C ¼ G 0nD with G 0 ¼ G½g� ¼ GX g�1Gg. Let b A B be a su‰-
ciently large G-invariant regular parameter. Then it is also G 0-invariant, it gives rise to
tilings fCQg of C and fXQg of X , and the mapping c1 : C ! X takes tiles to tiles
(although the same cannot necessarily be said of c2). Let us say this tiling is narrow with
respect to the Hecke correspondence if, for every stratum CQ of C, the following holds:

c1
�
TðCQÞ

�
X c2

�
TðCQÞ

�
3j, c1ðCQÞ ¼ c2ðCQÞ

and if, in this case, c1
�
TðCQÞ

�
W c2

�
TðCQÞ

�
is a G-parabolic neighborhood of XQ in X .

6.12. Proposition. Fix a Hecke correspondence CxX . If the G-invariant regular
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parameter b A B is chosen su‰ciently large then the resulting tiling fCQg of C is narrow for

that Hecke correspondence.

6.13. Proof. Let CQ be a stratum of C and suppose c1ðCQÞ ¼ XP and c2ðCQÞ ¼ XP 0 .
Then Q is G-conjugate to P while gQg�1 is G-conjugate to P 0 (cf. Lemma 7.4). In particu-
lar, P and P 0 are GðQÞ-conjugate, which implies that either XP ¼ XP 0 or XPXXP 0 ¼ j
(2.10.4). In the latter case there exist neighborhoods U of XP and U 0 of XP 0 which do not
intersect. Choose the tiling parameter so large that TðCQÞH c�11 ðUÞX c�12 ðU 0Þ. Since there
are finitely many strata CQ in C, this amounts to finitely many conditions on the tiling
parameter. On the other hand, if c1ðCQÞ ¼ c2ðCQÞ ¼ XP, then we may take P ¼ Q. Choose
any parabolic neighborhood U HX of XQ and then choose the tiling so small that
TðCQÞH c�11 ðUÞX c�12 ðUÞ. This guarantees that c1

�
TðCQÞ

�
W c2

�
TðCQÞ

�
is a G-parabolic

set in X . r

7. Restriction to the boundary

7.1. Parabolic Hecke correspondence. As in §2, G denotes a connected linear
reductive algebraic group defined over Q, D denotes the associated symmetric space,
K 0 ¼ AGKðx0Þ is the stabilizer in G of a fixed basepoint x0 A D, GHGðQÞ is an arithmetic
group and X ¼ GnD. Fix a rational parabolic subgroup PHG and let XP ¼ GPnDPHX

be the corresponding stratum in the reductive Borel-Serre compactification of X. Each
y A PðQÞ determines a correspondence on a PðQÞ-invariant neighborhood of XP which we
now describe. Set G 0P ¼ GP½y� ¼ GP X y�1GPy. Define the parabolic Hecke correspondence

ðc1; c2Þ : G 0PnD½P�xGPnD½P�ð7:1:1Þ

determined by y A PðQÞ to be the unique continuous extension of the correspondence
G 0PnDxGPnD which is given by

G 0PxK
0
P 7! ðGPxK

0
P;GPyxK

0
PÞð7:1:2Þ

where we identify D ¼ P=K 0P. It follows from (6.4.2) (by taking P ¼ Q) that this corre-
spondence commutes with the geodesic action of A 0P, that is,

ciðx � aÞ ¼ ciðxÞ � að7:1:3Þ

(for i ¼ 1; 2) for any x A G 0PnD½P� and for any a A A 0P. Therefore the parabolic Hecke
correspondence preserves the corner structure near CP, that is, if QIP is a rational para-
bolic subgroup then each mapping ci takes the stratum G 0PnDQHG 0PnD½P� to the stratum
GPnDQHGPnD½P�.

There is also an associated (global) correspondence, C ¼ G 0nDxX ¼ GnD (where
G 0 ¼ GX y�1Gy). If V HD½P�HD is a G-parabolic neighborhood of DP then it is also a G 0-
parabolic neighborhood of DP, as is y

�1 � V . Hence V X y�1V is also a G 0-parabolic neigh-
borhood of DP. It follows that, if U HGPnD½P�HGPnD is a G-parabolic neighborhood of
XP then U 0 ¼ c�11 ðUÞX c�12 ðUÞHG 0PnD is a G 0-parabolic neighborhood of CP ¼ G 0PnDP.
We will say that any correspondence isomorphic to such a U 0xU is modeled on the par-
abolic Hecke correspondence (7.1.1).
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U 0 H G 0PnD½P� 			!			! GPnD½P� I U���� H H

����
U 0 H G 0PnD 			!			! GPnD I U

G

???y
???yb 0

???yb

???yG
U 0 H C 			!			! X I U :

7.2. Now suppose g A GðQÞ gives rise to the Hecke correspondence C ¼ C½g�xX

with its canonical extension ðc1; c2Þ : CxX , where C ¼ G½g�nD as in §6.5.1. If P is a
rational parabolic subgroup of G and if XP denotes the corresponding RBS stratum, then
we may consider the part c�11 ðXPÞ of C which lies over this stratum. It will consist of
several RBS boundary strata CQ of C. Some of these boundary strata may be mapped
back to XP by the mapping c2. In this case, we shall say that the Hecke correspondence
C has a restriction to XP consisting of the union of those boundary strata CQ such that
ðc1; c2Þ jCQ : CQ xXQ.

7.3. Proposition. Let GHGðQÞ be a neat arithmetic group. Let

ðc1; c2Þ : C ¼ C½g�xX

be the Hecke correspondence which is determined by an element g A GðQÞ. Let P be a

rational parabolic subgroup of G, with corresponding boundary stratum XP HX . Decompose

the intersection GgGXP into a union of GP-double cosets,

GgGXP ¼
‘m
j¼1

GPgjGPð7:3:1Þ

with gj A PðQÞ. Then m <y and, over a su‰ciently small parabolic neighborhood of XP, the
Hecke correspondence CxX breaks into a disjoint union of m correspondences which are

given by gj and which are modeled on the parabolic Hecke correspondences

GP½gj�nD½P�xGPnD½P�

for j ¼ 1; 2; . . . ;m, where GP½gj� ¼ GX g�1j Ggj XP.

(A similar procedure is described in the adelic setting in [H].) The proof will take the
rest of §7. First we establish a one-to-one correspondence between the components of the
restriction of the Hecke correspondence to XP and the double cosets which appear in (7.3.1).
Let GPyGP HGgGXP be a double coset from (7.3.1). Write y ¼ g2gg1 for some g1; g2 A G.
Set G½g� ¼ GX g�1Gg. Define

XðGPyGPÞ ¼ g1Pg
�1
1 ¼ g�1g�12 Pg2g:ð7:3:2Þ

7.4. Lemma. The mapping X gives a well defined one-to-one correspondence between

(a) double cosets GPyGPHGgGXP,
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(b) G½g�-conjugacy classes of rational parabolic subgroups Q ¼ XðGPyGPÞHG such

that

(i) Q is G-conjugate to P and

(ii) gQg�1 is G-conjugate to P,

(c) boundary strata CQ HC such that ðc1; c2Þ : CQ xXP.

In particular, this set is finite.

7.5. Proof of Lemma 7.4. First compare the sets (b) and (c). The boundary strata in
C 0 are in one-to-one correspondence with G½g�-conjugacy classes of rational parabolic
subgroups of G, while the boundary strata in X are in one-to-one correspondence with G
conjugacy classes of rational parabolic subgroups. Condition (i) is equivalent to the state-
ment that c1 maps CQ to XP while condition (ii) is equivalent to the statement that c2 maps
CQ to XP.

Now verify that the mapping X is well defined, i.e. that the G½g�-conjugacy class of
XðGPgjGPÞ ¼ g1Pg

�1
1 is independent of the choices. Let y 0 ¼ g 02gg

0
1 A GPgjGP be another ele-

ment in the same double coset, and set Q 0 ¼ g 01Pðg 01Þ
�1. Since y 0 A GPyGP, there exists

ga; gb A GP such that y 0 ¼ ga ygb. So y 0 ¼ g 02gg
0
1 ¼ gag2gg1gb, which gives

h :¼ g�1g 0�12 gag2g ¼ g1gbg
0�1
1 A g�1GgXG ¼ G½g�:

Then,

h�1Qh ¼ ðg1gbg 0�11 Þ
�1ðg1Pg�11 Þðg1gbg 0�11 Þ ¼ Q 0ð7:5:1Þ

which verifies that Q and Q 0 are G½g� conjugate.

Next we show that X is surjective. Suppose that Q and gQg�1 are both G-conjugate to
P. Say, Q ¼ g1Pg

�1
1 and gQg�1 ¼ g�12 Pg2 for some g1; g2 A G. Then

g2gg1Pg
�1
1 g�1g�12 ¼ Pð7:5:2Þ

so the element y ¼ g2gg1 A PðQÞXGgG (since a parabolic subgroup is its own normalizer)
and XðGPyGPÞ ¼ Q.

Finally we show that X is injective. Suppose y; y 0 A GgGXP, say y ¼ g2gg1 and
y 0 ¼ g 02gg

0
1. Set

Q ¼ g1Pg
�1
1 ¼ g�1g�12 Pg2g;

Q 0 ¼ g 01Pðg 01Þ
�1 ¼ g�1ðg 02Þ

�1
Pg2g:

Suppose Q and Q 0 are G½g�-conjugate, say Q ¼ gQ 0g�1 for some g A GX g�1Gg. Comparing
these two relations gives

Goresky and MacPherson, Topological trace formula110



Q ¼ g1Pg
�1
1 ¼ gg 01Pðg 01Þ

�1g�1;

Q ¼ g�1g�12 Pg2g ¼ gg�1ðg 02Þ
�1
Pg 02gg

�1;

from which it follows that h1 ¼ ðg 01Þ
�1g�1g1 A P and h2 ¼ g2ggg

�1ðg 02Þ
�1 A P. Moreover,

h1; h2 A G. But h2y
0h1 ¼ y hence GPy

0GP ¼ GPyGP as claimed. r

7.6. Proof of Proposition 7.3. By Lemma 7.4, the restriction of the Hecke corre-
spondence C ¼ C½g�xX to the stratum XP breaks into a union of m correspondences,
indexed by the elements g1; g2; . . . ; gm. Fix j (with 1e jem) and set G½gj� ¼ GX g�1j Ggj
and GP½gj� ¼ G½gj�XP. The following commutative diagram of correspondences provides
an explicit isomorphism between the parabolic Hecke correspondence given by gj with the
corresponding piece of the Hecke correspondence given by g:

GP½gj�nD½P� 			!			! GPnD½P�

bj

???y
???yb

G½gj�nD 			!			! GnD

f

???y
����

G½g�nD 			!			! GnD:

The first line is the parabolic Hecke correspondence (7.1.1) defined by gj, i.e., it is the
continuous extension of the mapping GP½gj�xK 0P 7! ðGPxK

0
P;GPgjxK

0
PÞ. The second line is

the Hecke correspondence (6.5.1) defined by gj, i.e. it is the continuous extension of
G½gj�xK 0 7! ðGxK 0;GgxK 0Þ. The vertical mapping b (resp. bj) is described in §3.1; it is a
homeomorphism over any G-parabolic neighborhood of XP (resp. over any G½gj�-parabolic
neighborhood of GP½gj�nDP). The top square of this diagram commutes by direct compu-
tation. The third line is the given Hecke correspondence (6.5.1). The vertical mapping f

is the isomorphism of Hecke correspondences given in Lemma 6.6 and equation (6.7.1).
In other words, if gj ¼ g1gg2 then f ðG½gj�xK 0Þ ¼ G½g�g2xK 0. The bottom square also com-
mutes. This completes the construction of an explicit isomorphism with the parabolic
Hecke correspondence, and hence of the proof of Proposition 7.3. r

8. Counting the fixed points

8.1. As in §2, G denotes a connected linear reductive algebraic group defined over
Q, D denotes the associated symmetric space, K 0 ¼ AGKðx0Þ is the stabilizer in G of a
fixed basepoint x0 A D, GHGðQÞ is an arithmetic group and X ¼ GnD. Through this sec-
tion we assume that G is neat. Fix a rational parabolic subgroup POG, set GP ¼ GXP,
GL ¼ nPðGPÞHLPðQÞ and denote by XP ¼ GPnDP ¼ GLnDP the corresponding stratum in
the reductive Borel-Serre compactification X . An element y A PðQÞ gives rise to a parabolic
Hecke correspondence ðc1; c2Þ : G 0PnD½P�xGPnD½P� where G 0P ¼ GP½y� ¼ GP X y�1GPy. Let
G 0L ¼ nPðG 0PÞ. The restriction CPxXP of this parabolic correspondence to the boundary
stratum CP ¼ G 0LnDP is given by

ðc1; c2ÞðG 0LxKPAPÞ ¼ ðGLxKPAP;GLyxKPAPÞð8:1:1Þ

where y ¼ nPðyÞ.
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8.2. Characteristic element. Let us suppose that w A CP is a fixed point of the para-
bolic Hecke correspondence, that is, c1ðwÞ ¼ c2ðwÞ. Choose any lift ~ww A DP of w and write
~ww ¼ zKPAP A LP=KPAP. Since the point w ¼ G 0LzKPAP is fixed, we have

GLzKPAP ¼ GLyzKPAP:ð8:2:1Þ

Since G is neat, there exists a unique g A GL such that the element e ¼ gy fixes the point
~ww A DP, that is,

ezKPAP ¼ gyzKPAP ¼ zKPAP A DP:ð8:2:2Þ

8.3. Definition. The element e ¼ gy A LPðQÞ is called a characteristic element for the
fixed point w, or the characteristic element corresponding to the lift ~ww of w.

Denote by FPðeÞHCP the set of fixed points in CP for which e is a characteristic ele-
ment. We refer to FPðeÞ as a fixed point constituent; it may consist of several connected
components. Let De

P denote the fixed points of the mapping Te : DP ! DP which is given
by translation by e. Then FPðeÞ is the image of De

P under the projection DP ! CP. Let
LeHLP denote the centralizer of e in LP. We say an element of LP is elliptic (or is elliptic
modulo AP) if it is LPðRÞ-conjugate to an element of KPAP.

8.4. Proposition. Let e ¼ aeme A APMP be the characteristic element corresponding

to a lift ~ww A DP of the fixed point w A CP. Then the following statements hold.

(1) The characteristic element e A LP is semisimple and is elliptic (modulo AP). The
group Le is reductive, algebraic, and defined over Q. The torus factors ay ¼ ae A AP are equal

(§2.2). The fixed point constituent FPðeÞ is a smooth submanifold of CP.

(2) If y A P is changed by multiplication by an element u A UP, or if g A GL is replaced

by another element of GL which also satisfies (8.2.2), or if a di¤erent representative z 0 A LP of

~ww A DP is chosen, then the characteristic element e A LP does not change.

(3) If a di¤erent lift ~ww 0 A DP of w is chosen, or if y is changed within its double coset

GPyGP then e changes at most by GL-conjugacy.

(4) The characteristic element e is a rigid invariant of the fixed point set: if wt A CP is a

one parameter family of fixed points (with t A ½0; 1�) and if zt A DP is a lift to a one parameter

family of points in DP then the resulting characteristic elements et do not vary with t.

(5) The group Le acts transitively on De
P. Set Ge ¼ GL XLe, G 0e ¼ G 0L XLe, and

K 0e ¼ LeX
�
zðKPAPÞz�1

�
. Then K 0e contains a maximal compact subgroup of Le. The action

of Le on De
P induces di¤eomorphisms

FPðeÞGG 0enLe=K
0
e and ci

�
FPðeÞ

�
GGenLe=K

0
e :ð8:4:1Þ

The projection FPðeÞ ! ci
�
FPðeÞ

�
is a covering of degree

de ¼ ½Ge : G
0
e� ¼ ½GLX y�1GLy : nPðGP X y�1GPyÞ�:ð8:4:2Þ
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(6) Conversely, let CHGLyGL be any GL-conjugacy class which is elliptic (modulo AP).
Then CXGLy consists of a single element e 0, and there exists a fixed point w 0 A CP for which

e 0 is a characteristic element. In particular, FPðe 0Þ3j.

Hence the constituents of the fixed point set in CP are in one-to-one correspondence
with GL-conjugacy classes of elliptic (modulo AP) elements e A GLyGL.

8.5. Proof. By (8.2.2), e ¼ gy A zKPAPz
�1 which is compact modulo AP, so e is also

semisimple. The elements e and y are in the same GL-double coset so they have the same
torus component ae ¼ ay A AP. Since G is neat, the group Ge acts freely on De

P. This proves
(1). Next, consider (2) and suppose di¤erent choices y 0 ¼ yu, g 0 A GL, and z 0 A LP were made,
with u A UP, with ~ww ¼ zKPAP ¼ z 0KPAP A DP and, as in (8.2.2), z 0KPAP ¼ g 0y 0z 0KPAP

(where y 0 ¼ nPðy 0Þ). Then y 0 ¼ y and

gyzKPAP ¼ zKPAP ¼ g 0y 0z 0KPAP ¼ g 0yzKPAP

so g�1g 0 A ðyzÞKPAPðyzÞ�1. Since GL is torsion-free, this implies g ¼ g 0, hence the charac-
teristic element e ¼ gy is unchanged. This proves (2). Since GL is discrete, the characteristic
element is constant in a continuous family of fixed points, which proves (4).

Now consider changing y within its double coset GPyGP and consider changing the lift
~ww A DP of the fixed point. Let ŷy ¼ g1yg2 with g1; g2 A GP. Set g1 ¼ nPðg1Þ, g2 ¼ nPðg2Þ and
ŷy ¼ nPð ŷyÞ. As in §8.1, the element ŷy determines a Hecke correspondence ðĉc1; ĉc2Þ : ĈCPxXP

as follows: Set ĜGP ¼ GP X ŷy�1GPŷy, ĜGL ¼ nPðĜGPÞ and ĈCP ¼ ĜGLnDP ¼ ĜGLnLP=KPAP. Then
ðĉc1; ĉc2ÞðĜGLxKPAPÞ ¼ ðGLxKPAP;GLŷyxKPAPÞ for any x A LP. As in equation (6.7.1), an
isomorphism of correspondences f : ĈCP ! CP is given by

f ðĜGLxKPAPÞ ¼ G 0Lg2xKPAP:

Choose any lift ẑzKPAP A DP of the fixed point ŵw ¼ f �1ðwÞ (with ẑz A LP). We obtain a new
characteristic element êe ¼ ĝgŷy (for some ĝg A GL) such that

ĝgŷyẑzKPAP ¼ ẑzKPAP:ð8:5:1Þ

We need to show that êe ¼ ĝgŷy is GL-conjugate to e ¼ gy. Since f ðŵwÞ ¼ w we have

G 0Lg2ẑzKPAP ¼ G 0LzKPAP

so there exists a unique h A G 0L such that hg2ẑzKPAP ¼ zKPAP or

ẑzKPAP ¼ g�12 h�1zKPAP:ð8:5:2Þ

Substituting (8.5.2) into both sides of (8.5.1) and using (8.2.2) gives

hg2ĝgŷyg
�1
2 h�1zKPAP ¼ zKPAP ¼ gyzKPAP

or

hg2ĝgg1yh
�1zKPAP ¼ gyzKPAP:
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Since h; h�1 A nPðy�1GPyÞ ¼ y�1GLy there exists h 0 A GL such that yh�1 ¼ h 0y, which gives

g�1hg2ĝgg1h
0ðyzKPAPÞ ¼ yzKPAP:

This implies that g�1hg2ĝgg1h
0 ¼ 1 since it is both in the group ðyzÞKPAPðyzÞ�1 and in GL.

Therefore 1.y ¼ g�1hg2ĝgg1yh
�1 or

gy ¼ hg2ĝgg1yg2g
�1
2 h�1 ¼ ðhg2Þĝgŷyðhg2Þ

�1:

Thus, the characteristic elements gy and ĝgŷy are GL-conjugate, which proves (3).

Now let us prove (5). It is easy to see that Le acts on De
P. To see that this action is

transitive, let v1; v2 A De
P, say v1 ¼ z1KPAP and v2 ¼ z2KPAP with zi A LP (for i ¼ 1; 2).

Then there exists k1; k2 A KPAP so that ez1 ¼ z1k1 and ez2 ¼ z2k2, hence k1 and k2 are L-
conjugate (by z2z

�1
1 ). It follows from [Bo3], §24.7 that k1 and k2 are also KPAP conjugate.

Say, k2 ¼ mk1m
�1 for some m A KPAP. Define x ¼ z2mz�11 . Then v2 ¼ xv1 and moreover,

x A Le since

xex�1 ¼ z2mz�11 ez1m
�1z�12 ¼ z2mk1m

�1z�12 ¼ e:

This completes the verification that Le acts transitively on De
P.

Using the chosen lift ~ww ¼ zKPAP A De
P as a basepoint, we obtain a di¤eomorphism

Le=K
0
e GDe

P where K 0e ¼ LeX ðzKPAPz
�1Þ is the stabilizer (in Le) of ~ww. This induces a sur-

jection ðLe XG 0LÞnLe=K
0
e ! FPðeÞ which we will now show to be injective.

Suppose x1; x2 A Le and that x1 ~ww; x2 ~ww A De
P map to the same point in CP, that is,

G 0Lx1zKPAP ¼ G 0Lx2zKPAP. Then there exists g A G 0L so that

gx1zKPAP ¼ x2zKPAP:ð8:5:3Þ

We need to show that g A Le. Acting by e on the left hand side of (8.5.3) and using (8.2.2)
gives the quantity

ege�1ex1zKPAP ¼ ege�1x1ezKPAP ¼ ege�1x1zKPAP

while acting by e on the right hand side of (8.5.3) gives

ex2zKPAP ¼ x2zKPAP ¼ gx1zKPAP:

So g�1ege�1 A ðx1zÞKPAPðx1zÞ�1. But g�1ege�1 A GL so this element is trivial, that is, ge ¼ eg,
hence g A Le. Therefore FPðeÞ ¼ G 0enDe

P. The equality c1
�
FPðeÞ

�
¼ c2

�
FPðeÞ

�
¼ GenLe=K

0
e is

similar. Equation (8.4.2) will be proven in §8.6.

Now let us verify part (6). Suppose e 00 ¼ g2yg1 A LPðQÞ is elliptic (modulo AP). Then
e 00 is GL-conjugate to the element e 0 ¼ g1g2y which is also elliptic modulo AP. There exists
z A LP so that e 0 A zKPAPz

�1 hence e 0zKPAP ¼ zKPAP. In other words, e 0 is a characteristic
element for the point w 0 ¼ G 0LzKPAP A CP (which is easily seen to be fixed under the Hecke
correspondence). r
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8.6. Proof of (8.4.2). (We refer to the notation of §8.4 and §8.5.) Unfortunately the
arithmetic group GL½y� ¼ GLX y�1GLy may be larger than G 0L ¼ nPðGP X y�1GPyÞ, so the
correspondence (8.1.1) is not necessarily a Hecke correspondence, but rather it is a covering
of the following Hecke correspondence:

ð~cc1; ~cc2Þ : ~CCP ¼ GL½y�nDPxXP;

GL½y�xKPAP 7! ðGLxKPAP;GLyxKPAPÞ:

This covering f : G 0LnDP ! GL½y�nDP has degree d ¼ ½GL½y� : G 0L�. A point w A CP is fixed

i¤ the point fðwÞ A ~CCP is fixed.

Let ~FFPðeÞH ~CCP be the set of fixed points within this (smaller) Hecke correspon-
dence with characteristic element e. We claim that the restriction of ~cci to ~FFPðeÞH ~CCP is a
di¤eomorphism: ~FFPðeÞG ci

�
FPðeÞ

�
(for i ¼ 1; 2). As in (8.4.1) it is clear that

~FFPðeÞG ðGL½y�XLeÞnLe=K
0
e so it su‰ces to verify that the inclusion GL½y�XLe HGe is an

isomorphism. If g1 A Ge then g1 ¼ e�1g1e. But the left side of this equation is in GL and the
right side is in y�1GLy, hence g1 A GL½y�, which proves the claim.

In summary, we have a diagram

CP 			!f ~CCP 			!			! XP

H H H

FPðeÞ 			! ~FFPðeÞ 			!G ci
�
FPðeÞ

�
and in particular the degree d of the covering f coincides with the degree de of the mapping
FPðeÞ ! ci

�
FPðeÞ

�
which gives (8.4.2). r

8.7. Remark. The codimension of FpðeÞ in DP is odd if and only if the action of e
reverses orientations in the normal bundle of FPðeÞ in DP. This is because e preserves an
appropriately chosen normal slice through any point in FPðeÞ, the boundary of which is a
sphere on which e then acts as a di¤eomorphism without fixed points, so its Lefschetz
number is 0. In the odd codimension case this sphere is even dimensional, so by the Lef-
schetz fixed point theorem, its action on the top degree cohomology is given by multipli-
cation by �1, that is, it reverses the orientation. In the even codimension case, it preserves
orientation.

9. Hyperbolic properties of Hecke correspondences

9.1. Expanding and contracting roots. As in §2, G denotes a connected linear
reductive algebraic group defined over Q, D denotes the associated symmetric space,
K 0 ¼ AGKðx0Þ is the stabilizer in G of a fixed basepoint x0 A D, GHGðQÞ is an
arithmetic group and X ¼ GnD. Throughout this section we fix a Hecke correspondence
ðc1; c2Þ : CxX defined by some element g A GðQÞ. So C ¼ G 0nD with G 0 ¼ GX g�1Gg.

Let PHG be a rational parabolic subgroup and suppose that c1ðCPÞ ¼ c2ðCPÞ ¼ XP.
By Proposition 7.3, near CP the correspondence is modeled on a parabolic Hecke corre-
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spondence G 0PnD½P�xGPnD½P� (7.1.1) which is determined by some y A PðQÞ (where
G 0P ¼ GP X y�1GPy). Suppose y ¼ uyaymy is the Langlands decomposition (2.2.2) of
y A PðQÞ. If y is allowed to vary within the double coset GPyGP then the element ay A AP

will remain fixed, so we may write aP ¼ ay. We refer to aP as the torus factor associated to
the Hecke correspondence near CP. The torus factor may be used to define a partition of
the simple roots DP into three subsets

DþP ¼ fa A DP j aðaPÞ < 1g;

D�P ¼ fa A DP j aðaPÞ > 1g;

D0
P ¼ fa A DP j aðaPÞ ¼ 1g;

consisting of those simple roots which are expanding, contracting, or neutral, respectively,
near the stratum CP. (See also §11.7.) The terminology is motivated by the following fact,
whose proof follows immediately from (3.2.2) and the definition (7.1.2) of the correspon-
dence. For all a A DP and for all z A G 0PnD½P� the root function f P

a satisfies:

f P
a

�
c2ðzÞ

�
¼ aðaPÞ f P

a

�
c1ðzÞ

�
:ð9:1:1Þ

Now suppose PHQ are rational parabolic subgroups of G, with DP ¼ iðDQÞ q J as
in (2.4.1). Suppose that c1ðCPÞ ¼ c2ðCPÞ, giving rise to a torus factor aP A AP and a
decomposition of DP into expanding, contracting and neutral roots as above. Then
c1ðCQÞ ¼ c2ðCQÞ (by §7.1) so we obtain a torus factor aQ A AQ and a decomposition of DQ

into expanding, contracting and neutral roots also.

9.2. Proposition. Suppose that JHD0
P. Then:

(1) The torus factors aP ¼ aQ are equal; in particular aP lies in the sub-torus AQ HAP.

(2) The expanding, contracting, and neutral simple roots for P and for Q are related as

follows:

DþP ¼ iðDþQÞ; D�P ¼ iðD�QÞ; D0
P ¼ iðD0

QÞ q J:ð9:2:1Þ

(3) For all z A G 0PnD½P� and for all b A DQ we have,

f P
iðbÞ

�
c2ðzÞ

�
f P
iðbÞ

�
c1ðzÞ

� ¼ iðbÞðaPÞ ¼ bðaPÞ ¼
f
Q
b

�
c2ðzÞ

�
f
Q
b

�
c1ðzÞ

�
provided the denominators do not vanish.

In this case we say that Q is a neutral parabolic subgroup containing P and we write
P � Q. Intuitively, the Hecke correspondence is neutral in those directions normal to CP

which point into CQ; cf. §3.6.

9.3. Proof. Locally near CQ the Hecke correspondence is isomorphic to a parabolic
Hecke correspondence given by some y 0 ¼ uy 0ay 0my 0 A Q with torus factor aQ ¼ ay 0 A AQ.
In a neighborhood of CP the correspondence is isomorphic to the parabolic Hecke corre-
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spondence given by some y ¼ uyaymy A P (with aP ¼ ay). Moreover y may be chosen to lie
in the double coset GQy

0GQ since the correspondence CPxXP is the restriction to CP of
the correspondence CQ xXQ; cf. Proposition 7.3. By assumption, aðaPÞ ¼ 1 for all a A J

which implies that aP A AQ. It follows that aP ¼ aQ because the homomorphism Q! AQ

(which associates to any z A Q its torus factor az) kills GQ. Therefore, for any b A DQ

we have: bðaQÞ ¼ iðbÞðaPÞ. This proves (1) and (2). The first equality in part (3) is just
(9.1.1). The last equality in part (3) follows from part (1) and from (9.1.1) (with f P

a replaced
by f

Q
b ). r

9.4. Maximal neutrality. Suppose PHQHR are rational parabolic subgroups and
that c1ðCPÞ ¼ c2ðCPÞ. Write DP ¼ iðDQÞ q I and DQ ¼ jðDRÞ q J for the disjoint union
of (2.4.1). Suppose moreover that P � Q and Q � R, that is, that I HD0

P and JHD0
Q.

Then it follows from Proposition 9.2 that P � R. Hence there is a greatest neutral parabolic
subgroup Py containing P; in fact it is Py ¼ PðD0

PÞ in the notation of §2.4 and §2.3. It is easy
to see that

D0
Py ¼ f and DG

P ¼ i 0ðDG
Py Þð9:4:1Þ

(where i 0 : DPy ,! DP is the natural inclusion). Moreover,

P � Q) Py ¼ Qy:ð9:4:2Þ

10. Structure of the fixed point set

10.1. As in §2, G denotes a connected reductive linear algebraic group defined over
Q, D ¼ G=K 0 is its associated symmetric space with basepoint x0 A D and stabilizer
K 0 ¼ AGKðx0Þ, GHGðQÞ denotes an arithmetic subgroup, and X ¼ GnD. Throughout this
section we fix a Hecke correspondence ðc1; c2Þ : CxX defined by some element g A GðQÞ.
So C ¼ G 0nD with G 0 ¼ GX g�1Gg. We also fix a G-equivariant tiling of D which is narrow
with respect to the Hecke correspondence (cf. §6.11, §4.5), and denote by fCPg and fX Pg
the resulting tilings of C and X respectively. Let F HC be a connected component of the
set of fixed points. The following lemma says that if F spans two strata CP HCQ then the
Hecke correspondence is neutral in those directions which point from CP into CQ; cf. §3.6.

10.2. Lemma. Let PHQOG be rational parabolic subgroups and write

DP ¼ iðDQÞ q J as in (2.4.1). Suppose F XCQXTðCPÞ3j (that is, CQ contains fixed points

which lie in the G-parabolic neighborhood TðCPÞ of CP). Then:

(1) JHD0
P (hence the conclusions of Proposition 9.2 hold ).

(2) F XTðCPÞ is invariant under the geodesic action of A 0P ðf1Þ.

(3) pP
�
F XTðCPÞ

�
HF , that is, each fixed point in this G 0-parabolic neighborhood

projects to a fixed point in CP.

10.3. Proof. Part (1) follows from (3.5.2) and (9.1.1) by taking z A F XCQ XTðCPÞ
to be a fixed point. Part (2) follows from (7.1.3). Part (3) follows by continuity. r
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10.4. Proposition. Let F HC be a connected component of the fixed point set. Let Q
be a rational parabolic subgroup and suppose F XCQ3j. Let aQ A AQ be the torus factor

for this stratum. Let Qy ¼ QðD0
QÞ be the maximal neutral parabolic subgroup containing Q.

Then:

(1) The whole connected component F of the fixed point set is contained in the closure

F HCQy

of the single stratum CQy .

(2) The Hecke correspondence CxX restricts to a correspondence CQy xXQy on this

stratum-closure. Within this restricted correspondence, near each point c A F , every simple

root is neutral: If PHQy, if F XCP 3j, if i 0 : DQy ,! DP is the inclusion, and if

DP ¼ i 0ðDQy Þ q J as in (2.4.1) then J ¼ D0
P.

(3) There exists a neighborhood UðFÞHC of the fixed point set such that for all

a A DQ and for all x A UðFÞ, if x A TðCQÞ and if c2ðxÞ A TðXQÞ then

rQa
�
c2ðxÞ

�
¼ aðaQÞ�1rQa

�
c1ðxÞ

�
:ð10:4:1Þ

10.5. Remarks. Part (1) does not imply that F XCQy 3j. In fact, the fixed point
component F may be ‘‘reducible’’: it does not necessarily coincide with the closure of its
intersection F XCP with any single stratum CP. (See §16.1.)

10.6. Proof. Suppose that F has a nontrivial intersection with some other stratum,
say F XCR 3j. Suppose for the moment that RIQ and that F XCQ contains limit
points from F XCR, that is,

ðF XCQÞXF XCR 3j:ð10:6:1Þ

Then Lemma 10.2 part (1) implies that R is a neutral parabolic subgroup containing Q

so (9.4.2) implies that Ry ¼ Qy, hence F XCR HF XCRy ¼ F XCQy . Now we drop the
assumption (10.6.1). Since F is connected, the stratum CR is related to the stratum CQ

through a chain of strata CRi
(say, 1e iem), each having nontrivial intersection with F ,

with each step in the chain related to the next by

ðF XCRi
ÞXF XCRiþ1 3j or ðF XCRiþ1ÞXF XCRi

3j:

Repeated application of (9.4.2) implies that

Ry ¼ R
y
1 ¼ � � � ¼ Rym ¼ Qy:ð10:6:2Þ

So once again, F XCRHF XCQy . This verifies part (1).

Consider part (2). Since the stratum CQ is preserved by the Hecke correspondence,
the same holds for each larger stratum, especially CQy . Suppose F XCP 3j. By (10.6.2),
Py ¼ Qy so by (9.4.1), DP ¼ i 0ðDQyÞ q D0

P.
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Next we verify part (3). Suppose PHQ and suppose F XCP 3j. By Proposition 9.2
part (3), for all a A DQ and for all w A TðCQÞX c�12

�
TðXQÞ

�
, the root function f P

iðaÞ satisfies

f P
iðaÞ

�
c2ðwÞ

�
¼ aðaQÞ f P

iðaÞ
�
c1ðwÞ

�
ð10:6:3Þ

where, as in (2.4.1), we have written DP ¼ iðDQÞ q J. However this does not yet prove
(10.4.1). The problem is that the partial distance function rQa ðwÞ is patched together (4.2.2)
from these root functions f P

iðaÞ in a way that depends on which tile contains the point ciðwÞ.
So we need to show that the Hecke correspondence preserves the tile boundaries in some
neighborhood UðFÞ of the fixed point set. This in turn will follow from the neutrality
properties of Lemma 10.2 and Proposition 9.2.

10.7. Lemma. Suppose F HC is a connected component of the fixed point set of the

Hecke correspondence CxX . Then there exists a neighborhood UðFÞHC of F such that

for all w A UðFÞ and for any rational parabolic subgroup POG,

c1ðwÞ A X P , c2ðwÞ A X P:ð10:7:1Þ

10.8. Proof. Assume not. Then there is a sequence of points xi A C converging to F

so that for each i, c1ðxiÞ and c2ðxiÞ are in di¤erent tiles. By taking subsequences if
necessary we may assume the sequence xi converges to some point x0 A F , that xi are all
contained in a single tile CP (so c1ðxiÞ A X P) and that c2ðxiÞ all lie in a single tile XQ. Since
c1ðx0Þ A CP XCQ is a fixed point, the Hecke correspondence must preserve the strata CP

and CQ (meaning that c1ðCPÞ ¼ c2ðCPÞ ¼ XP and c1ðCQÞ ¼ c2ðCQÞ ¼ XQ) and we may
assume that either POQ or QOP. Since the tiling is narrow this implies that F XCP 3j,
that F XCQ3j, and that either F XCP contains limit points from F XCQ (if POQ) or
else F XCQ contains limit points from F XCP (if QOP).

Let us first consider the case that POQ ¼ G, meaning that XQ ¼ X 0. Let aP A AP

denote the torus factor for the Hecke correspondence near CP as in §9.1. Then it
follows from Lemma 10.2 that Q ¼ G is a neutral parabolic subgroup containing P, that is,
aðaPÞ ¼ 1 for all a A DP. Within any G-parabolic neighborhood W of XP, the tile X P is
given by (4.1.3):

X P ¼ fx A W j pPðxÞ A X 0
P and f P

a ðxÞ > aðbPÞ for all a A DPg:

Since c2ðxiÞ A X 0 it follows that for at least one a A DP we have:

aðbPÞf f P
a

�
c2ðxiÞ

�
¼ aðaPÞ f P

a

�
c1ðxiÞ

�
¼ f P

a

�
c1ðxiÞ

�
> aðbPÞ

(using equation (9.1.1)), which is a contradiction.

Next consider the case PHQ3G. For su‰ciently large i the points xi will lie in
some G 0-parabolic neighborhood of CQ, and the same argument applied to the sequence
zi ¼ pQðxiÞ ! z0 ¼ pQðx0Þ A F XCQ also leads to a contradiction.

The caseQOP may be handled by reversing the roles of P and Q in these arguments.
This completes the proof of Lemma 10.7 and also the proof of Proposition 10.4. r
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11. Modified Hecke correspondence

11.1. As in §2, G denotes a connected linear reductive algebraic group defined over
Q, D denotes the associated symmetric space, K 0 ¼ AGKðx0Þ is the stabilizer in G of a
chosen basepoint x0 A D, GHGðQÞ is an arithmetic group and X ¼ GnD. Throughout this
section we fix a Hecke correspondence ðc1; c2Þ : CxX defined by some element g A GðQÞ,
with C ¼ G 0nD and G 0 ¼ GX g�1Gg. Let F ¼ fw A C j c1ðwÞ ¼ c2ðwÞg denote the fixed
point set. Fix a su‰ciently large regular G-equivariant parameter b A B which is so large
that the resulting tilings fDPg of D, fX Pg of X and fCPg of C are narrow (§6.11) with
respect to the Hecke correspondence. Fix t A AP0

ð>1Þ dominant and regular, with resulting
shrink homeomorphism ShðtÞ : X ! X as in §5. Define the (shrink-) modified correspon-
dence

ðc 01; c 02Þ : CxXð11:1:1Þ

by c 01 ¼ c1 and c 02 ¼ ShðtÞ � c2. Let F̂F ¼ fw A C j c 01ðwÞ ¼ c 02ðwÞg denote the fixed point set
of the modified correspondence.

11.2. Proposition. If t A AP0
ð>1Þ is chosen regular and su‰ciently close to 1, then

F̂F XCQ ¼ F XC0
Qð11:2:1Þ

for each stratum CQHC, and

c1ðF̂FÞXXQ ¼ c1ðFÞXX 0
Qð11:2:2Þ

for each stratum XQHX , where C0
Q (resp. X 0

Q) denotes the central tile in CQ (resp. XQ).

11.3. Proof. The correspondence C has finitely many boundary strata CP with the
property that c1ðCPÞ ¼ c2ðCPÞ. For each such stratum CP, according to Proposition 7.3, the
Hecke correspondence is locally isomorphic near CP to a parabolic Hecke correspondence
G 0PnD½P�xGPnD½P� which is given by some y A PðQÞ and to which we may uniquely asso-
ciate a torus factor ay ¼ aP A AP as in §7.1. Conjugating all these torus factors back to SP0

gives a collection fa1; a2; . . . ; aNgHAP0
of finitely many standard torus factors (some of

which may coincide and some of which may equal 1) associated to the Hecke correspon-
dence g. If t A AP0

ð>1Þ is chosen to be regular and su‰ciently close to 1 then we
can guarantee that the following condition holds: For all a A D and for all i ¼ 1; 2; . . . ;N,
if aðaiÞ < 1 then aðaitÞ < 1 while if aðaiÞf 1 then aðaitÞ > 1. Therefore, for any r with
0 < re 1, for all a A D and for all i ¼ 1; 2; . . . ;N, the following holds:

aðaiÞ < 1) aðaiÞaðtÞr < 1;

aðaiÞf 1) aðaiÞaðtÞr > 1:



ð11:3:1Þ

Having made these choices, let us now prove Proposition 11.2. Certainly F XC0
Q ¼ F̂F XC0

Q

because the shrink acts as the identity on C0
Q. So we only need to show that F̂F XCQHC0

Q,

that is, we must show that the fixed points of the modified Hecke correspondence which
appear in the stratum CQ are all contained in the central tile of that stratum. Suppose
otherwise and let w A CQ be a fixed point of the modified correspondence which lies in
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some tile CP for PHQ, and P3Q. Since the shrink preserves tiles, it follows that
c1ðCPÞX c2ðCPÞ3j. The tiling is narrow so this implies that c1ðCPÞ ¼ c2ðCPÞ. Set
DP ¼ iðDQÞ q J as in (2.4.1); then J3j. By Proposition 7.3, locally near CP we may
replace the Hecke correspondence by a parabolic correspondence: in other words, we
may assume that g A P. Let aP A AP be the torus factor for the correspondence near CP,
that is, if g ¼ ugagmg A UPAPMP is the Langlands decomposition then aP ¼ ag. The
point c1ðwÞ ¼ c 01ðwÞ ¼ c 02ðwÞ lies in XQ XX P HX . Since the shrink preserves tiles,

c2ðwÞ A XQXX P also.

For any a A DP,

f P
a

�
c 02ðwÞ

�
¼ f P

a

�
c2ðwÞ

�
a0ðtÞrðr

P
a ðc2ðwÞÞÞ by ð5:5:2Þ

¼ aðaPÞa0ðtÞrðr
P
a ðc2ðwÞÞÞ f P

a

�
c1ðwÞ

�
by ð9:1:1Þ

where a0 A D is the unique simple root which, after conjugation and restriction to SP,
agrees with a.

This gives a contradiction: First note that r
�
rPa
�
c2ðwÞ

��
3 0, for otherwise we would

have rPa
�
c2ðwÞ

�
¼ 1 or c2ðwÞ B X P. As the shrink preserves tiles, this would imply that

c 02ðwÞ B X P which is absurd. So by (11.3.1) the factor aðaPÞa0ðtÞrðr
P
a ðc2ðwÞÞÞ3 1. If we choose

a A J then the assumption c1ðwÞ A XQ implies that f P
a

�
c1ðwÞ

�
3 0. Therefore the point w

cannot be fixed by the modified correspondence, which proves (11.2.1).

There are finitely many strata CR such that c1ðCRÞ ¼ XQ. To prove (11.2.2) it su‰ces
to show, for each of these strata, that

c1ðF̂F XCRÞXXQ ¼ c1ðF XCRÞXX 0
Q:

Write F XCR ¼ ðF XC0
RÞW ~FF as a disjoint union. Then ~FF is contained in a union of

tiles CR 0 with R 0HR a proper inclusion. Since c1 takes tiles to tiles, it follows that
c1ð ~FFÞXX 0

Q ¼ j hence

c1ðF XCRÞXX 0
Q ¼ c1ðF XC0

RÞXX 0
Q ¼ c1ðF XC0

RÞ

¼ c1ðF̂F XCRÞ ¼ c1ðF̂F XCRÞXXQ

by (11.2.1). r

11.4. Tangential distance. Choose a regular G-invariant parameter so that the
associated tiling is narrow (§6.11) with respect to the Hecke correspondence. Choose
t A AP0

ð>1Þ to be regular and su‰ciently close to 1 as in Proposition 11.2. Suppose CQ is a
stratum of C for which F XCQ3j. Then the Hecke correspondence restricts to a corre-
spondence CQxXQ. Fix e A LQ and let FQðeÞHCQ denote the set of fixed points in CQ for
which e is a characteristic element as in §8.2. The corresponding set of fixed points for the
modified Hecke correspondence is the ‘‘truncation’’

F 0
QðeÞ ¼ FQðeÞXC0

Q:
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Let E ¼ c1
�
F 0
QðeÞ

�
¼ c1

�
FQðeÞ

�
XX 0

Q denote its image in XQ. In this section we construct
a good function which measures the distance from E.

Let RXQ
: XQ ! X 0

Q and RCQ
: CQ ! C0

Q be the retraction(s) and let WQ : XQ ! ½0; 1�
be the exhaustion function of §4.6. A choice of G-invariant Riemannian metric on D

induces Riemannian metrics on C, X , CQ, and XQ. Define the tangential distance
dE : XQ ! ½0;y� by

dEðxÞ ¼WQðxÞ þ distXQ

�
RXQ
ðxÞ;E

�
ð11:4:1Þ

where distXQ
denotes the distance in XQ with respect to the Riemannian metric. Then

d�1E ð0Þ ¼ E. Although the restriction of the Hecke correspondence to CQ is locally an iso-
metry, composing with ShðtÞ has the following e¤ect: points near the boundary of XQ are
moved even closer to the boundary of XQ and hence they are moved away from E. This is
the intuition behind the following lemma.

11.5. Lemma. There exists a neighborhood V HCQ of F 0
QðeÞ ¼ FQðeÞXC0

Q such that

dE
�
c 02ðwÞ

�
f dE

�
c 01ðwÞ

�
ð11:5:1Þ

for all w A V .

11.6. Proof. The stratum closure CQ is tiled by the collection of intersections
CP

Q ¼ CQ XCP with POQ. Let CP
Q denote the closure of such a tile. Let U1 HCQ be a

neighborhood of the closure FQðeÞ so that for any rational parabolic subgroup PHQ,

FQðeÞXCP
Q ¼ j, U1 XCP

Q ¼ j:

By Lemma 10.7 we may also assume that the Hecke correspondence preserves tile bound-
aries in U1. The mapping c1 preserves tiles, and the points in FQðeÞ are fixed, hence

E ¼ c1
�
F 0
QðeÞ

�
¼ c2

�
F 0
QðeÞ

�
:

By Proposition 8.4 (6), and for i ¼ 1; 2, the mapping ci is one-to-one on FQðeÞ. Moreover, it
is locally an isometry. It follows that,

distXQ

�
c1ðwÞ;E

�
¼ distCQ

�
w;F 0

QðeÞ
�
¼ distXQ

�
c2ðwÞ;E

�
ð11:6:1Þ

for w A CQ in some neighborhood U2 HCQ of F 0
QðeÞ. The desired neighborhood is

V ¼ U1 XU2 HCQ:

By Proposition 10.4 the restricted correspondence CQ xXQ is neutral near FQðeÞ. So
if PHQ and if FQðeÞXCP3j and if DP ¼ iðDQÞ q J as in (2.4.1) then by (10.4.1),

rPa
�
c2ðwÞ

�
¼ rPa

�
c1ðwÞ

�
ð11:6:2Þ

for all w A CP
Q and for all a A J. Moreover, by Lemma 10.7 the correspondence preserves

tiles near FQðeÞ, that is, for all w A U1 and for all POQ we have
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w A CP
Q , c1ðwÞ A X P

Q , c2ðwÞ A X P
Q :

By (7.1.3) the correspondence commutes with the geodesic action of AP. Therefore

RXQ

�
c1ðwÞ

�
¼ c1

�
RCQ
ðwÞ

�
and RXQ

�
c2ðwÞ

�
¼ c2

�
RCQ
ðwÞ

�
:

Now suppose w A V and w A CP
Q for some POQ. If P ¼ Q (that is, if w A C0

Q lies in

the central tile) then ciðwÞ A C0
Q as well, in which case RXQ

�
ciðwÞ

�
¼ ciðwÞ, WQ

�
ciðwÞ

�
¼ 0,

and ciðwÞ ¼ c 0i ðwÞ. Then (11.5.1) follows from (11.6.1) and in fact, equality holds.

Now suppose w A V XCP
Q for some P3Q. Then PHQ, c1ðCPÞ ¼ c2ðCPÞ ¼ XP by

Proposition 7.3, and locally near XP this correspondence is isomorphic to a parabolic Hecke
correspondence, that is, we may assume that g A PðQÞ. In the tile CP the retraction R com-
mutes with the geodesic action of AP, cf. (4.6.1), and so does the Hecke correspondence,
(7.1.3), hence

RXQ

�
c 02ðwÞ

�
¼ RXQ

�
ShðtÞc2ðwÞ

�
¼ RXQ

�
c2ðwÞ

�
¼ c2

�
RCQ
ðwÞ

�
:

So the second terms in (11.4.1) are equal:

distXQ

�
RXQ

c 02ðwÞ;E
�
¼ distXQ

�
c2
�
RCQ
ðwÞ

�
; c2

�
F 0
QðeÞ

��
¼ distCQ

�
RCQ
ðwÞ;F 0

Q

�
ðeÞ

��
¼ distXQ

�
c1
�
RCQ
ðwÞ

�
;E

�
¼ distXQ

�
RXQ

c1ðwÞ;E
�

because both morphisms c1 and c2 are local isometries. Now consider the first terms in
(11.4.1). Fix w A CP

Q . For a A DP set rðaÞ ¼ r
�
rPa
�
c2ðwÞ

��
. Using (4.6.3), (5.5.1), and (11.6.2)

we find,

WQ

�
c 02ðwÞ

�
¼ 1� inf

a A J
frPa ShðtÞc2ðwÞg

¼ 1� inf
a A J

�
rPa
�
c2ðwÞ

�
a0ðtÞ�rðaÞ

�
¼ 1� inf

a A J

�
rPa
�
c1ðwÞ

�
a0ðtÞ�rðaÞ

�
f 1� inf

a A J

�
rPa
�
c1ðwÞ

��
¼WQ

�
c 01ðwÞ

�
which completes the proof of (11.5.1). r

11.7. Hyperbolic correspondences. Recall that the correspondence ðc1; c2Þ : CxX

is weakly hyperbolic ([GM2], [GM5]) near a connected component F HC of the fixed point
set, if there is a neighborhood NðF 0ÞHX of the image F 0 ¼ c1ðFÞ ¼ c2ðFÞ and an indicator

mapping t ¼ ðt1; t2Þ : NðF 0Þ ! Rf0 � Rf0 such that

(1) the mapping t is proper and subanalytic;

(2) the pre-image of the origin t�1ð0Þ ¼ F 0 consists precisely of F 0;
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(3) there is a neighborhood NðFÞHC so that ci
�
NðFÞ

�
HNðF 0Þ (for i ¼ 1; 2) and

NðFÞX c�11 ðF 0ÞX c�12 ðF 0Þ ¼ F ;

(4) for any x A NðFÞ,

t1
�
c1ðxÞ

�
e t1

�
c2ðxÞ

�
;

t2
�
c1ðxÞ

�
f t2

�
c2ðxÞ

�
:

(Due to an error in [GM2], condition (3) above was omitted from the original definition of
weakly hyperbolic, cf. [GM5].)

11.8. The modified correspondence is hyperbolic. Choose a tiling parameter b A B
so that the associated tiling is narrow with respect to the Hecke correspondence
ðc1; c2Þ : CxX . Choose t A AP0

ð>1Þ to be dominant, regular, and su‰ciently close to 1

as in Proposition 11.2 and equation (11.3.1). Let ðc 01; c 02Þ : CxX be the modified corre-
spondence.

Suppose CQ is a stratum of C for which F XCQ3j. Then c1ðCQÞ ¼ c2ðCQÞ ¼ XQ.
By Proposition 7.3 we may, locally near CQ, replace the Hecke correspondence with a
parabolic Hecke correspondence determined by some g ¼ ugagmg A QðQÞ. For any e A LQ

let FQðeÞHCQ denote the corresponding fixed point constituent: the set of fixed points
in CQ for which e is a characteristic element as in §8.2. By Proposition 11.2 the fixed point
set in CQ of the modified Hecke correspondence is a union of ‘‘truncated’’ constituents
F 0
QðeÞ ¼ FQðeÞXC0

Q (as e varies over elliptic elements in GLgGL, cf. Proposition 8.4).

(Although F 0
QðeÞ may have finitely many connected components we will treat them all

simultaneously.)

Fix such an element e and let E ¼ c1
�
FQðeÞ

�
XX 0

Q ¼ c1
�
F 0
QðeÞ

�
be the image in XQ of

the truncated fixed point constituent as in §11.4. Write DQ ¼ DþQWD�QWD0
Q according to

whether the simple root is expanding, contracting, or neutral near XQ as in §7.1. Define
t ¼ ðt1; t2Þ : TðXQÞ ! Rf0 � Rf0 by

t1ðxÞ ¼
P

a ADþ
Q

rQa ðxÞ þ dE
�
pQðxÞ

�
;

t2ðxÞ ¼
P

a AD�Q

rQa ðxÞ þ
P

a AD0
Q

rQa ðxÞ:

Here,

TðXQÞ ¼ TðXQÞXX ½Q�

denotes the open neighborhood of XQ on which the above mappings are defined: it consists
of the part of TðXQÞ which is contained in those strata XP such that QOP.

11.9. Theorem. The mapping ðt1; t2Þ is an indicator mapping, with respect to which

the modified Hecke correspondence is hyperbolic near F 0
QðeÞ.
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11.10. Proof. The idea is that the composition with the ShðtÞ converts neutral direc-
tions (normal to a given stratum) into contracting directions but it does not change the
nature of the expanding or contracting (normal) directions. It converts distances within the
stratum (which are preserved by the Hecke correspondence and hence neutral) into expand-
ing directions.

We must display a neighborhood N
�
F 0
QðeÞ

�
HC which satisfies conditions (3) and (4)

of §11.7 (but with F replaced by F 0
QðeÞ). First we find a neighborhood N1 so that condition

(3) holds. Since c1 : C ! X is stratum preserving,

c�11 ðEÞXTðCQÞ ¼ c�11 ðEÞXCQ

where TðCQÞ ¼ TðCQÞXC½Q�. The mapping c1 : CQ ! XQ is a finite (unramified) cover-
ing. Therefore, if W HCQ is a su‰ciently small neighborhood of F 0

QðeÞ in CQ then

c�11 ðEÞXW ¼ F 0
QðeÞ:

Take N1 ¼ p�1Q ðWÞXTðCQÞ. This neighborhood of F 0
QðeÞ satisfies condition (3) because

c�11 ðEÞX c�12 ðEÞXN1 H c�11 ðEÞXN1 ¼ c�11 ðEÞXW ¼ F 0
QðeÞ

and the reverse inclusion is obvious.

Now consider the conditions (4). Let aQ ¼ ag A AQ be the torus factor for the corre-

spondence near CQ. It is easy to check that t�11 ð0ÞX t�12 ð0Þ ¼ E. For any w A TðCQÞ and
for all a A DQ we have

rQa
�
c 02ðwÞ

�
¼ rQa

�
ShðtÞc2ðwÞ

�
¼ a0ðtÞ�rðr

Q
a c2ðwÞÞrQa c2ðwÞ by ð5:5:1Þ

¼ a0ðtÞ�rðr
Q
a c2ðwÞÞaðaQÞ�1rQa

�
c1ðwÞ

�
by ð10:4:1Þ:

If a A D�QWD0
Q then a0ðtÞ�rðr

Q
a c2ðwÞÞaðaQÞ�1 e 1 since both factors aree1. This proves that

t2c
0
2ðwÞe t2c

0
1ðwÞ:

If a A DþQ then aðaQÞ < 1 so a0ðtÞ�rðr
Q
a c2ðwÞÞaðaQÞ�1 > 1 by (11.3.1). Let V HCQ be the

neighborhood of F 0
QðeÞ described in Lemma 11.5. Then for all w A p�1Q ðVÞ we have

dEpQc
0
2ðwÞ ¼ dEpQShðtÞc2ðwÞ

¼ dEShðtÞpQc2ðwÞ by §5:5ð4Þ

¼ dEShðtÞc2pQðwÞ by ð6:4:3Þ

f dEc
0
1pQðwÞ by ð11:5:1Þ

¼ dEpQc
0
1ðwÞ

which proves that
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t1c
0
2ðwÞf t1c

0
1ðwÞ

for all w A p�1Q ðVÞ. This completes the verification of condition (4) of §11.7. In summary,

the neighborhood

N
�
F 0
QðeÞ

�
¼ N1 X p�1Q ðVÞHC

satisfies both conditions (3) and (4). r

12. Local weighted cohomology with supports

12.1. Quadrants (See [GKM], §7.14, p. 534). As in previous sections we suppose
G is a connected reductive linear algebraic group defined over Q and we denote the
greatest Q-split torus in its center by SG. Let P be a rational parabolic subgroup with SP

the greatest Q-split torus in the center of its Levi quotient LP. Let DP denote the simple
positive roots of SP occurring in NP ¼ LieðUPÞ. The elements a A DP are trivial on SG and
form a basis of w�QðS 0PÞH w�QðSPÞ where S 0P ¼ SP=SG. For any subset JHDP as in §2.4 let
Q ¼ PðJÞ be the parabolic subgroup containing P for which the corresponding torus

SJ ¼ SPðJÞ

is the identity component of the intersection
T
a A J

kerðaÞ. Let ftag be the basis of the cochar-

acter group w�ðS 0PÞnQ which is dual to the basis DP so that ha; tbi ¼ da;b (with respect
to the canonical pairing h� ; �i). The cocharacter group wQ� ðSP=SJÞ is spanned by fta j a A Jg
while wQ� ðSJ=SGÞ is spanned by fta j a A Jg, where J ¼ DP � J denotes the complement.

Fix nP A w�QðSPÞ and JHDP. Let g A w�QðSPÞ and suppose that gjSG ¼ nPjSG. Then
g� nP may be regarded as an element of w�QðS 0PÞ so we may define

InPðgÞ ¼ fa A DP j hg� nP; tai < 0g;ð12:1:1Þ

w�QðSPÞdnP;Jc ¼ fg A w�QðSPÞ j InPðgÞ ¼ J and gjSG ¼ nPjSGg:ð12:1:2Þ

This last set is called the quadrant of type J. The disjoint union of the 2jDPj quadrants,

‘
JODP

w�QðSPÞdnP;Jc ¼
�
g A w�QðSPÞ

�� gjSG ¼ nPjSG

�

is the subset of all characters whose restriction to SG agrees with that of nP. Taking J ¼ j
gives

w�QðSPÞdnP;fc ¼
�
g A w�QðSPÞ

�� gjSG ¼ nPjSG and hg� nP; taif 0 for all a A DP

�
which was denoted w�QðSPÞþ in [GHM] and was denoted w�QðSPÞfnP

in [GKM]. It is the

translate by nP of the positive cone
n P

a ADP

maa
o
with ma f 0. More generally, for JHDP

define w�QðSPÞfnPðJ Þ to be the translate by nP of the cone
n P

a A J

maa jma f 0
o
. That is,
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w�QðSPÞfnPðJ Þ ¼
�
g A w�QðSPÞ

�� gjSG ¼ nPjSG and hg� nP; taif 0 for all a A J
�

¼
S

KOJ

w�QðSPÞdnP;Kc:

Then

w�QðSPÞdnP;Jc ¼ w�QðSPÞfnPðJ Þ �
S

KkJ

w�QðSPÞfnPðKÞ:ð12:1:3Þ

Equation (12.1.3) remains valid if we replace the union on the right hand side by the union
over those KH J such that jKj ¼ jJj � 1.

(This apparently backward notation was chosen so as to simplify the computation in
§12.6. It can be reconciled with the notation of [GHM] as follows. There are jDPj proper
maximal parabolic subgroups containing P. Each JHDP corresponds to a collection ĴJ

of these maximal parabolic subgroups, with Q A ĴJ i¤ SQ H
T
a A J

kerðaÞ. Then the subset

w�QðSPÞfnPðJ Þ in this paper coincides with the subset w�QðSPÞþðĴJ Þ in [GHM].)

If H is an SP module such that SG acts on H through the character nPjSG then one
may define HdnP;Jc (resp. HfnP , resp. HfnPðJ Þ) to be the sum of those weight spaces Hg for
which g A w�QðSPÞdnP;Jc (resp. g A w�QðSPÞfnP

, resp. g A w�QðSPÞfnPðJ Þ).

12.2. Weighted cohomology. As in §2, let D denote the symmetric space associated
to G, K 0 ¼ AGKðx0Þ denote the stabilizer in G of a fixed basepoint x0 A D, GHGðQÞ be a
neat arithmetic group and X ¼ GnD. Let G ! GLðEÞ be a finite dimensional irreducible
representation of G on some complex vector space E. It gives rise to a local system
E ¼ ðG=K 0Þ �G E on X ¼ GnG=K . Let P0 be the standard minimal rational parabolic
subgroup with S0 ¼ SP0

. Fix n A w�QðS0Þ so that njSG coincides with the character by which
SG acts on E. Then n defines a weight profile in the sense of [GHM]: if QPP0 is a standard
rational parabolic subgroup then set nQ ¼ njSQ and

w�QðSQÞþ ¼ w�QðSQÞfnQ
¼ w�QðSQÞdnQ;fc:

These definitions may be extended to arbitrary rational parabolic subgroups by conjuga-
tion. We obtain from [GHM] a complex of fine sheaves, WnC�ðEÞ on the reductive Borel-
Serre compactification X of X , whose (hyper)-cohomology groups W nH �ðX ;EÞ are the
weighted cohomology groups. Let i : X ! X denote the inclusion. Recall from [GHM],
§13 that a choice of basepoint induces an isomorphism

H j
x

�
Ri�ðEÞ

�
GH jðNQ;EÞ

between the stalk cohomology at a point x A XQ of the complex of sheaves Ri�ðEÞ and the
Lie algebra cohomology of NQ. The weighted cohomology complex is obtained by apply-
ing a weight truncation to the complex Ri�ðEÞ with the result that its stalk cohomology
becomes

H j
x

�
WnC�ðEÞ

�
¼ H jðNQ;EÞfnQ

:ð12:2:1Þ
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12.3. Remarks on sheaf theory. In the next few sections we will need to use the for-
malism of the derived category of sheaves, and some relations between the standard func-
tors, for which we refer to [GM4], [GM2], [Bo5], [I], [KS], [GeM]. Specifically, if X is a
subanalytic set we denote by DbðXÞ the bounded (cohomologically-) constructible derived
category of sheaves of complex vector spaces on X . An element S� A DbðX Þ is a complex
of sheaves, bounded from below, whose cohomology sheaves H iðS�Þ are finite dimen-
sional and are locally constant on each stratum of some subanalytic stratification of X .
The hypercohomology of S� will be denoted H �ðS�Þ and the stalk cohomology at a
point x A X will be denoted H �x ðS�Þ. Denote by S½n�� the shifted sheaf, S½n�p ¼ Snþp. The
derived category DbðX Þ supports the standard operations of RHom,n, Rf�, Rf!, f

�, and
f !. There are many relations between these functors, of which we mention a few that we
will use:

If f : Y ! X is a normally nonsingular embedding ([GM4], §5.4) then there is a
canonical isomorphism

f !ðS�ÞG f �ðS�ÞnOX=Y ½�d�ð12:3:1Þ

where OX=Y denotes the orientation bundle (or top exterior power) of the normal bundle of
Y in X , and where d denotes the codimension of Y in X . If f : X ! pt is the map to a
point then DX ¼ f !ðCÞ is the dualizing complex. If X is an n-dimensional manifold (or
even a rational homology manifold) then DX GOX ½n� where OX denotes the orientation
bundle.

12.4. Cohomology with supports. Let X be a compact subanalytic set and let S� be a
(cohomologically) constructible complex of sheaves on X . Suppose Y HW HX are locally
closed subsets with inclusions

Y !
hY

W !
jW

X :

Define the restriction of S� to Y with compact supports in W to be the complex of sheaves

B� ¼ h!Y j
�
WS�:ð12:4:1Þ

If Y ¼ fyg is a single point, then the cohomology of this complex is the relative cohomol-
ogy group

HmðB�Þ ¼ HmðBeXX ; qBeXW ;S�Þ;ð12:4:2Þ

where Be is a su‰ciently small ball around y (with respect to some subanalytic embedding
in Euclidean space) and qBe is its boundary.

Now suppose X is the reductive Borel-Serre compactification of a locally symmetric
space X ¼ GnG=K as in §12.2, and that S� ¼WnC�ðEÞ is the weighted cohomology sheaf
constructed with respect to some weight profile n and local system E as in §12.2. Let
Y ¼ XP be some stratum and let W ¼ XQ be the closure of a larger stratum, corresponding
to some rational parabolic subgroup QIP. Form B� ¼ h!Y j

�
WWnC�ðEÞ as above. Write

DP ¼ iðDQÞ q I as in (2.4.1).
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12.5. Theorem. The cohomology sheaf HmðB�Þ is isomorphic to the local system on

XP which is associated to the following LP-submodule of the NP-cohomology,

Hm�jI jðNP;EÞdnP; Ic:ð12:5:1Þ

12.6. Proof of Theorem 12.5. The proof follows closely the computation [GHM],
§18 of the weighted cohomology of the link Ly. First let us recall some generalities. Each
stratum XP of the reductive Borel-Serre compactification X is a rational homology mani-
fold. If G is neat, then each stratum is a smooth manifold. Suppose S� is a complex of
sheaves whose cohomology sheaves are locally constant on each stratum of X . Let
Y ¼ XP HW ¼ XQ as above. The choice of basepoint x0 A D determines a basepoint
y A Y . Let Ny HX be a normal slice (cf. [GM3], §5.4) to the stratum Y at the point y. Let
k : Ny XW ! X denote the inclusion, and let iy and ay denote the inclusions of y into Y

and Ny XW respectively.

Then the stalk cohomology of B� ¼ h!Y j
�
WS� is given by

Hm
y ðB�Þ ¼ Hmði�y h!Y j �WS�ÞGHmða!yk�S�Þð12:6:1Þ

which in turn may be identified with the relative cohomology group

HmðBe XNy; qBeXNyXXQ;S
�Þð12:6:2Þ

(where Be is a su‰ciently small ball around y, chosen with respect to some locally defined
subanalytic embedding of X into some Euclidean space).

These isomorphisms are deduced from the following fiber squares

y 			!
ay

Ny XW 			!
kW

Ny

iy

???y
???y

???ykN

Y 			!
hY

W 			!
jW

X

ð12:6:3Þ

where k ¼ kNkW . In the case that S� ¼WnC� we will compute (12.6.2) using the long exact
cohomology sequence for the pair.

Step 1. Construct an isomorphism of LP-modules,

Hc
�
qBeXNy XXQ;W

nC�ðEÞ
�
GHc�jI jþ1ðNP;EÞdnP; IclHcðNP;EÞfnP

:ð12:6:4Þ

In order to simplify notation, let us choose a labeling fa1; a2; . . . ; asg ¼ DP of the
simple roots. As in [GHM], §8.8, the link Ly ¼ qBeXNy comes with a natural mapping
d : Ly ! .s�1 to the s� 1 dimensional simplex,

.s�1 ¼


ðx1; x2; . . . ; xsÞ A Rs

��� 0e xi e 1 and
Ps
i¼1

xi ¼ 1



:
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For any subset JH f1; 2; . . . ; sg let J denote its complement. Associated to J there is a
(closed) face of dimension jJj � 1,

.J ¼ fx A .s�1 j xj ¼ 0 for all j A Jg

whose interior we denote by .o
J . Each .f jg is a vertex of .s�1; the face .J is spanned by the

vertices .f jg such that j A J. Let Uf jg ¼ Stð.f jgÞ be the open star of the vertex .f jg. These
form a covering of .s�1 whose multi-intersections we denote by

UJ ¼
T
j A J

Uf jg:

Then

UJ ¼ Stð.o
J Þ ¼

S
fF o jF is a face of .s�1 and F P .Jg

is the open star of the interior of the face .J .

If we think of stratifying the simplex .s�1 by the interiors of its faces, then the map-
ping d : Ly ! .s�1 is a stratified mapping: for any JH f1; 2; . . . ; sg it maps Ly XXPðJ Þ to
the interior .o

J of the face .J , and in particular

Ly XXQ ¼ d�1ð.I Þ:

The fiber over any interior point s A .o
I is the nilmanifold ðGXUQÞnUQ. As in [GHM],

§18.5, the (weighted) cohomology of Ly XXQ can be computed using the Mayer-Vietoris
spectral sequence for the covering by open stars (for i A I ),

Vfig ¼ d�1ðUfigX .IÞ

of the vertices of .I . Set VJ ¼ d�1ðUJ X .IÞ. The groups E
a;b
1 are cohomology groups of

multi-intersections of open sets in this covering, and were computed in [GHM], Lemma
18.5,

E
a;b
1 ¼

L
jJj¼aþ1
JHI

W nHb
� T

j A J
Vf jg;E

�
¼

L
jJj¼aþ1
JHI

W nHbðVJ ;EÞ

¼
L

jJj¼aþ1
JHI

H bðNP;EÞfnPðJ Þ
:

The E1 di¤erential is given (up to sign) by inclusion, so the argument of [GHM],
§18.7 applies here as well: the spectral sequence collapses at E2, which has only two possi-
bly nonzero columns: E0;b

2 ¼ HbðNP;EÞfnP
and, using (12.1.3),

E
jI j�1;b
2 ¼

HbðNP;EÞfnPðIÞP
jKj¼jI j�1

KHI

H bðNP;EÞfnPðKÞ

¼ HbðNP;EÞdnP; Ic
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which contributes to W nH �
�
d�1Stð.I Þ;E

�
in degree jI j � 1þ b. So we obtain a split short

exact sequence (with c ¼ jI j � 1þ b),

0! Hc�jI jþ1ðNP;EÞdnP; Ic !W nHcðLy XXQ;EÞ ! HcðNP;EÞfnP
! 0

which completes the proof of (12.6.4).

Step 2. As in [GHM], §18.11, the long exact sequence for the pair (12.6.2) splits into
split short exact sequences,

0! HcðBe XNyÞ ! HcðqBe XNy XXQÞ ! Hcþ1ðBeXNy; qBe XNy XXQÞ ! 0:

But H �ðBeXNyÞ ¼ H �ðBeÞ ¼ H �ðNP;EÞfnP
is the stalk cohomology at y of the weighted

cohomology sheaf. This kills the second summand in (12.6.4), leaving

Hm
y ðB�ÞGHm

�
BeXNy; qBe XNy XXQ;W

nC�ðEÞ
�
GHm�jI jðNP;EÞdnP; Ic:ð12:6:5Þ

Step 3. We briefly indicate why the isomorphism (12.6.5) extends to an isomor-
phism of flat vector bundles on XP,

HmðB�ÞGHm�jI jðNP;EÞdnP; Ic �GLðPÞ LP=KPAP

(where GLðPÞ ¼ nPðGXPÞ is the projection of GXP to the Levi quotient LP and where it
acts on H �ðNP;EÞ by conjugation). Let i : X ! X denote the inclusion. In [GHM], §17,
special di¤erential forms are used in order to identify the restriction HmðRi�EÞ jXP with the
flat vector bundle

HmðNP;EÞdnP;fc �GLðPÞ LP=KPAP:

But each of the cohomology groups appearing in Step 2 (above) is an LP-submodule of
H �ðNP;EÞ and the corresponding bundle on XP is a sub-bundle of H�Ri�ðEÞ jXP (while the
shift by jI j corresponds to tensoring with a trivial vector bundle on XP). So it su‰ces to
verify that the stalk cohomology modules agree at the basepoint, which we have done. r

12.7. Kostant’s theorem. In this section we will use Kostant’s theorem [Ko] to
explicitly evaluate the cohomology group (12.5.1). Let BHG be a Borel subgroup (over
C), chosen so that BðCÞHP0ðCÞHPðCÞ. Choose a maximal torus T (over C) of G so that

SPðCÞHS0ðCÞHTðCÞHBLðCÞð12:7:1Þ

where BL ¼ BXLP is the corresponding Borel subgroup of LP. This gives rise to
root systems FG ¼ F

�
GðCÞ;TðCÞ

�
and FL ¼ F

�
LPðCÞ;TðCÞ

�
with positive roots

FþG ¼ F
�
UBðCÞ;TðCÞ

�
and FþL ¼ FL XFþG (determined by the Borel subgroups BHG

and BL HLP respectively). Let rB ¼
1

2

P
a AFþ

G

a.

Let WG ¼W
�
GðCÞ;TðCÞ

�
denote the Weyl group of GðCÞ and let

WP ¼W
�
LPðCÞ;TðCÞ

�
denote the Weyl group of LPðCÞ. The choice of B determines a

length function l on WG. Let W 1
P HWG denote the set of Kostant representatives: the
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unique elements of minimal length from each of the cosets WPx A WPnWG. As in [Sp], §10.2
or [Vo], §3.2.1, it may also be described as the set

W 1
P ¼ fw A WG jw�1ðFþL ÞHFþGg

(and depends on the choice of BL HLP).

If b A w�
�
TðCÞ

�
is BL-dominant, let us write VL

b for the irreducible LP-representation
with highest weight b. Let lB A w�

�
TðCÞ

�
be the highest weight of the irreducible represen-

tation E of G. Kostant’s theorem states that for all w A W 1
P , the weight wðlB þ rBÞ � rB is

BL-dominant, and that as an LP-module, the cohomology group HiðNP;EÞ is isomorphic
to L

fVL
wðlBþrBÞ�rB jw A W 1

P and lðwÞ ¼ ig:

If w A WG then the character wðlB þ rBÞ � rB � n of S0 is trivial on SG so we may define

InðwÞ ¼
�
a A DP j

��
wðlB þ rBÞ � rB � n

�
jS 0P; ta

�
< 0

�
ð12:7:2Þ

where ftag form the basis of the cocharacter group wQ� ðS 0PÞ which is dual to the basis DP of
simple roots, cf. (12.1.1). So in the notation of (12.1.1),

InðwÞ ¼ InðgÞ where g ¼
�
wðlB þ rBÞ � rB

�
jSP:

To summarize we have:

12.8. Proposition. Let P be a standard rational parabolic subgroup of G. Let

nP ¼ njSP A w�QðSPÞ be the character which is determined by the weight profile n A w�QðS0Þ.
Let lB denote the highest weight of the irreducible representation E of G. Let I HDP be a

subset corresponding to a choice of standard rational parabolic subgroup QIP. Then Kos-

tant’s theorem determines an isomorphism of graded LP-modules,

H �ðNP;EÞdnP; IcG
L

w AW 1
P

InðwÞ¼I

V L
wðlBþrBÞ�rB ½�lðwÞ�ð12:8:1Þ

where the sum is taken over all w A W 1
P such that InðwÞ ¼ I , and where V L

b ½�m� means that

the irreducible LP-module V L
b appears in degree m.

13. Lefschetz numbers

13.1. In this section we recall the Lefschetz fixed point theorem for hyperbolic cor-
respondences from [GM2], §10.3.

Suppose C, X and Y are compact subanalytic spaces and that
c ¼ ðc1; c2Þ : C ! X � Y is a subanalytic mapping. (The bars are used so that the
notation here will agree with that in the rest of the paper.) Let S� A DbðX Þ be a (bounded
from below) complex of (cohomologically) constructible sheaves on X and let T� A DbðY Þ
be a (bounded from below) complex of (cohomologically) constructible sheaves on Y . Since
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c is proper we have c� ¼ c!. A lift of the correspondence C to the sheaf level ([Ve], [GI],
[Bo5]) is a morphism

F : c�2T
� ! c!1S

�:ð13:1:1Þ

Such a morphism induces a homomorphism H �ðY ;T�Þ ! H �ðX ;S�Þ as follows. First
apply ðc1Þ! and adjunction to obtain a morphism

ðc1Þ!c�2T� ! ðc1Þ!c!1S� ! S�:ð13:1:2Þ

Let p : X ! pt and q : Y ! pt be the map to a point. Then the diagram

X � Y 			!
p2

Y

p1

???y
???yq

X 			!
p

pt

is a fiber square so there is an adjunction natural transformation [GM2], (2.6b),
q!ðp2Þ� ! p�ðp1Þ!. Apply q! to the adjunction morphism T� ! ðc2Þ�c�2T� and use (13.1.2) to
obtain

q!T
� ! q!ðc2Þ�c�2T� ¼ q!ðp2Þ�c�c�2T�

! p�ðp1Þ!c�c�2T� ¼ p�ðc1Þ!c�2T� ! p�S
�:

This morphism induces the desired mapping on cohomology. (It may also be constructed
by applying p!ðc2Þ� to (13.1.1) rather than q�ðc1Þ!.)

In what follows, we suppose X ¼ Y and S� ¼ T�, so c ¼ ðc1; c2Þ : C ! X � X is a
correspondence on X and F : c�2S

� ! c!1S
� is a lift to the sheaf level. The Lefschetz fixed

point theorem states that the resulting Lefschetz number

LðS�;CÞ ¼
P
if0

Tr
�
F� : HiðX ;S�Þ ! HiðX ;S�Þ

�
¼

P
F

LðS�;C;FÞ

is a sum of locally defined contributions LðS�;C;FÞ, one for each connected component
F HC of the fixed point set of the correspondence C.

Let F HC be a connected component of the fixed point set and suppose that the cor-
respondence C is weakly hyperbolic (§11.7) near F 0 ¼ c1ðFÞ ¼ c2ðFÞ with indicator map-
ping t : W ! Rf0 � Rf0. (This means that W HX is a neighborhood of F 0, that t is a
proper subanalytic mapping such that t�1ð0; 0Þ ¼ F 0, and that for all x A c�11 ðW ÞX c�12 ðW Þ
we have t1c1ðxÞe t1c2ðxÞ and t2c1ðxÞf t2c2ðxÞ.) Denote by h and j the inclusions

F 0 !h t�1ðRf0 � f0gÞ !
j
X

of F 0 into the ‘‘expanding set’’ or ‘‘unstable manifold’’ F� ¼ t�1ðRf0 � f0gÞ, and of F�

into X .
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Let A� ¼ h!j �ðS�Þ as in §12.4. Then the lift F determines a liftC 0 : c�2A
� ! c!1A

� which,
by adjunction, induces an endormorphism C : A� ! A� (which covers the identity mapping
on F 0). In [GM2] we prove:

13.2. Theorem. The contribution LðS�;C;FÞ of F to the global Lefschetz number

LðS�;CÞ is given by

LðS�;C;FÞ ¼
P
if0

ð�1Þ i Tr
�
C� : HiðF 0;A�Þ ! HiðF 0;A�Þ

�
:

Moreover, if F 0 ¼
‘m
a¼1

F 0a is stratified so that the pointwise Lefschetz number

nðxÞ ¼
P
if0

ð�1Þ i Tr
�
C�x : Hi

xðA�Þ ! Hi
xðA�Þ

�
is constant on each stratum, then the local

contribution is the sum over strata,

LðS�;C;FÞ ¼
Pm
a¼1

wcðF 0aÞnðxaÞð13:2:1Þ

where xa A F 0a and where wc denotes the Euler characteristic with compact supports. (See
[KS], Prop. 9.6.12 for a related result.) The right hand side of (13.2.1) is the Euler charac-
teristic wðF 0; nÞ of the constructible function nðxÞ, as discussed in [Mac].

13.3. Morphisms and weighted cohomology. In this section we show how to lift
any morphism to the weighted cohomology sheaf. As in §2, G denotes a connected linear
reductive algebraic group defined over Q, D denotes the associated symmetric space,
K 0 ¼ AGKðx0Þ is the stabilizer in G of a fixed basepoint x0 A D, GHGðQÞ is a neat arith-
metic group and X ¼ GnD. As in §12.2 let t : G ! GLðEÞ be a finite dimensional irreduc-
ible representation on some complex vector space. It gives rise to the local coe‰cient
system (flat homogeneous vector bundle) E ¼ ðG=K 0Þ �G E which is the quotient of
ðG=K 0Þ � E under the equivalence relation ðxK 0; vÞ@

�
gxK 0; tðgÞv

�
for all g A G. Denote

by ½xK 0; v� A E the resulting equivalence class. Let P0 be the standard minimal rational
parabolic subgroup with S0 ¼ SP0

. Fix n A w�QðS0Þ so that njSG coincides with the character
by which SG acts on E and let WnC�ðX ;EÞ denote the resulting weighted cohomology
complex of sheaves on X .

Suppose G 0HG is a subgroup of finite index, set C ¼ G 0nG=K, and let f : C ! X be
a morphism, i.e., there exists h A GðQÞ such that hG 0h�1 HG and f ðG 0xKÞ ¼ GhxK. Let
E 0 ! C be the local coe‰cient system on C which is determined by the representation
t : G ! GLðEÞ. The morphism f is covered by a mapping E 0 ! E of local systems given
by ½xK; v� 7! ½hxK; tðhÞv�. This mapping is easily seen to be well defined, and it induces an
isomorphism of local systems E 0G f �ðEÞ on C. Since f : C ! X is an unramified finite
covering, it further induces a canonical quasi-isomorphism of the sheaves of smooth dif-
ferential forms with coe‰cients in this local system, f �W�ðX ;EÞ ! W�ðC;E 0Þ.

The morphism f : C ! X admits a unique continuous extension f : C ! X to the
reductive Borel-Serre compactifications (Lemma 6.3). If iC : C ! C and iX : X ! X denote
the inclusions then the adjunction mapping [GM2], equation (2.5a),
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f
�ðiX Þ�W�ðX ;EÞ !G ðiCÞ� f �W�ðX ;EÞ !G ðiCÞ�W�ðC;EÞ

is a quasi-isomorphism. It is easy to see that this induces a quasi-isomorphism

f
�
WnC�ðX ;EÞ !WnC�ðC;E 0Þð13:3:1Þ

of weighted cohomology sheaves. (In fact the whole construction of the weighted coho-
mology sheaf on X pulls back to the construction of weighted cohomology on C.)

13.4. Hecke correspondences and weighted cohomology. Let g A GðQÞ. Then g gives
rise to a Hecke correspondence ðc1; c2Þ : C ! X . Here, C is the reductive Borel-Serre com-
pactification of C ¼ G 0nG=K with G 0 ¼ GX g�1Gg. Both mappings c1 and c2 are finite so
there are natural isomorphisms of functors c�i G c!i and ðciÞ�G ðciÞ! (for i ¼ 1; 2). From the
preceding paragraph we obtain a canonical lift

F : c�2W
nC�ðX ;EÞ ! c!1W

nC�ðX ;EÞð13:4:1Þ

to the weighted cohomology sheaves, which is given by the composition

c�2W
nC�ðX ;EÞ !G WnC�ðC;EÞ  G c�1W

nC�ðX ;EÞG c!1W
nC�ðX ;EÞ:

13.5. Computation of the local contribution. For the remainder of §13, fix a Hecke
correspondence CxX which is determined by some element g A GðQÞ. Fix a regular G-
equivariant parameter b A B which is so large that the resulting tilings fDPg of D, fX Pg of
X and fCPg of C are narrow (§6.11) with respect to the Hecke correspondence. Choose
t A AP0

ð>1Þ to be regular, dominant, and su‰ciently close to 1 as in Proposition 11.2, with
resulting shrink homeomorphism ShðtÞ, and let ðc 01; c 02Þ : CxX be the resulting modified
correspondence. It is easy to see that ShðtÞ�ðWnC�ÞGWnC� so we may consider (13.4.1) to
be a lift of the modified correspondence as well.

Suppose the Hecke correspondence preserves some stratum CP. According to Propo-
sition 7.3, locally near CP the correspondence is isomorphic to the parabolic Hecke corre-
spondence G 0PnD½P�xGPnD½P� which is given by some y A PðQÞXGgG and to which we
may associate a decomposition DP ¼ DþP WD�P WD0

P of the simple roots. Suppose that CP

contains fixed points and denote by FPðeÞHCP the set of fixed points with characteristic
element e A GLyGLHLPðQÞ.

By Proposition 8.4 the torus factor ae A AP of e coincides with the torus factor ay
so the set DþP (resp. D�P , resp. D

0
P) consists of those simple roots a A DP for which aðaeÞ < 0

(resp. >0, resp.¼0). Hence we may write DþP ¼ DþP ðeÞ (resp. D
�
P ¼ D�P ðeÞ, resp. D

0
P ¼ D0

PðeÞ).

As in §12.7, choose a Borel pair TðCÞHBðCÞ so that (12.7.1) holds. Assume the
local system E arises from an irreducible representation of G with highest weight

lB A w�
�
TðCÞ

�
. Let rB ¼

1

2

P
a AFþ

G

a A w�
�
TðCÞ

�
denote the half-sum of the positive roots. Let

r ¼ ½GXUP : G 0XUP�.

13.6. Theorem. The contribution to the Lefschetz number from the fixed point con-

stituent FPðeÞ is:
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rwc
�
FPðeÞ

�
ð�1ÞjD

þ
P j P

w AW 1
P

InðwÞ¼DþP ðeÞ

ð�1ÞlðwÞ Trðe�1;VL
wðlBþrBÞ�rBÞð13:6:1Þ

where InðwÞ is defined in (12.7.2).

In [GKM], §7.14 the Lefschetz formula in the adelic setting is described but not
proven. The missing ingredient is the proof of the formula for the local contribution LQðgÞ
which appears on page 534. (This formula di¤ers slightly from (13.6.1) because the factor
rwc

�
FPðeÞ

�
is absorbed by the orbital integral in [GKM].) Theorem 13.6 thus provides the

proof of this formula, so it completes the proof of Theorem B (7.14) of [GKM]. The proof
of Theorem 13.6 will occupy the rest of this section.

13.7. The nilmanifold correspondence. The Hecke correspondence CxX extends to
a correspondence on the Borel-Serre compactification

~CCx ~XXð13:7:1Þ

which is compatible with the projection m : ~XX ! X to the reductive Borel-Serre compacti-
fication. Let w 0 A FPðeÞ and set w ¼ c1ðw 0Þ ¼ c2ðw 0Þ. The restriction of the correspondence
to the relevant Borel-Serre stratum is given by

Y 0P ¼ G 0PnP=KPAP xYP ¼ GPnP=KPAP;ð13:7:2Þ

G 0PxKPAP 7! ðGPxKPAP;GPyxKPAPÞ:ð13:7:3Þ

(Here, G 0P ¼ GP X y�1GPy.) The fibers NP ¼ m�1ðwÞHYP and N 0P ¼ ðm 0Þ
�1ðw 0ÞHY 0P are

nilmanifolds isomorphic to GUnUP and G 0UnU respectively, where GU ¼ GP XUP and
G 0U ¼ G 0PXUP ¼ GX y�1GUy. So the correspondence 13.7.1 restricts to a correspondence
N 0P xNP which will be described below. The following diagram may help in sorting out
these spaces.

N 0P 			!			! NP Y 0P 			!			! YP
~CC 			!			! ~XX???y

???y in

???y
???y in

???y
???y

w 0 			!			! w CP 			!			! XP C 			!			! X

13.8. Lemma. Let f : LP ! GL
�
H �ðNP;EÞ

�
denote the adjoint representation of the

Levi quotient LP on the Lie algebra cohomology of NP. Let w
0 A FPðeÞ be a fixed point in CP

with characteristic element e A LP. Then the nilmanifold correspondence ðc1; c2Þ : N 0P xNP

induces a mapping ðc1Þ�c�2 : H �ðNP;EÞ ! H �ðNP;EÞ on cohomology which, under the

Nomizu-van Est isomorphism H �ðNP;EÞGH �ðNP;EÞ may be identified with the homomor-

phism

rfðe�1Þ

where r ¼ ½GU : G 0U�.

13.9. Proof. First we find equations for the nilmanifold correspondence. Choose a
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lift xKPAP A D ¼ P=KPAP of the fixed point w 0 ¼ G 0PxKPAPUP A CP. This determines a
parametrization of the nilmanifold NP by

GUnU! NP HYP ¼ GPnP=KPAP;ð13:9:1Þ

GUz 7! GPzxKPAP;ð13:9:2Þ

and similarly G 0UnU! N 0P by G 0Uz 7! G 0PzxKPAP.

Since w 0 is fixed, we have GPxUPKPAP ¼ GPyxUPKPAP hence there exists g A GP and
u A UP so that gyuxKPAP ¼ xKPAP, in other words, so that gyu fixes the point xKPAP in
the Borel-Serre boundary component P=KPAP. Then e ¼ nPðgyÞ ¼ nPðgyuÞ is the charac-
teristic element of the fixed point w 0. Define G 0UnUxGUnU by

G 0Uz 7!
�
GUz;GUðgyÞzu�1ðgyÞ�1

�
:ð13:9:3Þ

A simple calculation shows that the following diagram commutes:

G 0UnU 			!			!ð13:9:3Þ
GUnU

ð13:9:2Þ

???yG G

???yð13:9:2Þ
N 0P 			!			! NP???y

???y
Y 0P 			!			!ð13:7:3Þ

YP:

Next we will apply the theorem of Nomizu [No1] and van Est [E] to this correspon-
dence. The local system E! X which is defined by the representation t : G ! GLðEÞ
extends canonically to a local system on the Borel-Serre compactification ~XX . Its restric-
tion to the nilmanifold NP is given by the quotient EjNP ¼ U�GU E under the relation
ðz; vÞ@

�
gz; tðgÞv

�
(for g A GU, z A UP, and v A E). The complex W�ðNP;EÞ of smooth E-

valued di¤erential forms on NP consists of sections of the (flat) vector bundle

C�ðNP;EÞ ¼ UP �GP C
�ðNP;EÞ

where C�ðNP;EÞ ¼ HomCð3�NP;EÞ is the complex of Lie algebra cochains. Let f be the
representation of P on this complex: if3�AdðpÞ :3�NP !3�NP denotes the adjoint action
of p A P on the exterior algebra of NP, then

fðpÞðsÞ ¼ tðpÞ � s �3�AdðpÞ:

Denote by

ð13:9:4Þ
W�invðUP;EÞ ¼ fo : UP ! C�ðNP;EÞ joðuxÞ ¼ fðuÞoðxÞ for all u; x A UPg

the complex of (left) UP-invariant E-valued di¤erential forms on UP. Such a di¤erential
form is determined by its value s ¼ oð1Þ A C�ðNP;EÞ, and it passes to a di¤erential form
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on NP. Denote by W�invðNP;EÞ the collection of all such ‘‘left’’-invariant di¤erential forms.
The Nomizu-van Est theorem ([No1], [E]) states that the inclusionW�invðNP;EÞ ,! W�ðNP;EÞ
induces an isomorphism on cohomology. In summary we have a diagram

C�ðNP;EÞ  
G

W�invðUP;EÞ  
G

W�invðNP;EÞ ,! W�ðNP;EÞ

of isomorphisms and quasi-isomorphisms. Although the group P does not act on the vector
bundle C�ðNP;EÞ, it does act on the complex W�invðNP;EÞGW�invðUP;EÞ of invariant sec-
tions by

ðp � oÞðxÞ ¼ fðpÞ�1oðpxp�1Þ

and the group UP acts on this complex by

ðu � oÞðxÞ ¼ oðxu�1Þ:

If o A W�invðNP;EÞ is given by (13.9.4) then by (13.9.3) its pullback by c2 is given by

c�2 ðoÞðzÞ ¼ fðgyÞ�1o
�
ðgyÞzu�1ðgyÞ�1

�
:

Evaluating at z ¼ 1 and using the fact that o is left invariant,

c�2 ðoÞð1Þ ¼ fðuÞ�1fðgyÞ�1oð1Þ:

Let s ¼ oð1Þ A C�ðNP;EÞ, suppose ds ¼ 0 and let ½s� A H �ðNP;EÞ be the resulting coho-
mology class. Since UP acts trivially on this cohomology,

c�2 ð½s�Þ ¼ fðeÞ�1½s�

where e ¼ nPðgyÞ is the characteristic element of the fixed point w. Finally, observe that
the pushforward mapping ðc1Þ� : H �ðN 0P;EÞ ! H �ðNP;EÞ is given by multiplication by
r ¼ ½GU : G 0U�. This completes the proof of Lemma 13.8. r

13.10. Proof of Theorem 13.6. We will apply the Lefschetz fixed point formula to the
modified Hecke correspondence. By Proposition 11.2, after modifying the correspondence
by composing with ShðtÞ, the fixed point constituent FPðeÞ becomes ‘‘truncated’’, that is, it
becomes replaced by the intersection F 0

P ðeÞ ¼ FPðeÞXC0
P of FPðeÞ with the central tile in

CP. Denote by qF 0 ¼ FPðeÞX qC0
P its intersection with the boundary of the central tile. Set

F 0 ¼ c1
�
FPðeÞ

�
¼ c2

�
FPðeÞ

�
. Set E ¼ F 0XX 0

P ¼ ci
�
F 0
P ðeÞ

�
and qE ¼ F 0X qX 0

P ¼ ciðqF 0Þ.
(Having used up all the letters some time ago, we temporarily re-use the notation E here,
hoping the reader will not confuse it with the local system.) Note that E � qE is di¤eo-
morphic to F 0.

By Theorem 11.9 the (modified) Hecke correspondence is weakly hyperbolic near
FPðeÞ and an indicator mapping (defined in a neighborhood U HX of F 0) is given by

tðxÞ ¼
� P
a ADþP

rPa ðxÞ þ dEpPðxÞ;
P

a AD�P

rPa ðxÞ þ
P

a AD0
P

rPa ðxÞ
�
:ð13:10:1Þ
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Let QIP be the rational parabolic subgroup corresponding to the subset I ¼ DþP HDP

consisting of the simple roots for which the Hecke correspondence is (strictly) expanding.
Then, in the notation of (2.4.1), DP ¼ iðDQÞ q DþP . The partial distance function rPa vanishes
on the stratumXQ whenever a A D�P WD0

P, cf. (3.5.2). HenceXQXU ¼ t�1ðRf0�f0gÞ is the
‘‘expanding set’’ of the correspondence.

According to Theorem 13.2 we need to compute the stalk cohomology (at points
w A E) of the sheaf

A� ¼ h!j �WnC�ðEÞ

where

E !
h
XQ !

j
X :

This is best accomplished by decomposing h,

E !
h1

F 0 !
h2

XP !
h3

XQ !
j
X :

Then B� ¼ h!3 j
�WnC�ðEÞ is the sheaf studied in Theorem 12.5, where we have taken

I ¼ DþP . Its stalk cohomology is locally constant on XP and was shown to be

Hi
wðB�ÞGH j�jDþP jðNP;EÞdnP;DþP c:

Since h2 is a smooth closed embedding we have a canonical quasi-isomorphism (12.3.1)

C� :¼ h!2B
�G h�2 ðB�ÞnO½�c�

where c ¼ dimðXPÞ � dimðF 0XXPÞ and where O is the orientation bundle (i.e. the top
exterior power) of the normal bundle of F 0XXP in XP. The complex C� is constructible
with respect to the stratification of X , meaning that its cohomology sheaves are locally
constant on XP, hence also on E. But E is a manifold with boundary, so

h!1C
�G i!C

� j ðE � qEÞð13:10:2Þ

is obtained by first restricting to the interior E � qE and then extending by 0. (Here,
i : E � qE ! E denotes the inclusion.) Thus the cohomology of h!1C

� is the compactly sup-
ported cohomology Hi

cðE � qE;C�ÞGHi
cðF 0;C�Þ.

Next we must compute the pointwise Lefschetz number nðwÞ for w A E, that is, the
alternating sum of the traces on the stalk cohomology of A� ¼ h!1C

�. By (13.10.2) it is 0
when w A qE, so let w A E � qE. Then

Hi
wðC�Þ ¼ Hi�c

w ðh�2B�nOÞð13:10:3Þ

¼ Hi�c�jDþP jðNP;EÞdnP;DþP cnOw:ð13:10:4Þ

By §8.6, the mapping c1 : FPðeÞ ! F 0 is a covering of degree
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de ¼ ½GLX y�1GLy : nPðGP X y�1GPyÞ�:

Near each fixed point w 0 A c�11 ðwÞ the Hecke correspondence acts on the NP-cohomology
through the homomorphism rfðe�1Þ (using Lemma 13.8), and by §8.7 it acts on Ow by
ð�1Þc. Summing these contributions over the de di¤erent points in c�11 ðwÞ gives

nðwÞ ¼ derð�1Þ�c�jD
þ
P jð�1Þc

P
if0

ð�1Þ i Tr
�
fðe�1Þ;HiðNP;EÞdnP;DþP c

�
ð13:10:5Þ

¼ derð�1ÞjD
þ
P j P

v AW 1
P

InðvÞ¼DþP

ð�1ÞlðvÞ Trðe�1;VL
vðlBþrBÞ�rBÞð13:10:6Þ

by Proposition 12.8. The contribution arising from FPðeÞ is this quantity times
wcðE � qEÞ ¼ wcðF 0Þ. However (by §8.6), wc

�
FPðeÞ

�
¼ dewcðF 0Þ which absorbs the factor of

de in (13.10.6) and therefore completes the proof of Theorem 13.6. r

14. Proof of Theorem 1.5

14.1. As in §2, G denotes a connected reductive linear algebraic group defined
over Q, D ¼ G=K 0 is its associated symmetric space with basepoint x0 A D and stabilizer
K 0 ¼ AGKðx0Þ. Let GHGðQÞ denote an arithmetic subgroup which we assume to be neat,
and X ¼ GnD. Throughout this section we fix a Hecke correspondence ðc1; c2Þ : CxX

defined by some element g A GðQÞ. So C ¼ G 0nD with G 0 ¼ GX g�1Gg. We also fix a G-
equivariant tiling of D which is narrow with respect to the Hecke correspondence. Choose
t A AP0

ð>1Þ in accordance with Proposition 11.2.

Let F HC denote the (full) fixed point set of the Hecke correspondence CxX and
let E denote the (full) fixed point set of the modified Hecke correspondence (11.1.1). Then

F ¼
‘
fPg

F XCP and E ¼
‘
fPg

F XC0
P

where the union is over the strata of C, that is, over G 0-conjugacy classes of rational para-
bolic subgroups POG. Each F XC0

P is a union of connected components of E by Propo-
sition 11.2. The Lefschetz fixed point theorem (Theorem 13.2) may be used to write the
Lefschetz number as a sum over these individual strata.

14.2. Contribution from a single stratum. Let POG be a rational parabolic sub-
group and suppose that c1ðCPÞ ¼ c2ðCPÞ ¼ XP. By Proposition 7.3, in a neighborhood of
CP the correspondence is isomorphic to the parabolic Hecke correspondence determined by
some y A GgGXP and moreover (in this neighborhood) the fixed points of the modified
correspondence coincide with those of EXCP ¼ F XC0

P.

If FPðeÞ denotes the set of fixed points in CP with characteristic element e A GLyGL,
then by Proposition 8.4,

F XCP ¼
‘
feg

FPðeÞ and EXCP ¼
‘
feg

FPðeÞXC0
Pð14:2:1Þ
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where the union is over GL-conjugacy classes of elements fegHGLyGL which are elliptic
modulo AP. (Here, GL ¼ nPðGXPÞHLP and y ¼ nPðyÞ.) For each such conjugacy class
feg, the set FPðeÞ consists of finitely many connected components, say, F1;F1; . . . ;Fm. The
contribution to the Lefschetz number from the component Fj is given by Theorem 13.6. By
(8.4.1) (see also §8.6, §15.8),

Pm
j¼1

wcðFjÞ ¼ wc
�
FPðeÞ

�
¼ wcðG 0enLe=K

0
eÞ:

So the contribution to the Lefschetz number from the stratum CP xXP is

ð14:2:2Þ
LðP; yÞ :¼

P
feg

wcðG 0enLe=K
0
eÞrð�1Þ

jDþP j P
w AW 1

P

InðwÞ¼DþP ðeÞ

ð�1ÞlðwÞ Trðe�1;VL
wðlBþrBÞ�rBÞ

where the index set for the first sum is the same as that for the union in (14.2.1). This
quantity LðP; yÞ depends only on the local system E, the choice of parabolic subgroup P

and the element y A P.

14.3. Sum over strata. Let P1;P2; . . . ;Pt denote a collection of representatives, one
from each G-conjugacy class of rational parabolic subgroups POG. These index the strata
of X . For each such i the intersection GgGXPi decomposes:

GgGXPi ¼
‘
j

GPi
yijGPi

:

Lemma 7.4 gives a one-to-one correspondence between this collection fyijg and strata Cij

of C such that c1ðCijÞ ¼ c2ðCijÞ. Moreover the restriction of the Hecke correspondence to a
neighborhood of Cij is locally isomorphic to the parabolic Hecke correspondence defined
by yij so the local contribution to the Lefschetz number from Cij equals the number
LðPi; yijÞ given in (14.2.2). In summary, the total Lefschetz number is

LðgÞ ¼
Pt
i¼1

P
j

LðPi; yijÞð14:3:1Þ

as claimed in Theorem 1.5. r

14.4. Another formula. If a little expansion ShðtÞ�1 is used instead of the shrink, this
will convert neutral directions normal to each stratum into expanding directions, and it will
convert the tangential distance into a contracting direction. An indicator mapping replac-
ing (13.10.1) is

tðxÞ ¼
� P
a ADþPWD0

P

rPa ðxÞ;
P

a AD�P

rPa ðxÞ þ dEpPðxÞ
�
:

This changes the nature of the sheaf A� with the result that the Euler characteristic (rather
than the Euler characteristic with compact supports) appears in the formula. So, in equa-
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tion (14.3.1), the contribution LðP; yÞ (14.2.2) from the stratum CP xXP will be replaced
by the quantity

L 0ðP; yÞ ¼
P
feg

rð�1ÞjD
þ
PWD0

PjwðG 0enLe=K
0
eÞ

P
w AW 1

P

InðwÞ¼DþPWD0
P

ð�1ÞlðwÞ Trðe�1;VL
wðlBþrBÞ�rBÞ

where the summations are over the same index sets as in (14.2.2), and where DþP ¼ DþP ðeÞ
and D0

P ¼ D0
PðeÞ.

15. Remarks on the Euler characteristic

As in §2, G denotes a connected linear reductive algebraic group defined over Q; D
denotes the associated symmetric space; SG denotes the greatest Q-split torus in the
center of G; AG ¼ SGðRÞ0 denotes the identity component of its real points; K 0 ¼ AGK

is the stabilizer in G of a fixed basepoint x0 A D; GHGðQÞ is an arithmetic group, and
X ¼ GnD.

15.1. Proposition. Suppose ðG=SGÞðRÞ does not contain a compact maximal torus.
Then wðXÞ ¼ wcðX Þ ¼ 0, that is, both the Euler characteristic and the Euler characteristic

with compact supports vanish.

The proof will appear in §15.6.

15.2. Lemma. Let X ¼ GnG=KAG. Then the Euler characteristic and the Euler char-

acteristic with compact supports coincide: wðXÞ ¼ wcðX Þ.

15.3. Proof. Let ~XX denote the Borel-Serre compactification of X . Topologically, it
is a manifold with boundary q ~XX ¼ ~XX � X . Since Hi

cðXÞ ¼ Hið ~XX ; q ~XXÞ, it su‰ces to show
that wðq ~XX Þ ¼ 0. The boundary q ~XX is a union of finitely many boundary strata YP, each of
which fibers over the corresponding stratum XP (of the reductive Borel-Serre compactifi-
cation) with fiber a nilmanifold NP (cf. §2.5, 13.7). So wðYPÞ ¼ wðNPÞwðXPÞ ¼ 0. It follows
from Mayer-Vietoris that wðq ~XXÞ ¼ 0. r

For completeness we also include a proof of the following often-cited fact.

15.4. Lemma. Suppose the real Lie group G=AG does not contain a compact maximal

torus. Then the Euler form vanishes identically on X.

15.5. Proof. By replacing G by the algebraic group 0G (and noting that
X ¼ Gn0G=K), we may assume that SG is trivial. Let g ¼ kl p be the Cartan decomposi-
tion of LieðGÞ corresponding to the choice K of maximal compact subgroup. Choose a K-
invariant inner product on p. This determines a G-invariant Riemannian metric on
D ¼ G=K which passes to a Riemannian metric on X . Let W be the curvature form of the
torsion-free Levi-Civita connection which is associated to this metric. The resulting Euler
form Eu is defined to be 0 if dimðDÞ is odd. If dimðDÞ ¼ 2k then Eu is the G-invariant
di¤erential form on D whose value at the basepoint x0 is
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Euð _xx1; _yy1; _xx2; _yy2; . . . ; _xxk; _yykÞ ¼ P
�
Wð _xx1; _yy1Þ; . . . ;Wð _xxk; _yykÞ

�
(for any _xx1; . . . ; _yyk A p ¼ Tx0

D), where P is the polarization of the Pfa‰an
Pf : EndðpÞ� ! R. (Here, EndðpÞ� denotes the skew-adjoint endomorphisms of p.) The
form Eu on D passes to a di¤erential form on X ¼ GnD, which is the Euler form for X .

Let Ad : K ! GLðpÞ be the adjoint representation and let ad : k! EndðpÞ� be its
derivative. We claim that det

�
adð_kkÞ

�
¼ 0 for any _kk A k. Modify _kk by conjugacy if necessary,

so as to guarantee that _kk lies in a maximal torus tH g which is stable under the Cartan
involution ([Wa], §1.2, 1.3). Then t ¼ tþl t� with tþH k and t�H p. By assumption, t�
contains a nonzero vector _tt, and adð_kkÞð _ttÞ ¼ ½_kk; _tt � ¼ 0, which proves the claim.

The principal K-bundle G ! D ¼ G=K admits a canonical G-invariant connection
([KN], Chapt. II, Thm. 11.5). Its curvature form o A A2ðD; kÞ is the G-invariant di¤eren-
tial form whose value at the basepoint x0 is given by o0ð _pp1; _pp2Þ ¼ �½ _pp1; _pp2� A k for any
_pp1; _pp2 A p. By a theorem of Nomizu [No2], for any real representation l : K ! GLðEÞ, the
resulting connection in the associated G-homogeneous vector bundle E ¼ G �K E coincides
with the torsion-free metric (Levi-Civita) connection of any G-invariant metric on E. Its
curvature is the G-invariant EndðEÞ-valued di¤erential form whose value at the basepoint
is W0 ¼ l 0 � o0 where l

0 : k! EndðEÞ is the di¤erential of l. Taking l ¼ Ad : K ! GLðpÞ
as above gives W0ð _pp1; _pp2Þ ¼ �adð½ _pp1; _pp2�Þ. By the above claim, this has determinant 0
hence its Pfa‰an vanishes also. Therefore the Euler form is zero on D, so it is also zero on
X . r

15.6. The proof of Proposition 15.1 is then a consequence of the following classical
result of Harder [H] (a more streamlined proof of which may be found in [Le2]).

15.7. Theorem. The Euler characteristic wðXÞ is given by the integral over X of the

Euler form with respect to any invariant Riemannian metric on X. r

15.8. Euler characteristic of a fixed point component. Now suppose that XPHX

is a boundary stratum corresponding to a rational parabolic subgroup P ¼ UPLP. Let
FPðeÞHXP be the set of fixed points with some fixed (elliptic) characteristic element
e A LPðQÞ. Let Le be the centralizer of e in LP. By (8.4.1), FPðeÞGG 0enLe=K

0
e where

G 0e ¼ G 0L XLe and where K 0e ¼ LeX
�
zðKPAPÞz�1

�
(for appropriate z). By (8.4.2),

wcðG 0enLe=K
0
eÞ ¼ dewcðGenLe=K

0
eÞð15:8:1Þ

where Ge ¼ GLXLe and de ¼ ½Ge : G
0
e�. This expression has the following merit. The con-

tribution (14.2.2) to the Lefschetz number from the stratum CP depends on the subgroup
G 0P HGP. However once this expression (15.8.1) has been substituted into (14.2.2), the
dependency on this subgroup G 0P occurs only in the two integers r and de.

15.9. Descent. Let Se be the greatest Q-split torus in the center of Le and let Ae be
the identity component of its group of real points. As explained in [GKM], §7.11, the group
K 0e does not necessarily contain SeðRÞ, so although FPðeÞ is not necessarily a ‘‘locally sym-
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metric space’’ in the sense of §2, it fibers over the locally symmetric space G 0enLe=K
0
eAe with

fiber Ae=AP which is di¤eomorphic to a Euclidean space. Therefore

wc
�
FPðeÞ

�
¼ ð�1ÞdimðAe=APÞwcðG 0enLe=KeAeÞ ¼ ð�1ÞdimðAe=APÞdwcðGenLe=KeAeÞ

(where Ke ¼ Le X ðzKPz
�1Þ).

Now suppose that LP=AP does not contain a compact maximal torus. According to
the preceding remarks, wcðCPÞ ¼ wcðXPÞ ¼ 0. However the contribution (14.2.2) to the
Lefschetz number from the stratum CP does not necessarily vanish. Assuming LP=AP does
not contain a compact maximal torus, the same will be true of Le=AP. If, moroever,
AP ¼ Ae then wc

�
FPðeÞ

�
¼ 0. However if AP di¤ers from Ae, it is possible that w

�
FPðeÞ

�
3 0

(in which case FPðeÞ is necessarily non-compact since it is fibered by Ae=AP as described
above). See Example 16.4 in which Le ¼ Ae and FPðeÞGAe=AP is the orbit of a split torus.
In such cases it is possible to re-attribute the contribution (14.2.2) from the stratum
CP xXP to smaller strata in the correspondence. This procedure is carried out in [GKM],
p. 531, resulting in a Lefschetz formula in which the only nonzero contributions come from
strata CP xXP such that LP has a compact maximal torus.

15.10. In the adelic setting, the Euler characteristic with compact support wc
�
FPðeÞ

�
can be expressed in terms of orbital integrals (cf. [GKM], §7.11 and §7.14).

16. Examples and special cases

16.1. Reducible fixed point components. For G ¼ SLð3;RÞ, D ¼ G=K , and
GHSLð3;ZÞ a neat principal congruence subgroup, the reductive Borel-Serre compactifi-
cation X contains a singular 0-dimensional stratum XB corresponding to the standard Borel
subgroup B. This stratum is contained in the closures of the strataXP1

andXP2
corresponding

to the standard maximal parabolic subgroups P1;P2 containing B. Let g be a generic
element of GðQÞXUðP1ÞXUðP2Þ which is not in G, for example,

g ¼
1 0 1=2

0 1 0

0 0 1

0
@

1
A:

Let CxX be the resulting Hecke correspondence. Then these three strata XP1
, XP2

, and XB

are fixed by the correspondence. However points in X which are su‰ciently close to these
strata are not fixed.

16.2. Middle weight for Sp4. Let G ¼ Sp4, fix a neat arithmetic subgroup GHGðQÞ,
and choose a Hecke correspondence CxX which is determined by some g A GðQÞ. If P is
a minimal parabolic subgroup of G then its Levi quotient LP ¼ SP is a maximal split torus
and the boundary stratum CP consists of a single point. Suppose this point is an isolated
fixed point of the Hecke correspondence. Let e be its characteristic element. The vector
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space w�QðSPÞ has a basis consisting of the simple roots DP ¼ fa; bg. Let fta; tbg be the dual
basis of wQ� ðSPÞ, so that hb; tbi ¼ 1, hb; tai ¼ 0 and the same with a and b interchanged.
See Figure 6.

Let us take E to be the trivial local system, and the weight profile n ¼ �rB to be the
middle weight (where rB is the half-sum of the positive roots). The cohomology H �ðNP;CÞ
decomposes into a sum of 1-dimensional weight spaces,

VwrB�rB HHlðwÞðNP;CÞ

as w A W varies over the elements of the full Weyl group. These weights are the dots in the
left hand part of Figure 7, in which the origin is at �rB. For each weight space indexed by a
given w A W we have indicated the corresponding set

InðwÞ ¼ fy A DP j hwrB; tyi < 0g

of simple roots. The cohomology H �ðNPÞ is divided into four ‘‘quadrants’’ according to the
value of InðwÞ.

If necessary, project the characteristic element e to the identity component AP of the
torus SPðRÞ and let t A AP ¼ LieðAPÞ denote its log. The right hand half of Figure 7 may
be identified with the Lie algebra AP. The chamber containing t determines the expanding-
contracting nature of the Hecke correspondence near this fixed point. In each chamber we
have indicated the set of expanding roots,

DþP ðeÞ ¼ fy A DP j yðtÞ < 0g

(where now y A DP has been identified with a homomorphism AP ! R). The Lie algebra
AP is divided into four ‘‘quadrants’’ according to the value of DþP ðeÞ (although we have not
indicated which quadrant contains a given ‘‘wall’’).

b

w�ðSPÞ

a

tb

w�ðSPÞ

ta

Figure 6. Simple roots and dual basis.
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Theorem 13.6 states that the portion of H �ðNPÞ which contributes to the
Lefschetz number at this fixed point depends on the quadrant in which t ¼ logðeÞ lies: if
DþP ðeÞ ¼ JHDP then only the portion of H �ðNPÞ which lies in the quadrant indexed by J

contributes to the Lefschetz number. A further degree shift by jJj occurs when this portion
H �ðNPÞdnP;Jc is identified (in Theorem 12.5) with the local weighted cohomology with
supports.

It is a remarkable fact that, globally in the Hecke correspondence, the fixed points
occur in Weyl group orbits. Assuming t is regular (does not lie on a wall) then, after sum-
ming over all the fixed points, each chamber will appear the same number of times. It is the
sum of these local contributions over a W -orbit of fixed points ([GKM], p. 529, last para-
graph) which gives rise to the combinatorial formula for the averaged discrete series char-
acters as described in [GKM].

16.3. Very positive and very negative weights. Let i : X ! X denote the inclusion.
Suppose the weight profile n ¼ �y (or is very negative). Then the weight truncation does
nothing, and the weighted cohomology sheaf WnC�ðEÞGRi�ðEÞ becomes the ‘‘full’’ direct
image of E. For any stratum XQ, InðwÞ ¼ j for any w A W 1

Q . Theorem 13.6 then says that
a fixed point stratum F XCQ (with characteristic element e) makes a contribution to the
Lefschetz number only if DþQðeÞ ¼ j, which is to say, only if the Hecke correspondence is

either contracting or neutral in every direction normal to the stratum XQ.

In this case the local contribution to the Lefschetz number may be expressed in terms
of the character of the finite dimensional representation G ! GLðEÞ. We briefly recall the
argument in [GKM], §7.18. The quantity

P
i

ð�1Þ i Tr
�
e�1;HiðNP;EÞ

�
is equal to Trðe�1;EÞ

times the following quantity:

P
i

ð�1Þ i Tr
�
e�1;3iðN�PÞ

�
¼ det

�
1�AdðeÞ;NPðCÞ

�
¼

Q
a AFþ

L

�
1� a�1ðeÞ

� Q
a AFþ

L

aðeÞð�1ÞdimNP

¼ DPðeÞ detðe;NPÞð�1ÞdimNP

fag

fa; bg

fa; bg

f f

fa; bg

f

w�ðSPÞ

fbg

fag

fag

fag

fa; bg

f

fbg

fbg

fbg

w�ðSPÞ

Figure 7. Diagram of InðwÞ and of DþP ðeÞ.
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where DPðeÞ ¼
Q

a AFþ
L

�
1� a�1ðeÞ

�
denotes the (partial) Weyl denominator. (These quantities

may be further expressed in terms of jDG
L ðeÞj, dPðeÞ, and wGðeÞ using [GKM], (7.16.11),

(7.18.3) and [GKM], p. 497.)

Similarly, suppose the weight profile is n ¼ þy or is a very large positive weight. The
stalk cohomology (at a point x A XQ in some boundary stratum XQ) of the weighted coho-
mology sheaf WnC�ðEÞ vanishes because the weight truncation (12.2.1) kills everything. In
this case, the weighted cohomology sheaf is quasi-isomorphic to the sheaf Ri!ðEÞ which is
obtained as the extension by 0 of the local system E. Its cohomology is the compact support
cohomology H �c ðX ;EÞ of the locally symmetric space. For any stratum XQ, according to
(12.7.2), InðwÞ ¼ DQ for any w A W 1

Q . Theorem 13.6 then says that a fixed point stratum
F XCQ (with characteristic element e A LQ) makes a contribution to the Lefschetz number
only if DþQðeÞ ¼ DQ, that is, only if the Hecke correspondence is strictly expanding in all
directions normal to the stratum XQ. Then the same quantity

P
i

ð�1Þ i Tr
�
e�1;HiðNP;EÞ

�
occurs in the formula, but with a (possibly) di¤erent sign.

In these cases (of n ¼Gy) the Lefschetz formula of Franke [F] can be recovered, cf.
[GKM], §7.17, 7.18.

16.4. Hyperbolic 3-space. For GðRÞ ¼ SL2ðCÞ the symmetric space D ¼ G=K may
be identified with hyperbolic 3-space. If G is a torsion-free arithmetic group, then X ¼ GnD
is a hyperbolic 3-manifold. The group G does not contain a compact maximal torus. Con-
sequently, wðX Þ ¼ 0 (cf. §15.1). However, when X is not compact, there exists a Hecke
correspondence on X whose fixed point set consists of a smooth curve which passes from
one cusp to another cusp. The Euler characteristic of this fixed point set is not zero,
although the Euler form vanishes identically. The fixed point set is not a ‘‘locally symmetric
space’’ in the sense of §2.1 because it contains (and in fact consists of ) a Euclidean factor,
cf. §15.9. It is possible to find particular weight profiles such that the (global) Lefschetz
number of this correspondence on the weighted cohomology is nonzero. However, the
formula [GKM] (thm. 7.14.B) would attribute the contribution from this fixed curve to the
cusps, rather than to the interior stratum. This re-attribution is a result of equation (7.14.2)
of [GKM].

16.5. Nielsen fixed point theory. Suppose X is a compact manifold with fundamental
group G ¼ p1ðX ; x0Þ. Let f : X ! X be a self-map. A choice of path from the basepoint x0

to its image f ðx0Þ determines a homomorphism f : G! G. Two elements g1; g2 A G are
said to be f-conjugate if there exists g A G so that g2 ¼ gg1fðgÞ

�1. Let ðGÞf denote the set of
f-conjugacy classes in G and let RðGÞf be the vector space of finite formal linear combina-
tions of such classes. For each connected component F of the fixed point set of f , let
LðFÞ A R denote the contribution of F to the Lefschetz number L, that is,

L ¼
P
i

ð�1Þ i Tr
�
f � : HiðX Þ ! HiðXÞ

�
¼

P
F

LðFÞ:

The Nielsen theory (see [GN]) assigns

. a f-conjugacy class fFg A ðGÞf to each connected component F of the fixed point
set, and
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. a (cohomologically defined) Nielsen number Nðfgg; f Þ to each f-conjugacy class
fgg such that P

fgg A ðGÞf
Nðfgg; f Þfgg ¼

P
F

LðFÞfFg A RðGÞfð16:5:1Þ

thereby ‘‘refining’’ the Lefschetz fixed point formula. (The sum on the left is over f-
conjugacy classes and the sum on the right is over connected components of the fixed point
set.)

Now suppose that X ¼ GnD is a compact locally symmetric space. Fix g A GðQÞ and
let CxX be the resulting Hecke correspondence. Let ðGgGÞ1 be the set of G-conjugacy
classes of elements e A GgG. Let E be the local system corresponding to a representation
t : G ! GLðEÞ. Theorem 1.5 then says that the Lefschetz number of this correspondence
is:

L ¼
P
feg

w
�
FðeÞ

�
tr
�
tðeÞ�1;E

�
:ð16:5:2Þ

Here, the sum is taken over all conjugacy classes feg A ðGgGÞ1, and FðeÞ denotes the set
of fixed points which have characteristic element equal to e. This set is empty unless e is
elliptic (modulo AG). If FðeÞ is not empty, then it is compact.

It turns out that if the local system E is trivial, and if the correspondence CxX is
actually a self-map f : X ! X then the terms in (16.5.2) are exactly the terms in the Niel-
sen formula (16.5.1). The group G may be identified with the fundamental group p1ðX ; x0Þ.
The Hecke correspondence is actually a self-map i¤ the element g normalizes G. In this
case, the automorphism f : G! G is given by conjugation: fðgÞ ¼ ggg�1. Finally, the
association a 7! ag (for a A G) determines a one-to-one correspondence

ðGÞf ! ðGgGÞ1:

There is a slightly more general Nielsen formula for correspondences, also with coe‰cients
in a local system. The terms in this formula again coincide with the terms in the sum
(16.5.2).
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