
L2 COHOMOLOGY IS INTERSECTION COHOMOLOGY

Mark Goresky

§1. The statement.
Let X = G/K be a Hermitian symmetric domain, and let Γ ⊂ G be a

torsion-free arithmetic subgroup. The symmetric space X may be metrized
so that G acts by isometries on X and Γ\X is a complete Riemannian man-
ifold. If Ωi

(2)(Γ\X) denotes the vectorspace of R valued smooth differential
forms ω such that

∫
(ω ∧ ∗ω) < ∞ and

∫
(dω ∧ ∗dω) < ∞

then Ω∗
(2)(Γ\X) is a chain complex. The cohomology of this complex is the

L2 cohomology, H∗
(2)(Γ\X).

On the other hand the Baily-Borel Satake [BB] [S] compactification Γ\X
of Γ\X is a projective algebraic variety. Zucker’s conjecture [Z1] is that
integration of L2 differential forms induces an isomorphism between the L2

cohomology H∗
(2)(Γ\X) and the “middle perversity” intersection cohomology

IH∗(Γ\X) of the Baily-Borel compactification.
More generally, one may start with a finite dimensional representation

of G, restrict it to Γ, and obtain a local coefficient system E on Γ\X. An
appropriate inner product on the representation space induces a Hermitian
metric on E. The cohomology of the complex of L2 differential forms with
coefficients in E is denoted H∗

(2)(Γ\X;E), and the intersection cohomol-
ogy of the Baily- Borel compactification, with coefficients in E, is denoted
IH∗(Γ\X ;E). Zucker’s conjecture is that these are also isomorphic.

In his original paper on the subject [Z1], Zucker verified the conjecture for
several important cases, including G = GU(n, 1). The general Q-rank 1 case
was proven by A. Borel [B2]. Then Zucker verified several rank 2 and rank
3 cases [Z2] and the general Q-rank 2 case was solved by A. Borel and W.
Casselman [BC2]. Finally, in a dramatic turn of events, complete proofs of
the general conjecture were discovered independently by E. Looijenga [L] and
L. Saper and M. Stern [SS1], [SS2]. The two proofs are completely different.

From the point of view of the present book, the proof for the case of
GU(2,1) has been known for many years. In this paper I will try to give
some intuition behind Looijenga’s proof (making this yet another in a long
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list [C1], [C2], [Z3], [Z4] of survey articles on the Zucker conjecture.) We
will restrict to the case of trivial coefficient system E, although the general
case is not significantly more difficult. The author would like to thank R.
MacPherson, M. McConnell, S. Zucker, and an anonymous referee for their
careful readings of the first version of this paper, and their many helpful
suggestions.

§2. Why do we expect the Zucker conjecture to be true?
Let us suppose that Y is a complex d-dimensional projective variety with

an isolated singularity at a point p. The link L of p is defined to be the
intersection of Y with the boundary of a small ball Bδ(p) centered at p. It
is a smooth manifold, and the closed neighborhood

U = Y ∩ Bδ(p)

is homeomorphic to the cone over L. The distance to p (in projective space)
is the second coordinate of a homeomorphism,

U − {p} = L×(0, δ]

between the punctured neighborhood U and the cone over L minus its vertex.
If Y is the Baily-Borel compactification of Γ\X, then the metric induced

from the G-invariant metric on X is not the same as the distance as measured
in projective space. In fact, the invariant metric is complete, and the point
p is infinitely far away from every point in Γ\X. If we represent the cone
lines by their geodesic distance (which we denote by t), we obtain instead a
homeomorphism

U − {p} ∼= L×[1,∞)

which identifies L×{1} with the boundary of U and which puts the point
p at t = ∞. In analogy with the complex 1-dimensional case, it is not
unreasonable to hope that the metric on U is an exponential “horn” (in the
sense of [Ch1]), i.e.

ds2 = (e−at)2ds2
L + dt2

where dsL denotes distance as measured in the link coordinates. (But see §
4.)

Now suppose that ωL ∈ Ωk(L) is a smooth differential form on the link,
and let π∗(ωL) denote its pullback to U−{p}, where π denotes the projection
U − {p} → L. When is π∗(ωL) square-integrable? At a point (q, t) ∈
L×[1,∞) the L2 pointwise norm of π∗(ωL) is

‖π∗(ωL)(q, t)‖2 = (e−at)−2k‖ωL(q)‖2

and the volume form is

dvol = (e−at)2d−1dvolL ∧ dt
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(where 2d-1 is the real dimension of L). Thus,

∫

U

‖π∗(ωL)‖2dvol =
∫

L

‖ωL‖2dvolL

∞∫

t=1

e2akte−at(2d−1)dt

which is finite iff 2k − 2d + 1 < 0, i.e. if k < d − 1/2 . Since k and d are
integers, we see that the differential form π∗(ωL) is in L2 iff k < d. By
constructing appropriate homotopy operators, it is possible to complete this
computation to a proof ([Ch1]) that the L2 cohomology of U is

Hk
(2)(U) ∼=

{
Hk(L) for k < d

0 for k ≥ d

On the other hand, the basic computation of the intersection cohomology
of a cone is [GM1]

IHk(U) ∼=
{

Hk(L) for k < d
0 for k ≥ d

Furthermore, by general sheaf theoretic principles (see next section), it is
only necessary to check the Zucker conjecture locally near each singular
point. Thus, at least for metrical horns, the identification of the intersection
cohomology with the L2 cohomology is straightforward.

§3. Axiomatic characterization of intersection homology.
Suppose Y is a complex purely n dimensional algebraic variety, which is

Whitney stratified by complex algebraic strata. Recall that for each stra-
tum S, every point x ∈ S has a neighborhood basis consisting of “good”
neighborhoods of the form

U ∼= D2s × cone(L)

where D2s denotes a 2s-dimensional disk, (s = dimC S) and where L is a
compact stratified set, called the link of the stratum S. (If S is connected
then the link is determined up to stratum preserving homeomorphism.) The
intersection cohomology of such a neighborhood is

IHk(U) ∼=
{

IHk(L) for k < codCS
0 for k ≥ codCS

and this property characterizes intersection cohomology, i.e.
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Proposition [GM2]. Suppose F• denotes a complex of fine sheaves on Y
such that

(1) the restriction F•|Y o to the nonsingular part of Y is quasi isomorphic
to the constant sheaf, and

(2) for each stratum S, and for each point x ∈ S, and for any good
neighborhood U of x,

Hk(U ;F•) ∼=
{

Hk(L;F•|L) for k < codCS
0 for k ≥ codCS

Then the quasi-isomorphism in (1) extends canonically to a global quasi-
isomorphism

F• ∼= IC•(Y )

and in particular, the hypercohomology of F• is the intersection cohomology
of Y .

Remarks.
(1) It is a nontrivial fact [Z1], [Z2] that the sheaf of L2 forms on the Baily-

Borel compactification Y of Γ\X is fine. Furthermore the “fine”
hypothesis (or “soft” or “flabby”) is essential to the axiomatic char-
acterization.

(2) The sheaf of L2 differential forms on Y = Γ\X is not simply the
pushforward to Y of the sheaf of L2 differential forms on Γ\X, and
it is more accurately described as the “sheaf of locally L2 differential
forms” on Y . For example, any smooth differential form on Γ\X is a
section of the sheaf of L2 differential forms on Γ\X because, on any
sufficiently small subset of Γ\X, it is square-integrable. However, if
such a smooth form grows too rapidly near a cusp, then it will not
be in L2 in a neighborhood of the cusp point.

§4. Why do we expect the Zucker conjecture to be false?
Unfortunately, algebraic varieties are not metrical horns. A more reason-

able model for the local metric near a singular point is that of a warped
product [B1] [Z1]. Let us suppose the link L decomposes as a product

L = L1×L2

and the factor L2 shrinks twice as fast as the factor L1, i.e.

ds2 = (e−at)2ds2
L1

+ (e−2at)2ds2
L2

+ dt2

Now consider a differential form ωL = ω1 ⊗ ω2 which is a product of forms
on the two factors. As in § 2, we compute the norm square of the pullback
of ωL to the neighborhood U ,

∫

U

‖π∗(ωL)‖2dvol = C

∞∫

t=1

(e−at)−2k1(e−2at)−2k2 (e−at)2d1(e−2at)2d2−1dt



L2 COHOMOLOGY IS INTERSECTION COHOMOLOGY 5

where C is the constant

C =
∫

L1

‖ω1‖2dvol1
∫

L2

‖ω2‖2dvol2

and where ki = deg(ωi), dimR(L1) = 2d1, and dimR(L2) = 2d2 − 1. This
integral is finite iff

k1 + 2k2 < d1 + 2d2 − 1

Thus the L2 cohomology group Hk
(2)(U) is no longer simply the cohomology

of the link in degrees k > d and 0 in degrees k < d, but it is a sum of groups
Hk1 (L1)⊗Hk2(L2) where k1 +k2 = k and where k1 and k2 satisfy the above
relation. In other words, the Zucker conjecture is simply false for this sort
of metric, unless certain cohomology groups involved in this tensor product
vanish.

The bad news is that warped products of this kind do appear in neigh-
borhoods of a singular point, even in the case of GU(2,1). (As mentioned
above, this case was completely understood by Zucker [Z1] (appendix)). The
good news is that a link on which the metric behaves like a warped product
is not actually a product, but is rather a bundle with base L1 and fibre
L2, and this bundle is homologically nontrivial. The required vanishing of
cohomology groups in the link occurs because the E2 differentials in the
Leray spectral sequence of this bundle are injective or surjective (and this in
turn follows essentially from various local versions of the “hard” Lefschetz
theorem).

Thus the proof of the Zucker conjecture will depend on a detailed un-
derstanding of the topology and geometry of the link, which we describe in
the next section. In fact, Looijenga’s proof of the Zucker conjecture may be
summarized as follows:

(0) Reduce the problem to a local verification near each singular point
p ∈ Y = Γ\X , using sheaf theory and the axiomatic characterization
of intersection cohomology.

(1) Obtain as explicit as possible a description of the topology of the link
L of the singular stratum S which contains the point p.

(2) Decompose the intersection cohomology of L into subspaces accord-
ing to the rates of growth of representative differential forms.

(3) Realize this decomposition as the eigenspace decomposition of IHk(L)
under the action of certain geometrically defined “local Hecke corre-
spondences” Ψa : L → L. Reduce the problem to proving that
the intersection cohomology classes which must vanish are those of
“weight” ≥ c and degree k < c (where c = codimCS).

(4) Resolve the singularities π : Ỹ → Y of the Baily-Borel compactifi-
cation, using [AMRT]. Apply the decomposition theorem [BBD] to
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exhibit IH∗(Y ) as a subspace of H∗(Ỹ ) both locally and globally
(i.e. IH∗(L) ⊂ H∗(π−1(L))).

(5) Observe that the local Hecke correspondence Ψa also acts locally on
Ỹ and that it decomposes H∗(π−1(L)) into eigenspaces as well.

(6) Apply [KK] or [CKS] to see that Hk(π−1(L)) has no classes of weight
> k, and so the same is true for IHk(L). Thus, for k < c, the group
IHk(L) has no classes of weight ≥ c.

§5. The five fold decomposition. (see [AMRT])
Any point p in a stratified complex n dimensional algebraic variety Y has

a “good neighborhood” U with a 3-fold decomposition,

U ∼= D2s × cone(L)

(as in § 3). There are 2s dimensions along the stratum, 1 direction along the
cone lines away from the stratum, and 2n-2s-1 directions around the stratum
(in the link L). (Here s denotes the dimension of the stratum containing the
point p.) It turns out that for a locally symmetric variety, the intersection
Lo of the link L with the largest stratum Y o of the space Y has a further
3-fold decomposition. There is a fibration Lo → B , where B is a locally
symmetric space (usually non-Hermitian) for some Lie group of lower rank,
and the fibre of this bundle is a 2-step nilmanifold R, i.e. R is itself a (real)
torus bundle over a (real) torus R1.

Since the case of GU(2, 1) is particularly simple, and some of these factors
are trivial, we will illustrate this decomposition for the Baily-Borel compact-
ification of locally symmetric varieties associated to the group Sp(2n, R).
Recall that this compactification Y = Γ\X is the quotient under Γ of a
certain Satake compactification X∗ of X, which is obtained from X by at-
taching “rational boundary components” XP which are in turn indexed by
maximal rational parabolic subgroups P of G. A neighborhood in X∗ of
such a rational boundary component XP may be described as follows:

If ω denotes the chosen symplectic structure on R2n then the parabolic P
is the subgroup of G which fixes some rational isotropic subspace F ⊂ R2n.
It also fixes the annihilator subspace,

F⊥ = {v ∈ R2n|ω(v, f) = 0 for all f ∈ F}

and if we choose an appropriate symplectic basis of R2n such that F and F⊥

become coordinate subspaces, then the subgroup P may be written in the
following block form:

P =




M1 N1 N2

0 M2 N∗
1

0 0 M∗
1



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where M∗
1 is determined by M1, and N∗

1 is determined by M1, M2, and N1.
We also consider the (one dimensional) center A of the Levi component M ,

A =




λ 0 0
0 I 0
0 0 λ−1




and we write 0M = M/A to obtain the Langlands decomposition,

P = 0MAN.

The action of P on the Satake compactification X∗ normalizes the boundary
component XP (i.e. XP is invariant under P ) and each of the 5 groups
0M1 = M1/A, M2, A, N1, and N2 act in different directions near XP . The
group

M2
∼= Sp(F⊥/F )

acts along the boundary component, the group A flows towards and away
from the boundary (see below) and traces out the “cone lines”, while the
groups 0M1 and N act along the link of the boundary component. These
“directions” are preserved when we further divide out by the discrete group
Γ, so we obtain

Theorem. The stratum (or boundary component) (Γ∩P )\XP correspond-
ing to the parabolic subgroup P is a locally symmetric space isomorphic to
Γ1\Sp(F⊥/F )/K1. The link L of this stratum, when intersected with the
largest stratum Y 0 = Γ\X of Y , fibres over the Sl(F )-locally symmetric
space Γ2\0M1/K2 and the fibre Γ3\N is a two-step nilmanifold.

(Here K1, and K2 are the maximal compact subgroups, and Γ1, Γ2, Γ3

are the intersections of Γ with the appropriate subgroups M2, 0M1, and N
respectively.)

Remark. The fibration L ∩ Y 0 → Γ2\0M1/K2 extends to a map from
the whole link to a certain Satake compactification of Γ2\0M1/K2, however
this extended map is no longer a fibration: it is instead a stratified map
whose fibres over various strata in Γ2\0M1/K2 can be described in a similarly
explicit way (see [Z2] § 3.21 and [Z5]). In the rank 1 case, L = L ∩ Y 0 (i.e.
the singular strata of Y never interact with the topology of L). This is the
technical point which makes the rank 1 case simpler. In the next section we
will restrict our attention to the rank 1 case (which includes GU(n, 1)).

§6. The local Hecke operators.
To summarize the notation so far, we assume that X = G/K is a Q-rank

1 Hermitian symmetric space, Γ ⊂ G is a torsion free arithmetic subgroup
which acts on a particular Satake compactification X∗ of X. The quotient
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Y = Γ\(X∗) is the Baily-Borel compactification of the locally symmetric
space Γ\X. Each singular stratum (or boundary component) YP of Y is
indexed by a rational parabolic subgroup P ⊂ G. Let P = 0MAN be a
Langlands decomposition of P , so A is the center of the Levi factor M =
0MA. There are two actions of A on Y which are locally defined near
YP and which fix YP . They are induced , respectively, from left and right
multiplication by A on X = G/K.

In order to define an action from the right, we notice that X = G/K =
P/(P ∩K) = P/(M ∩K). Since A commutes with M it gives a well defined
right action on P/(M ∩ K), i.e.

x(M ∩ K) · a = xa(M ∩ K)

This “geodesic action” [BS] defines the cone lines in a neighborhood of the
stratum XP . It commutes with the (left) action of ΓP = Γ∩P , and therefore
defines cone lines in a neighborhood of the stratum ΓP \XP in the Baily-Borel
compactification Y of Γ\X.

Let L denote the link of a singular stratum YP of the Baily-Borel compact-
ification of Γ\X. In the rank 1 case, the link L is completely contained in
the largest stratum Γ\X. We would like to decompose Hi(L) = IHi(L) into
subspaces according to the rate of growth of representative differential forms,
so that the contribution of each growth rate may be studied independently.
For example, one might try defining

Ωi
`(L) = {ω ∈ Ωi(L)| ‖λ

∗(ω)‖
‖ω‖ = λ`}

where λ ∈ A acts on differential forms by the geodesic action. It follows from
the computations illustrated in §2 and §4 that if L is the link of a stratum
YP and if ω ∈ Ωi

`(L) then its pullback to a neighborhood of YP is in L2 iff
` < codimCYP .

One would like to decompose Hi(L) by finding representative closed (or
harmonic) forms in Ωi

`(L). In order to make sense of such ideas it is necessary
to observe that (by [E]) we may first restrict to N-invariant differential forms
on L. These decompose under the geodesic action of A into growth rate
subspaces and this decomposition passes to cohomology. Looijenga observes
that it is possible to recover this “growth rate” decomposition of Hi(L) by
considering the effect of a left “action” of A on X.

The subgroup A acts on X = G/K from the left by isometries (in fact,
all of G acts from the left by isometries), but it does not commute with
the action of Γ. However there is a discrete subset D of A consisting of
“sufficiently divisible elements” for which a ∈ D implies that aΓP ⊂ ΓP a.
Left multiplication by such an a ∈ D defines a self-map Φa on a neighborhood
of the boundary component YP = ΓP \XP because it is possible to identify a
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neighborhood of YP with (a neighborhood of infinity in ΓP \X)∪(YP ). Thus,
Looijenga defines

Φa(ΓP x) = ΓP ax

In summary, conjugating by sufficiently divisible elements a ∈ D induces
a well defined finite covering map Ψa : L → L (called the local Hecke corre-
spondence) on the link L of the stratum ΓP \XP by

Ψa(x) := Φa(x) · a−1
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For SL2(R) these two actions of A on the upper halfplane are depicted:

left action right action

fundamental domains for SL2(Z)

Keeping in mind the fundamental domains for SL2(Z) as illustrated in
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diagram 2, we see that, after dividing by Γ, the left action by an element

(
λ 0
0 λ−1

)
∈ A

induces a covering of a neighborhood of the cusp point provided λ is an odd
integer (which is the meaning of “sufficiently divisible”, in this case).

Composing this with the geodesic (right) action by λ−1 gives a covering
Ψλ : L → L of the link of the cusp point: it wraps the link around itself λ2

times.
Since divisible elements of A act from the left by isometries, they induce

maps on differential forms (in a neighborhood of YP ) which do not change
the norm of the form, although they do change the cohomology class of
the form. Since A acts from the right by isotopies, the induced map on
differential forms does not change the cohomology class, but it does change
the norm. Thus we have:

Proposition [L]. The decomposition of Hi(L) into weight spaces under
the action of conjugation by (sufficiently divisible) elements of A coincides
with the decomposition of Hi(L) into subspaces of given growth rate which
is obtained from considering the geodesic action of A on the N-invariant
differential forms.

The significance of this proposition is that the study of the growth rates
of differential forms has been replaced by the study of eigenspaces (in the
cohomology of the link) of the local Hecke operators.. For example, if ω ∈
Ωi(L) is an N- invariant eigenform of the local Hecke operator, i.e. if Ψλ(ω) =
λ`ω, then ω ∈ Ωi

`(L) so its pullback to the neighborhood of YP will be L2

iff ` < c = codimCYP . The danger is that there may be cohomology classes
in Hi(L) of weight ` ≥ c (which are therefore represented by differential
forms ω ∈ Ωi(L) which are not L2) but which give rise to local intersection
cohomology (i < n) and we must show this never happens. (There is another
danger: that there may be differential forms which are L2 but which are not
in intersection cohomology (i > n). This case is dual to the previous case and
need not be considered separately). The nonexistence of cohomology classes
of degree < c and weight ≥ c follows from Looijenga’s “purity” theorem,

Proposition [L]. (“purity”) The A-weights on IHi(L) are all ≤ i.

As mentioned in § 4 above, this proposition is proven using the decompo-
sition theorem (as applied to the toroidal resolution) and the purity theorem
of [KK] or [CKS].
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§7. How do we compute the weights?
In general, the A-weights of the action on the cohomology of the link follow

from Kostant’s theorem [K] on N-cohomology. However, in particular cases,
the weights can be easily determined by calculating the effect of conjugation
by λ ∈ A. For example, in the case of Sp(2n, R) we have

λ




m1 n1 n2

0 m2 n∗
1

0 0 m∗
1


λ−1 =




m1 λn1 λ2n2

0 m2 λn∗
1

0 0 m∗
1




Thus A acts with weight 0 on M , weight 1 on N1, and weight 2 on N2.
The case of GU(n, 1) is somewhat simpler since M is compact and the

singularities are isolated. The link L of each singular point p is a compact
2n-1 dimensional 2- step nilmanifold L = N ∩ Γ\N , which fibers over an
abelian variety E = Γ ∩ N1\N1 (of complex dimension d1 = n − 1), with
fibre S1 = Γ ∩ N2\N2. The local Hecke operator Ψλ acts with weight 1 on
the base E and with weight 2 on the fiber. The Leray spectral sequence for
H∗(L) has E2 term

Epq
2 = Hp(E;Hq(S1))

on which Ψλ acts with weight p + 2q. By the calculation in § 4, we see
that a class in Epq

2 is represented by an L2 differential form if its weight is
w = p + 2q < d1 + 1, whereas a class in Epq

2 gives rise to a local intersection
cohomology class if

p + q ≤ d1 + 1/2

Thus there is a single offending group Hd1−1(E; H1(S1)) which is allowable
in intersection cohomology but which is not represented by an L2 differential
form, since it has weight d1 + 1. So in this case the validity of the Zucker
conjecture amounts to the statement that Ed1−1,1

2 does not contribute to
Hd1(L), i.e. that the differential d2 is injective on Ed1−1,1

2 .

We will see in § 8 that (for GU(n, 1)) this follows directly from the de-
composition theorem, which is the main ingredient in the “purity” theorem.

§8. The Decomposition Theorem.
This section is little more than a repeat of the survey articles [GM3],

[CGM] to which we refer the reader for further details.
Suppose π : Y → X is a proper algebraic map. Choose stratifications of

Y and X,

X = X0 ∪ X1 ∪ X2 ∪ · · · ∪ Xr

so that π becomes a stratified map, i.e. it takes strata to strata. Let IC•(Y )
denote the complex of sheaves on Y which gives the intersection cohomology.
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Theorem [BBD]. There is an isomorphism (in the derived category of
sheaves on X),

Rπ∗(IC•(Y )) ∼=
r⊕

i=0

⊕

j

IC•(Xi;Li
j)[`

i
j ]

where `i
j are integers, Li

j are local systems on the strata Xi, and where [t]

denotes a shift by t. If we further stipulate that the Li
j are irreducible local

systems, then the terms in this decomposition are uniquely determined by
the map π and the choice of the stratification.

This theorem has global and local consequences. The global consequence
is obtained by applying hypercohomology and it says that the intersection
cohomology of Y is a direct sum of intersection cohomology groups of closures
of strata of X (with twisted coefficients and shifts). The local consequences
are obtained by applying stalk cohomology at a point x ∈ X. If Y is non-
singular (or even rationally smooth) then we may replace IC•(Y ) with the
constant sheaf, so we have:

Ha(π−1(x)) ∼=
r⊕

i=0

⊕

j

IH
a−`i

j
x (Xi;Li

j)

where IHx denotes the local (or stalk) cohomology at the point x. In par-
ticular a stratum Xi can make a nonzero contribution in this formula only
when x ∈ Xi.

There is also a relative “hard” Lefschetz theorem: fix a stratum Xi and
let Loc(`) denote the direct sum of all the local systems on Xi which appear
with shift ` in the decomposition theorem. Then there is a relative Lefschetz
operator

Λ : Loc(`) → Loc(` + 2)

and it induces an isomorphism

Λr : Loc(N − r) ∼= Loc(N + r)

where N = dimC(Y ). For example, if Y is an arbitrary projective variety and
X is a point, this is precisely the hard Lefschetz theorem for the intersection
cohomology of Y.

Example 1. Suppose X and Y are nonsingular and π is a smooth fibration
with fibre F . The stratifications of X and Y may be taken to consist of a
single stratum each. The local consequence says that for each x ∈ X, there
is a decomposition

Hm(F ) ∼=
⊕

j

Hm−`j
x (X;Lj)
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Since X is a manifold, the local cohomology groups vanish except in degree
0, i.e. when m = `j , and in this case the local cohomology group is the stalk
of Lj at the point x. Thus the local systems Lj which appear in this formula
are the cohomology groups of the fibres. By numbering them appropriately,
we may take Lj = Hj(F ). The global statement now reads,

Hm(Y ) ∼=
⊕

j

Hm−j (X;Hj (F ))

which is the main consequence of Deligne’s degeneration theorem [D].

Example 2. If Y is nonsingular but X is arbitrary, then by applying the
preceding argument to the largest stratum of X we conclude that

Hm(Y ) ∼=
⊕

j

IHm−j (X;Hj (F ))
⊕

other terms

where F is the fibre of π : Y → X over a point x in the largest stratum of
X.

Example 3. If Y is a resolution of singularities of X, then the local system
Hj(F ) of example (2) above is just the constant sheaf for j = 0 (and is 0 for
j 6= 0). Thus we see that IC•(X) is a direct summand of Rf∗(CY ) and so
IHm(X) is a subgroup of the cohomology of any resolution of X.

Example 4. Suppose Xn has an isolated singularity p ∈ X and that π :
Y → X is a resolution of singularities, with a nonsingular exceptional divisor
E = π−1(p). Let U = X ∩ Bδ(p) denote the intersection of X with a small
ball centered at p, and let L = ∂U be the link of p in X. Then π : L → E is
a bundle with fibre S1 and the long exact cohomology sequence for the pair

H∗(U,L;Rf∗(C)) = H∗(π−1(U), L; C)

is the Gysin sequence for the bundle L → E:

Hi(π−1(U), L) −→ Hi(π−1(U)) −→ Hi(L) −→ Hi+1(π−1(U); L)

|| || || ||

Hi−2(E)
·c1−−→ Hi(E)

π∗
−−→ Hi(L)

π∗−−→ Hi−1(E)

where ·c1 denotes the cup product with the first Chern class of the normal
bundle of E. On the other hand, the long exact cohomology sequence for
H∗(U,L; IC•) breaks into short exact sequences since

IHi(U) ∼=
{

0 for i ≥ n
Hi(L) for i < n
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and

IHi(U,L) ∼=
{

Hi−1(L) for i > n
0 for i ≤ n

But the decomposition theorem states that IC•(X) is a direct summand of
Rf∗(C). If every term in this second exact sequence is a direct summand of
the corresponding term in the first exact sequence, and if every third term in
the two sequences are equal (to H∗(L)), we conclude that the homomorphism

·c1 : Hj(E) → Hj+2(E)

is an injection for j ≤ n − 2 and is a surjection for j ≥ n − 2. So in this
case, the decomposition theorem amounts to the hard Lefschetz theorem on
E. (In fact, c1 is the hyperplane class for a particular projective embedding
of E).

Example 5. Suppose X is an algebraic variety with an isolated singular-
ity p and that π : Y → X is a resolution of singularities such that π−1(p) is
a union of smooth divisors with normal crossings. The decomposition theo-
rem can be used to give a formula for the intersection cohomology of X in
terms of the cohomology groups of the divisors. This formula is completely
described in [FR].

§9. Completion of the proof for GU(n, 1).
Let p be a singular point of Γ\X. As in § 6, the link L of p fibres over

an abelian variety E (of complex dimension d1 = n − 1), with fibre S1. The
proof of the Zucker conjecture was there reduced to showing that the E2

differential in the spectral sequence of this fibration,

d : Hd1−1(E) ⊗ H1(S1) → Hd1+1(E) ⊗ H0(S1)

is injective. Let π : Y → Γ\X denote a toroidal resolution of singularities
[AMRT]. This resolution may actually be chosen so that π−1(p) ∼= E [La]. By
example 4 of § 6, the decomposition theorem implies that ·c1 : Hd1−1(E) →
Hd1+1(E) is injective. But this is precisely the differential d.
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