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Abstract. By “Hermitian locally symmetric space” we mean an arithmetic quotient of a bounded
symmetric domain. Both the toroidal and the reductive Borel-Serre compactifications of such a space
come equipped with canonical mappings to the Baily-Borel Satake compactification. In this article
we show that there is a mapping from the toroidal compactification to the reductive Borel-Serre
compactification, whose composition with the projection to the Baily-Borel compactification agrees
with the canonical projection up to an arbitrarily small homotopy. We also consider arithmetic
quotients of a self-adjoint homogeneous cone. There is a canonical mapping from the reductive
Borel-Serre compactification to the standard compactification of such a locally symmetric cone. We
show that this projection, when restricted to the closure of a polyhedral cone, has contractible fibers.

Introduction. During the last twenty years, several topological approaches
have been developed in order to study the action of Hecke operators on the
cohomology of arithmetic groups and of Shimura varieties. Let X = ΓnG=K be
a Hermitian locally symmetric space (where G = G(R ) are the real points of a
semisimple algebraic group G defined over Q , K � G is a maximal compact
subgroup, Γ � G(Q ) is a neat arithmetic subgroup, and G=K is assumed to
carry a G-invariant complex structure). A central object of study is the Baily-
Borel Satake compactification XBB: it is a complex algebraic variety which may
be highly singular. One approach to understanding the topology of this space
is through the toroidal compactification g: Xtor

Σ ! XBB of [AMRT]. It is not
unique but involves a choice Σ of Γ-equivariant polyhedral cone decomposition
of certain self adjoint homogeneous cones; if Σ is chosen sufficiently fine then
the toroidal compactification is a resolution of singularities of XBB. Essential use
of this resolution was made, for example, by E. Looijenga [L] in his proof of the
Zucker conjecture.

A second approach to understanding the Baily-Borel compactification in-
volves the reductive Borel-Serre compactification ([Z1] x4), �: XRBS

! XBB.
This compactification is neither complex algebraic, nor is it smooth. Neverthe-
less, its singularities are easily understood. In a series of papers ([GM1], [GM2],
[GHM], [GKM]) it was shown that Arthur’s L2 Lefschetz formula for Hecke
correspondences on X may be interpreted term for term as the Lefschetz fixed
point formula for the weighted cohomology of XRBS. One is therefore led to
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the problem of comparing these two “resolutions” of XBB. In [Ji], L. Ji showed
that there is little hope in comparing these two compactifications, because their
greatest common quotient is the Baily-Borel compactification. (Ji’s paper was
motivated by the paper [HZ] of M. Harris and S. Zucker in which they conjec-
tured that the Baily-Borel compactification is also the greatest common quotient
of the Borel-Serre compactification and the toroidal compactification. In the same
article [Ji], Ji determined the G.C.Q. of the Borel-Serre and toroidal compactifi-
cations and completely determined the conditions under which it coincides with
the Baily-Borel compactification.)

In this paper we revive hopes for comparing the two compactifications XRBS

and Xtor
Σ . Let X̂ � XRBS

� Xtor
Σ denote the closure of the diagonal embedding of

X in these two compactifications. Let �1 and �2 denote the projections to the first
and second factor. In x7.2 we prove the following:

THEOREM A. If the polyhedral decomposition Σ is chosen sufficiently fine then
the fibers of the projection �2: X̂ ! Xtor

Σ are contractible.

In x7.3 we conclude:

COROLLARY. The resolution g: Xtor
Σ ! XBB is homotopic to a mapping g0

which factors through XRBS.

It follows, for example, that the compact support cohomology of X, and the
cohomology of X and its compactifications are all related in a single sequence of
compatible homomorphisms,

H�
c (X)! H�(XBB)! H�(XRBS)! H�(Xtor

Σ )! H�(X).

Further applications to automorphic vectorbundles are described in x9.
The mapping g0: Xtor

Σ ! XBB is obtained as the composition

Xtor
Σ

�
���! X̂

�1
���! XRBS �

���! XBB

where � is a homotopy inverse to �2. In x8 we show that the homotopy inverse �
may be chosen to be the identity on the complement of an arbitrarily small regular
neighborhood of the boundary. Although it is not possible to find a homotopy
inverse � so that �2� is the identity, it is possible to guarantee that, for each
stratum S of Xtor, �2� (S) = S, and hence g(S) = g0(S).

Theorem A is complementary to the closely related results of M. Harris and
S. Zucker [HZ]. Theorem A was conjectured by R. MacPherson and M. Rapoport
[R] in 1991 and was verified by them in the case that the rational rank of G is 1.
In this case, if a point x 2 Xtor

Σ corresponds to a (closed) polyhedral cone � 2 Σ,
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then the fiber ��1
2 (x) is not only contractible but it may be canonically identified

with the quotient [�] of ��f0g under homotheties, i.e., it is homeomorphic to a
convex polyhedron. The case of higher rank turned out to be much more difficult
than we expected: the fiber ��1

2 (x) is obtained from the convex polyhedron [�]
by a sequence of “real” blowups.

There are three main steps in the proof of Theorem A. First, suppose that C �
V is a (rationally defined) self-adjoint open homogeneous cone in some rationally
defined real vectorspace V , and suppose that � � V is a rational polyhedral cone
whose interior �o � C is contained in C. Let [�o] � [C] � P(V) denote the
quotient under homotheties. Theorem B (x2.8) states that the closure (which we
denote by [�]RBS) of [�o] in the reductive Borel-Serre partial compactification
[C]RBS of [C] is contractible. In fact, this closure is a “blowup” of the convex
polyhedron [�]. The fibers of the projection [�]RBS ! [�] are again sets of the
form [� ]RBS. (This, in turn, is a consequence of Lemma 2.6.2 which describes the
relationship between convergence in [C]RBS and convergence in the “standard”
Satake compactification Cstd of C.)

Theorem B was proven by M. McConnell [Mc] in the case that C is the
self adjoint cone of positive definite 3� 3 matrices; in fact, he shows that the
set [�]RBS is homeomorphic to a convex polyhedron, and that the same is true
for the closure of [�] in any Satake compactification of [C]. It seems possible
that this result may hold in general, i.e., for any rationally defined self adjoint
homogeneous cone C and for any rational polyhedral cone � � C, the closure
[�]S of [�o] in any Satake partial compactification [C]S may be homeomorphic
to a convex polyhedron.

The second step in the proof of Theorem A is to guarantee that the appropriate
discrete group Γ` does not introduce any identifications on [�]RBS under the
projection [C]RBS

! Γ`n[C]RBS. This may be accomplished by assuming that
the polyhedral cone � is sufficiently small (x3). We show that any Γ`-equivariant
admissible rational polyhedral decomposition Σ of C admits a Γ`-equivariant
admissible refinement, each of whose cones is sufficiently small. The existence
of equivariant refinements of polyhedral cone decompositions is not very carefully
treated in [AMRT], so we quickly review the relevant techniques in x3.

Finally we show that the set [�]RBS appears as the fiber of the projection
�2: X̂ ! Xtor

Σ . In order to prove this, one is forced to relate convergence in XRBS

with the linear structure of the polyhedral cone � � V , which is accomplished in
Theorem C (x4.2). The proof turns out to involve some delicate estimates (x5,6)
involving the explicit descriptions of the roots of G.
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1. Symmetric spaces. In this section we review some basic results of Borel
and Serre [BS] and establish the notation which we will use throughout this paper.

1.1. Parabolic subgroups. Algebraic groups will be designated by boldface
type (G, P, etc.). If an algebraic group is defined over the real numbers then its
group of real points will be in Roman (G = G(R ), P = P(R ), etc.). The connected
component of the identity is denoted with a superscript 0 (G0, P0, etc.). If S is
an algebraic torus then the identity component of the group of real points will
be denoted by A = S(R )0 , and may be inaccurately referred to as a torus. If G
is a reductive algebraic group which is defined over the rational numbers Q , we
denote by SG the greatest Q -split torus in the center of G, and set AG = SG(R )0 .
Then the group of real points splits as a direct product

G = AG �
0G(R )(1.1.1)

where

0G =
\
�

ker (�2)(1.1.2)

denotes the intersection of the kernels of all the algebraically defined rational
characters � 2 Mor (G, GL1). The group 0G � G contains all compact and
arithmetic subgroups of G.

For any parabolic subgroup P � G we denote by UP the unipotent radical of
P, and by �P: P! LP = P=UP the projection to the Levi quotient. We denote by

MP = 0LP.(1.1.3)

If SP � LP denotes the greatest Q -split torus in the center of LP then LP = APMP

splits as a (commuting) direct product. Any lift i: LP ! P of LP determines a
Langlands decomposition (which is a semi-direct product),

P = UP � i(APMP).(1.1.4)

Choose a minimal rational parabolic subgroup Q0 � G and call it standard.
Choose a rationally defined lift i: LQ0 ! Q0 and let S = i(SQ0) be the resulting
lift of the greatest Q -split torus in the center of L(Q0), so that S � Q0 � G. Then
S is a maximal Q -split torus in G. The root system Φ(S, G) admits a linear order
so that the positive roots Φ+(S, G) are those occurring in UP. Let ∆ = ∆(S, G)
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denote the resulting set of simple positive roots. The elements � 2 ∆ are trivial
on SG and form a basis for the character module �(S=SG)
Z Q .

The rational parabolic subgroups which contain Q0 are in one-to-one corre-
spondence with subsets I � ∆. For a given subset I � ∆ define

S(I) =

0@\
�2I

ker (�)

1A0

.(1.1.5)

If Z, then the corresponding parabolic subgroup is

P = P(I) = Z(S(I))UQ0 = Z(S(I))UP(1.1.6)

(the latter decomposition being a semidirect product). Then S(I) = SP(I) and
Z(S(I)) is a lift of the Levi quotient LP(I). We denote by

∆P = f� j S(I)g�2∆�I(1.1.7)

the restrictions of the remaining simple roots to the torus S(I); they form a rational
basis for the character module �(S(I)=SG) 
 Q . If I � J � ∆ then S(I) � S(J)
and P(I) � P(J).

Let K � G be a maximal compact subgroup and define D = G=K. The space
D is referred to as a “generalized symmetric space.” If SG is not trivial, then
we denote by [D] = G=KAG the quotient of D under the identity component of
this central torus. There is a unique basepoint x0 2 D with K = StabG (x0). This
choice also determines the following data:

(1) A maximal compact subgroup KP = KP(x0) = K\P and a diffeomorphism
P=KP ! D.

(2) A Cartan involution �: G! G with G� = K.
(3) A unique lifting ix0 : LP ! P of the Levi quotient whose image LP(x0) is

�-stable. For any subset B � LP we denote its lift by B(x0) = ix0(B). The basepoint
x0 2 D is rational for P if the lift LP(x0) � G is a rationally defined algebraic
subgroup.

(4) A diffeomorphism

DP = P=KPAPUP
�= MP=KP(1.1.8)

given by mKP 7! ix0(m)KPAPUP.
(5) A canonical rational Langlands’ decomposition

P = UPAP(x0)MP(x0).(1.1.9)
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(6) A diffeomorphism

UP � AP � DP ! D(1.1.10)

given by (u, a, mKP)! uix0(a)ix0(m)KP(x0) (where mKP 2 MP=KP
�= DP).

(7) Projections uP: D ! UP, �P: D ! AP and ΦP: D ! DP to the first,
second, and third factors. (The projection ΦP is actually independent of the base-
point.)
In the coordinates given by (1.1.10), the action of g 2 P on D and the geodesic
action (see below) of b 2 AP on D are given by

g(u, a, mKP) � b = (guix0�P(g�1), abc, xmKP)(1.1.11)

where �P(g) = cx 2 APMP = LP.
The canonical Langlands decompositions (1.1.9) of two parabolic subgroups

Q � P are related in the following way. The image Q = �P(Q) � LP is parabolic
in LP. Set UQ̄(x0) = ix0(UQ̄) and A0(x0) = ix0(AQ) \MP(x0). Then

Q = (UPUQ̄(x0))(AP(x0)A0(x0))MQ(x0)(1.1.12)

= UPAP(x0)(UQ̄(x0)A0(x0)MQ(x0)).

The first is the canonical Langlands decomposition of Q while the second is the
decomposition of Q which is induced from the canonical Langlands decomposi-
tion of P.

1.2. Borel-Serre partial compactification. Throughout this section we sup-
pose that G is a reductive algebraic group defined over Q with SG = f1g. Fix
a basepoint x0 2 D in the associated generalized symmetric space, with sta-
bilizer K = K(x0) = StabG (x0). Let P � G be a rational parabolic subgroup.
The torus AP � LP acts on D in two ways. Write D = P=KP. The action from
the left is given by a � gKP: = ix0(a)gKP (for any g 2 P), while the action
from the right (which is the geodesic action of Borel and Serre) is given by
(gKP)�a := gix0(a)KP. The geodesic action is well defined since AP(x0) = ix0(AP)
commutes with KP = ix0(�P(KP)), and it is even independent of the choice of base-
point. The quotient eP = D=AP is called the Borel-Serre boundary component or
the Borel-Serre stratum corresponding to P.

The characters � 2 ∆P determine a diffeomorphism AP
�= (R>0)∆P and we

denote by AP the partial compactification obtained by adding the point at infinity
to each copy of R>0, i.e.

AP
�= (0,1]∆P .(1.2.1)

Then the “corner” associated to P is the (noncompact) smooth manifold with
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corners, D(P) = D�AP AP; it is a disjoint union

D(P) = D [
a

P0�P

eP0(1.2.2)

and it is an open neighborhood of eP in the Borel-Serre partial compactification
DBS of D. The canonical projection

�P: D(P)! D=AP = eP(1.2.3)

is the unique continuous extension of the mapping D = P=KP ! P=KPAP = eP.
Each � 2 ∆P determines a root function f P

� : D ! R>0 by f P
� (x) = �(�P(x)).

In other words, write x = uamKP by (1.1.9); then f P
� (x) = �(a). The root function

f P
� is equivariant with respect to the P action and the geodesic action on D in the

following sense: If g0 = u0a0m0 2 UPAP(x0)MP(x0) and if b0 2 AP then

f P
� (g0x � b0) = f P

� (x)�(a0b0)(1.2.4)

which follows from (1.1.11). It follows that f P
� extends to a function (which we

also denote in the same way),

f P
� : D(P)! (0,1],(1.2.5)

hence the mapping

D(P)! eP � (0,1]∆P(1.2.6)

given by x 7! (�P(x), ff P
� (x)g�2∆P) is a diffeomorphism of manifolds with cor-

ners. The following lemma characterizes convergent sequences in the Borel-Serre
partial compactification of D.

LEMMA 1.2.7. Let Q0 be a minimal parabolic subgroup of G and let P = P(I)
be a standard parabolic subgroup corresponding to a subset I � ∆. Let x1 2
eP. Then a sequence of points fxkg � D converges (in the Borel-Serre partial
compactification) to x1 iff the following two conditions hold:

(1) �P(xk) 2 eP converges in eP to x1

(2) f Q0
� (xk)!1 for all � 2 ∆� I.

Proof 1.2.8. Let us consider the convergence of the sequence fxkg in the
open corner D(Q0). By (1.2.6) (with P replaced by Q0), we have a diffeomorphism
D(Q0) �= eQ0 � (0,1]∆ which takes eP

�= eQ0 � (0,1)I � f1g∆�I . So we need
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to show that

(1) �Q0 (xk) converges to �Q0 (x1),

(2) f Q0
� (xk)! f Q0

� (x1) for all � 2 I,

(3) f Q0
� (xk)!1 for all � 2 ∆� I.

Items (1) and (3) follow immediately from the hypotheses. Let us consider item
(2). For any a 2 AP = AP(I) and for any � 2 I � ∆ we have f Q0

� (xk � a) =
f Q0
� (xk) � �(a) = f Q0

� (xk) by (1.2.4) and (1.1.5). But �P(xk) = xk(mod AP) so

f Q0
� (xk) = f Q0

� (�P(xk))! f Q0
� (x1)

as claimed.

1.2.9. The action of G(Q ) on D extends continuously to the partial com-
pactification DBS. If Γ � G(Q ) is a neat arithmetic group then the quotient
XBS = ΓnDBS is the Borel-Serre compactification of X = ΓnD. It is a manifold
with corners; the image of each boundary component eP is called a boundary
stratum.

1.3. Reductive Borel-Serre partial compactification. If P � G is a ra-
tional parabolic subgroup, define the reductive Borel-Serre boundary component
DP = P=KPAPUP

�= MP=KP. Let

ΦP: D = P=KP ! P=KPAPUP = DP(1.3.1)

denote the projection. Then DP is a “generalized symmetric space” (for the group
MP) and it inherits a basepoint ΦP(x0). The reductive Borel-Serre partial compact-
ification ([Z1] x4) DRBS is obtained from the Borel-Serre partial compactification
by collapsing the fibers of the projection eP = P=KPAP ! DP = P=KPAPUP to
points (for every proper rational parabolic subgroup P � G). It is a Hausdorff
topological space. The closure of DP in DRBS is the reductive Borel-Serre partial
compactification DP

RBS of DP = MP=KP. The projections eP ! DP fit together
to give a G(Q ) equivariant continuous surjection DBS

! DRBS which extends
the identity mapping on D. Denote by D[P] � DRBS the image of the corner
D(P) under this surjection, so that D[P] = D [

`
Q�P DQ. Then D[P] is an open

neighborhood in DRBS of the stratum DP.
Suppose Q � P are standard rational parabolic subgroups corresponding to

subset J � I � ∆ of the simple rational roots, respectively. Zucker’s vexatious
point [Z1] (3.19) is that the root functions f P

� and f Q
� usually do not agree. Let

Q = �P(Q) � LP be the parabolic subgroup of LP which is determined by Q. For
x 2 D use (1.1.12) to write x = uwabm � x0 with u 2 UP, w 2 ix0(UQ̄), a 2 AP(x0),
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b 2 A0 = AQ(x0) \MP(x0), and m 2 MQ(x0). Then for all � 2 ∆ we have

f Q
� (x) = �(ab), and f P

� (x) = �(a)(1.3.2)

(but � 2 I =) �(a) = 1 while � 2 J =) �(a) = �(b) = 1; see also Lemma 1.3.6
(20)). Since ΦP(x) = wbm �ΦP(x0) 2 MP=KP, we have (for all � 2 I),

f Q̄
� (ΦP(x)) = �(b) = f Q

� (x)(1.3.3)

It follows from (1.2.4) and (1.3.3) that, for all � 2 ∆ the root function f Q
� admits

a unique well-defined continuous extension f Q
� : D[Q]! (0,1] by defining, for

any y 2 DP(I)

f Q
� (y) =

8><>:
1 for � 2 ∆� I

f Q̄
� (y) for � 2 I � J

1 for � 2 J.
(1.3.4)

Similarly, the projection ΦQ: D! DQ factors,

ΦQ(x) = ΦQ̄ �ΦP(x) = m �ΦQ(x0) 2 DQ
�= MQ=KQ(1.3.5)

so it also has a unique continuous extension to the neighborhood D[Q] which we
denote by the same symbol, ΦQ: D[Q]! DQ.

From Lemma 1.2.7, we obtain a characterization for convergence in the re-
ductive Borel-Serre compactification:

LEMMA RBS 1.3.6. Let Q0 be the standard minimal parabolic subgroup of
G and let P = P(I) be the standard parabolic subgroup corresponding to a subset
I � ∆. Let x1 2 DP. Then a sequence of pointsfxkg � D converges (in the reductive
Borel-Serre compactification) to x1 iff the following two conditions hold:

(1) ΦP(xk) 2 DP converges in DP to x1.

(2) f Q0
� (xk)!1 for all � 2 ∆� I.

Moreover, in the presence of (1), condition (2) is equivalent to the condition

(20) f P
� (xk)!1 for all � 2 ∆� I.

Proof 1.3.7 This is because, within any set Φ�1
P (compact), the ratio f Q0

� : f P
�

is bounded. To be precise, use (1.1.12) to write xk = ukwkakbkmk �x0 with uk 2 UP,
wk 2 ix0(UQ̄0

), ak 2 AP(x0), bk 2 AQ0(x0) \ MP(x0), and mk 2 MQ0 (x0). Then
ΦP(xk) = wkbkmk �ΦP(x0) which converges; hence the bk converge. So by (1.3.2)
we conclude that f P

� (xk) = �(ak)!1 iff f Q0
� (xk) = �(ak)�(bk)!1.
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We shall also need the following consequence of (1.3.5) and Lemma RBS
1.3.6,

CONSEQUENCE 1.3.8. Let P = P(I) be the standard parabolic subgroup corre-
sponding to a subset I � ∆, and let x1 2 DRBS

P � DRBS. Suppose fxkg � D is a
sequence which converges in DRBS to x1. Then the sequence fΦP(xk)g � DP also
converges to x1 in DRBS.

1.3.9. The action of G(Q ) extends continuously to the partial compactifi-
cation DRBS. For any arithmetic group Γ � G(Q ) the quotient XRBS = ΓnDRBS

is called the reductive Borel-Serre compactification of X = ΓnD. The image XP

of the boundary component DP is called a boundary stratum, of which there are
finitely many: one for each Γ-conjugacy class of rational parabolic subgroups
P � G. If Γ is neat then XRBS is (Whitney-)stratified by these boundary strata.
The projection DBS

! DRBS passes to a surjective stratum preserving mapping
XBS
! XRBS whose restriction to X is the identity.

2. Linear symmetric spaces. The main result in this section is Theorem B
(x2.8) which describes the topology of the reductive Borel-Serre compactification
of certain convex polyhedral cones.

2.1. Throughout this section, G denotes a connected reductive algebraic
group defined over Q , and �: G! GL(V) denotes a faithful rational representa-
tion of G on some rational vectorspace V. Let G = G(R )0 denote the connected
component of the group of real points. We assume that G acts with an open orbit
C � V = V 
Q R such that the stabilizer K = StabG (e) of a chosen basepoint
e 2 C is a maximal compact subgroup of G. Then we may identify the group
G �= Aut0(C) � GL(V) with the connected component of the group of linear
automorphisms of V which preserve the orbit C. The vectorspace V admits a
rational inner product h�, �i so that

Č = fx 2 V j hx, ci > 0 8c 2 C � f0gg

coincides with C (and G = Gt � GL(V)). Then C is a self adjoint homogeneous
rational cone in V . We shall assume for simplicity that C is irreducible over Q

which implies that the split component AG = SG(R )0 is 1-dimensional, and acts
on V by homotheties. (The results of this chapter easily extend to the case that
C is reducible, and will eventually be applied to the group G` of Section 4.)

Fix once and for all a basepoint e 2 C which is rational, e 2 V(Q ). Let
g = k�p denote the Cartan decomposition corresponding to the choice of maximal
compact subgroup K = StabG(e) and let �: g ! End(V) denote the differential
of �. Then � determines an isomorphism p ! V by x 7! �(x)(e) whose inverse
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we denote by a 7! Ta 2 p. The vectorspace V admits a Jordan algebra structure
such that, for any x 2 p, the mapping �(x) 2 End(V) is Jordan multiplication
by the element �(x)(e) 2 V . In other words, a � b = �(Ta)b for all a, b 2 V .
It is customary to drop the explicit mention of � and to write a � b = Ta(b).
The basepoint e 2 C � V is the identity element of the Jordan algebra. For all
a, b, x 2 V and for all s 2 R we have Ta+sb(x) = Ta(x) + sTb(x). The cone C is
given by C = fx2 j x 2 V is invertibleg and its closure is C̄ = fx2 j x 2 Vg.

2.2. Standard partial compactification. The standard partial compactifi-
cation of C is the Satake partial compactification which corresponds to the rep-
resentation �. It may be explicitly described as follows.

For each idempotent � 2 V the associated endomorphism (given by Jor-
dan multiplication) T�: V ! V is semisimple with eigenvalues 0, 1

2 , and 1.
The “Peirce decomposition” V �= V0 � V 1

2
� V1 is the corresponding eigenspace

decomposition. Define boundary components C0(�) = int(C̄ \ V0) and C1(�) =
C0(e � �) = int(C̄ \ V1). These boundary components are rational if the cor-
responding idempotents � and e � � are rational elements of V . The subgroup
P = NormG(C1(�)) which preserves C1(�) is a maximal parabolic subgroup of G.
If � is rational, then P is the real points of a rationally defined maximal parabolic
subgroup P of G. Conversely, every maximal rational parabolic subgroup P � G
preserves a unique rational boundary component.

The closure C̄ � V is the disjoint union of C and all its boundary components.
Let C� � V denote the union of C and all its rational boundary components.
Define the Satake topology on C� to be the unique topology so that: (1) for any
Siegel set Ω � C its closure Ω̄ � V in V coincides with its closure Ω̄Sat in
the Satake topology, and (2) if y 2 C� is a point on the boundary, then for any
arithmetic group Γ � G(Q ), there exists a basis of neighborhoods U of y (in
the Satake topology) such that ΓyU = U where Γy denotes the stabilizer of y
in Γ. The existence of such a topology is essentially proven in [S1] x2, [BB]
Thm. 4.9, or [Z2] p. 340, although their proofs must be modified slightly so as to
apply to our G which is reductive, rather than semisimple. The standard partial
compactification Cstd of C is the space C� with the Satake topology. For any
rational idempotent � 2 V the closure of C1(�) in C̄std is the standard partial
compactification of C1(�).

Throughout x2 and x3 we let D = C=AG denote the quotient of C under ho-
motheties. Denote also by Dstd = Cstd

=AG (with the Satake topology) the quotient
under homotheties. For any subset S � C we denote by [S] � D its image in D.
The group G(Q ) of rational points acts on the partial compactification Dstd.

PROPOSITION 2.2.1. For any arithmetic subgroup Γ � G the quotient ΓnDstd

is compact. If Γ is neat, then ΓnDstd is a stratified space with one stratum Γ \
P(�)nC1(�)=AG for each Γ conjugacy class of rational boundary components C1(�).
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2.3. Roots. Throughout the rest of this section we fix a “standard” minimal
rational parabolic subgroup Q0 � G. This corresponds to a choice of a complete
set of mutually orthogonal rational idempotents f�1, �2, : : : , �r+1g (in other words,
�i � �j = 0 for i 6= j, �2

i = �i, and �1 + �2 + � � � + �r+1 = e). The �i may be
ordered so that Q0 is the normalizer of the “complete” flag of rational boundary
components

C̄1(�1) � C̄1(�1 + �2) � � � � � C̄1(�1 + � � � + �r+1) = C̄.(2.3.1)

The canonical lift of AQ0 (determined by the basepoint e 2 C) is AQ0(e) =
exp (

P
RT�i ). If i 2 Hom(AQ0 , R ) denotes the dual basis to the elements exp (T�i)

then the rational roots Φ(AQ0 , G) of G are f 1
2 (i � j)g for i 6= j and the simple

roots ∆ = ∆Q0 (appearing in the unipotent radical of Q0) are

�i =
1
2

(i � i+1) for 1 � i � r.(2.3.2)

The Dynkin diagram for G is linear and it corresponds to the ordering �1,�2, : : : ,
�r of the simple roots (or to the ordering �1, �2, : : : , �r, �r+1 of the idempotents).

2.4. Reductive Borel-Serre boundary components. The immediate goal
is Lemma 2.4.11 which describes the closure of a single boundary component
in the reductive Borel-Serre compactification. Throughout x2.4 we fix a standard
parabolic subgroup Q � Q0 corresponding to a subset I � ∆ of the simple roots
as in (1.1.6). Write ∆ � I = f�m1 ,�m2 , : : : ,�mqg (where 1 � m1 < m2 < � � � <
mq � r). Then we obtain orthogonal idempotents

d1 = �1 + �2 + � � � + �m1(2.4.1)

d2 = �m1+1 + �m1+2 + � � � + �m2

� � �

dq+1 = �mq+1 + �mq+2 + � � � + �r+1

so that Q is the normalizer of the (partial rational) flag of boundary components

C̄1(d1) � C̄1(d1 + d2) � � � � � C̄1(d1 + � � � + dq+1) = C̄.(2.4.2)

The canonical lift AQ(e) of the torus AQ may be parametrized by elements

�Q(t1, t2, : : : , tq+1) = exp (s1Td1 + s2Td2 + � � � + sq+1Tdq+1 )(2.4.3)

where ti = e
1
2 si . The torus AG = ZG(R )0 is given by �Q(t, t, : : : , t). It follows

from(2.3.2) that, when viewed as characters on AQ, the restrictions of the simple



COMPACTIFICATIONS OF LOCALLY SYMMETRIC SPACES 1107

roots ∆� I = f�m1 ,�m2 , : : : ,�mqg to AQ are given by

�mj(�Q(t1, t2, : : : , tq+1)) = tjt
�1
j+1 for 1 � j � q.(2.4.4)

Let

V =
M

1�i�j�q+1

Vij(2.4.5)

denote the (simultaneous) Peirce decomposition of V relative to this collection
d1 + d2 + � � � + dq+1 = e of idempotents, where Vii = V1(di) and Vij = V 1

2
(di) \

V 1
2
(dj) for i 6= j (cf. [AMRT] II, 3.8, p. 92 or [FK] Thm. IV.2.1, p. 68). Then

�Q(t1, t2, : : : , tq+1) acts on Vij with eigenvalue titj for 1 � i, j � q + 1. The Jordan
algebra structure on V restricts to a rationally defined Jordan algebra structure on
each Vii = V1(di) � V with identity element di and with self adjoint homogeneous
cone C1(di) = C \ V1(di) (for 1 � i � q + 1). Let Gi = Aut0(C1(di), Vii). Then Gi

are the real points of a rationally defined algebraic group Gi and C1(di) �= Gi=Ki

where Ki is the isotropy subgroup in Gi of the basepoint di. Let pi: V ! Vii

denote the linear projection which is determined by the Peirce decomposition.
Define

 i: LQ(e)! Gi(2.4.6)

by  i(g) = g j C1(di). Thus there are two projections C ! C1(di): one given
by the linear projection pi and the second, �i, given by the composition C =
Q=KQ ! LQ=KQ ! Gi=Ki. The following lemma says that these projections
agree on points x = g � e which are in the orbit of the Levi subgroup LQ(e); the
discrepancy between these two projections is analyzed in the proof of Proposition
2.6.2.

LEMMA 2.4.7. For all g 2 LQ(e) and for all i (1 � i � q + 1) we have

pi(g � e) = �i(g � e) =  i(g) � di 2 C1(di).

Proof 2.4.8. Since LQ(e) is the centralizer of AQ(e) it follows that each Vii

is preserved by LQ(e) and that the projection pi commutes with the action of
g 2 LQ(e) on Vii. Furthermore, pi(e) = di.

The mapping

 Q: LQ(e)! G1 � G2 � � � � � Gq+1(2.4.9)
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given by

 Q(g) = (g j C1(d1), g j C1(d2), : : : , g j C1(dq+1))

is surjective with compact kernel ([AMRT] II, 3.9 Prop. 10) and it induces dif-
feomorphisms CQ = LQ=KQ

�= C1(d1)� � � � � C1(dq+1) and

ΨQ: DQ
�= D1 � � � � � Dq+1(2.4.10)

where Di = C1(di)=homotheties for 1 � i � q + 1.

LEMMA 2.4.11. The mapping  Q induces a homeomorphism (which is smooth
on each boundary component) between the reductive Borel-Serre partial compact-
ifications,

ΨQ: DRBS
Q
�= DRBS

1 � DRBS
2 � � � � � DRBS

q+1 .(2.4.12)

Proof 2.4.13. Each parabolic subgroup of G1 � G2 � � � � � Gq+1 is of the
form R1 � R2 � � � � � Rq+1 with Ri parabolic in Gi.

2.4.14. The next immediate goal is Corollary 2.6.3 which describes the pro-
jection from the reductive Borel-Serre compactification to the standard compact-
ification. To describe this projection we must associate to each rational parabolic
subgroup of G a maximal rational parabolic subgroup.

The RBS boundary component DQ appears in DRBS
P for every parabolic sub-

group P � Q. However the ordering of the roots determines an ordering of the
maximal parabolic subgroups containing Q. Define

P = Qy = Norm(C1(d1))(2.4.15)

to be the first maximal parabolic subgroup in this ordering. It corresponds to
the single idempotent d1. Set C0 = C1(e � d1), G0 = Aut(C0, V0(d1)), D0 =
C0=homotheties (and C1 = C1(d1), G1 = Aut(C1, V1(d1)), D1 = C1=homotheties).
As in (2.4.9) and Lemma 2.4.11 set  P: LP ! G1 � G0 and ΨP: DRBS

P
�=

DRBS
1 � DRBS

0 .

LEMMA 2.4.16. Suppose Qy = P = UPG1G0 as above. There exists a rational
parabolic subgroup H � G0 with corresponding reductive Borel-Serre boundary
component D0,H � DRBS

0 so that

ΨP(DQ) = D1 � D0,H � D1 � DRBS
0 .
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Proof 2.4.17. The image of Q under the composition

Q � P ���!
�P

LP ���!
 P

G1 � G0

is of the form G1 � H for some parabolic subgroup H � G0.

2.4.18. These spaces and mappings fit together in the following diagram.
The composition across the top row is �i and the composition across the middle
row is Φi.

C = P=KP ���!
�P

CP = LP=KP ���!
ΨP

C1 � C0 ���! Ci??y ??y ??y ??y
D = P=KPAP ���!

ΦP

DP = LP=KPAP ���!
ΨP

D1 � D0 ���! Di ??y ??y
D = P=KPAP ���!

ΦQ

DQ = LQ=KQAQ ���!
ΨP

D1 � D0,H

2.5. Peirce coordinates. The Peirce decomposition gives rise to a coordi-
nate system on C which is analogous to the Siegel coordinate system of Piatetski-
Shapiro for the case of Hermitian symmetric spaces. Let P � Q0 be a standard
maximal rational parabolic subgroup of G, (see (2.3.2)) say, P = P(∆�f�kg) for
some simple root �k 2 ∆ = ∆Q0 . Then P = NormG(C1(�)) where � = �1+�2+� � �+�k.
Let V = V1(�) � V 1

2
(�) � V0(�) denote the resulting Peirce decomposition of

V (with into eigenspaces of T�). Let �P(t1, t0) = exp (s1T� + s0Te��) denote the
parametrization of AP as in (2.4.3), with ti = e

1
2 si for i = 1, 0. Let v = (v1, v 1

2
, v0) 2

V1 � V 1
2
� V0.

LEMMA 2.5.1. In these coordinates, the action of P on V is given by

g � v =

0B@A M N
0 C D
0 0 B

1CA
0B@v1

v 1
2

v0

1CA
(where A, M, N, C, D, and B are linear mappings which depend on g.) Furthermore,

(1) g 2 LP iff M = 0, N = 0, D = 0.
(2) The element g = �P(t1, t0) 2 AP is given by

�P(t1, t0) =

0B@t2
1 0 0
0 t1t0 0
0 0 t2

0

1CA .
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(3) The root function f P
�k

is given by

f P
�k

(u�P(t1, t0)me) = t1t�1
0

for any u 2 UP, �P(t1, t0) 2 AP and m 2 MP.
(4) If g 2 UP then A = I and B = I.
(5) The orbit of the basepoint e = (�, 0, e� �) under LP is the product C1(�)�

f0g � C1(e� �).

Moreover, there exists a family of bilinear forms ht: V 1
2
(�) � V 1

2
(�) ! V0(�) de-

pending smoothly on a parameter t 2 C1(�) so that the cone C is given by

C = f(t, w, z) 2 V1 � V 1
2
� V0 j t 2 C1 and z� ht(w, w) 2 C0(�)g

in analogy with the well-known inequality (cf. (7.5.2)) which, in the case of a
Hermitian symmetric space, defines a Siegel domain.

Proof 2.5.2. The 1-parameter group �(t) = �(t1, 1) = exp (s1T�) is in the
center of the Levi quotient LP and it has the property that (cf. [AMRT] II, 3.3
and [MF] Ch. 2 x2),

P = fg 2 G j lim
t!0

�(t)g�(t)�1existsg.

Then �(t).(v1, v 1
2
, v0) = (t2v1, t1v 1

2
, v0). Writing

g =

0B@A M N
U C D
V W B

1CA
we see that

�(t)g�(t)�1 =

0B@ A tM t2N
t�1U C tD
t�2V t�1W B

1CA ,

which implies that U = 0, V = 0, and W = 0. Moreover, g 2 LP(e) = ZP(�(t)) if
and only if �(t)g�(t)�1 = g for all t, which implies that M = 0, N = 0, and D = 0.
This proves parts (1) and (5). Part (2) follows from the definition of �(t1, t0) and
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part (3) is a restatement of (2.4.4). Part (4) follows from the observation that the
projection 0B@A M N

0 C D
0 0 B

1CA 7! (A, B)

is a group homomorphism P ! G1 � G0 whose restriction to LP agrees with  
(cf. Lemma 2.4.7). Since G1�G0 is reductive, the unipotent radical UP is in the
kernel of this mapping.

The “moveover” part of this theorem will not be needed in this paper and is
included for completeness. It is proven in [T]. The bilinear form ht(v, v) is in fact
given by the “quadratic representation” [FK] ht(v, v) = P(v)(t) = 2v(vt)� v2t.

2.6. Convergence. Fix any point w 2 DRBS. Then w lies in some RBS
boundary component, say DQ, with normalizing parabolic group Q = Q(R ). Let
P = Qy (cf. (2.4.15)) be the maximal parabolic subgroup which is first among the
ordering of all maximal parabolic subgroups containing Q. Then P = Norm(C1(�))
for some rational idempotent � (denoted d1 in x2.4.14) which determines a Peirce
decomposition V = V1(�) � V 1

2
(�) � V0(�). If v = (v1, v 1

2
, v0) 2 V then we will

write [v] = [v1: v 1
2
: v0] 2 D for its homothety class. Set Ci = C \ Vi(�),

Di = Ci=homotheties, and Gi = Aut0(Ci, Vi(�)) for i = 1, 0. Then (2.4.9)  P: LP !

G1�G0 induces ΨP: DRBS
P
�= DRBS

1 �DRBS
2 . The linear projections pi: V ! Vi(�)

determine projections pi: C ! Ci and pi: D! Di (for i = 1, 0). By Lemma 2.4.16
we have

ΨP(DQ) = D1 � D0,H � D1 � DRBS
0(2.6.1)

for some rational parabolic subgroup H � G0, and we write ΨP(w) = (w1, w0).

PROPOSITION 2.6.2. Let fykg � D be a sequence. If yk converges to w in the
reductive Borel Serre compactification DRBS then the following two conditions hold,

(1) The sequence yk converges to w1 2 D1 � Dstd in the standard compactifi-
cation of D and

(2) the sequence p0(yk) converges to w0 2 D0,H � DRBS
0 in the reductive

Borel-Serre compactification of D0.
Conversely, suppose fykg � D is contained in a Siegel set and satisfies condi-

tions (1) and (2) above. Then yk ! w in DRBS.

COROLLARY 2.6.3 The identity mapping D ! D has a unique continuous
extension

� = �G: DRBS
! Dstd
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which takes boundary components to boundary components. For any maximal ra-
tional parabolic subgroup P = P(�) � G the restriction � j DRBS

P is given by the
composition

DRBS
P ���!

ΨP

DRBS
1 � DRBS

0 ���!
�1

DRBS
1 ���!

�G1

Dstd
1

(where Di = Ci(�)=homotheties and with ΨP as in (x2.4.18)). A RBS boundary
component DQ is contained in ��1(D1) iff Qy = P.

Corollary 2.6.3 is essentially proven in [Z2], however we need a slightly
more explicit version than appears in [Z2].

2.6.4. Proof of Proposition 2.6.2. For i = 1, 0, denote by Φi: D! Di the
composition along the middle row in the diagram in x2.4.18. The proposition is
not trivial because the mapping Φ1: C ! C1 does not necessarily agree with
the linear projection p1: (v1, v 1

2
, v0) 7! v1 given by the Peirce decomposition. For

v 2 C write v = uame relative to the Langlands decomposition P = UPAP(e)MP(e)
of P. Using Lemma 2.5.1, write

m =

0B@A 0 0
0 C 0
0 0 B

1CA , a = �P(t1, t0) =

0B@t2
1 0 0
0 t1t0 0
0 0 t2

0

1CA , u =

0B@I M0 N0

0 C0 D0

0 0 I

1CA(2.6.5)

relative to the Peirce decomposition V = V1(�)� V 1
2
(�)� V0(�). Then

v = uam

0B@ �
0

e� �

1CA =

0B@t2
1A� + t2

0N0B(e� �)
t2
0D0B(e� �)
t2
0B(e� �)

1CA(2.6.6)

the first and last coordinates of which are p1(v) and p0(v) respectively. On the
other hand by Lemma 2.4.7,

ΨP�P(v) = ΨP(ame) = (t2
1A�, t2

0B(e� �)) 2 C1(�)� C1(e� �).

Hence,

[p0(v)] = Φ0([v]) 2 D0,(2.6.7)

but [p1(v)] 6= Φ1([v]) 2 D1 unless N0B = 0.
Suppose the sequence fykg converges in DRBS to w 2 DQ. Since w 2 DQ �

DRBS
P we have, (by Corollary 1.3.8 and Lemma 2.4.11),

ΦP(yk)! w in DRBS
P
�= DRBS

1 � DRBS
0 .
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It follows that Φ0(yk)! w0 in D0
RBS (and that Φ1(yk)! w1 in DRBS

1 ). By (2.6.7)
this implies that p0(yk)! w0 which proves (2).

To prove (1), we may assume the parabolic subgroup Q is standard, that it
corresponds to a subset I � ∆ of the simple roots ∆ which occur in the unipotent
radical of Q0 (cf. x2.4), and that it normalizes the partial flag (2.4.2) corresponding
to the ordered set of orthogonal idempotents d1 + d2 + � � � + dq+1 = e. Write

yk = ukakmk[e](2.6.8)

relative to the canonical Langlands decomposition Q = UQAQ(e)MQ(e), where
[e] 2 D denotes the homothety class of the basepoint e 2 C. By Lemma RBS
1.3.6, the sequence mk may be chosen so as to converge to some limit m1 2
MQ(e). If Γ � G(Q ) is an arithmetic group, then the quotient UQ=(Γ \ UQ) is
compact. Hence there exists a compact subset F � UQ such that UQ = F.(Γ\UQ).
So we may write uk = ku0k where k 2 Γ \ UQ stabilizes the point y1 2 D1

and where u0k lies in the fixed compact subset F � UQ. The sequence fykg
converges in the Satake topology to w1 iff the sequence �1

k yk = u0kakmk[e] 2 D
also converges to w1. So, replacing yk by �1

k yk if necessary, we may (and will)
assume the elements uk in equation (2.6.8) remain within some fixed compact subset
F � UQ. Since the fmkg also remain within some compact set, the elements yk

are contained in a Siegel set.
Let us write

V = V11 � V22 � � � � � Vq+1,q+1 �
M

1�i<j�q+1

Vij.

Then the LQ orbit of the basepoint e = (d1, d2, : : : , dq+1, 0) is

CQ = C1(d1)� C1(d2)� � � � � C1(dq+1)� f0g,(2.6.9)

so the point mke may be expressed as

mke = (z1,k, z2,k, : : : , zq+1,k, 0) �! m1e = (z1,1, z2,1, : : : , zq+1,1, 0).

As in (2.4.3), write ak = �(t1,k, t2,k, : : : , tq+1,k). By (2.4.4), and Lemma 1.3.6 we
have

t1,k

t2,k
!1,

t2,k

t3,k
!1, : : : ,

tq,k

tq+1,k
!1(2.6.10)

while

akmke = (t2
1,kz1,k, t2

2,kz2,k, : : : , t2
q+1,kzq+1,k, 0).
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But UQ preserves the flag V11 = V1(d1) � V1(d1 + d2) � � � � � V hence

ukakmke = (t2
1,kz1,k, linear combinations of ft2

i,kzi,kg for i > 1)(2.6.11)

and the coefficients (of the linear combinations) are restricted to lie in some
compact set. But (2.6.10) implies that, modulo homotheties,

yk �! [z1,1:0:0: : : : :0] = w1 2 D1

in the “usual” topology. Since fykg is contained in a Siegel set it follows that
yk ! w1 in the Satake topology also. This completes the proof of (1).

Now let us prove the converse, i.e., suppose that fykg � D is contained in a
Siegel set, yk ! w1 2 Dstd and p0(yk)! w0 2 DRBS

0 . By Lemma 1.3.6, to show
that yk ! w 2 DRBS we must verify that

(a) ΦQ(yk)! w and

(b) f Q
� (yk)!1 for all � 2 ∆� I.

In order to verify (a) it suffices (see the diagram in x2.4.18) to show that (i)
Φ1(yk)! w1 in D1 and (ii) Φ0(yk)! w0 in DRBS

0 . But (ii) follows from (2.6.7)
and the assumption that p0(yk) ! w0. So we must verify (i). Choose any lift
vk 2 C of yk 2 D and write vk = ukakmke relative to the Langlands decomposition
P = UPAP(e)MP(e) of P. Since fvkg lie in a Siegel set, the elements uk and mk

lie in some compact set. As in (2.6.5) we may write

ak = �P(t1,k, t0,k) =

0B@t2
1,k 0 0
0 t1,kt0,k

0 0 t2
0,k

1CA(2.6.12)

and

mk =

0B@Ak 0 0
0 Ck 0
0 0 Bk

1CA , and uk =

0B@I M0
k N0

k
0 C0k D0

k
0 0 I

1CA .(2.6.13)

Each family of matrices Ck, C0k, D0
k, M0

k, N0
k is contained in some compact set of

matrices, while the Ak and Bk are contained in compact sets of invertible matrices.
Since yk ! [w1:0:0] in the Satake topology, it does so also in the usual topology,
so it follows from (2.6.6) that

t1,kt�1
0,k !1(2.6.14)

(because the first coordinate dominates the second and third coordinates). From



COMPACTIFICATIONS OF LOCALLY SYMMETRIC SPACES 1115

this it also follows that p1(yk)! w1 in D1 and also that

p1(u�1
k yk) = p1(akmk[e]) = [t2

1,kAk�:0:t2
0,kBk(e� �)] �! [w1:0:0]

as well. So, by Lemma 2.4.7 we have

Φ1(yk) = Φ1(u�1
k yk) = p1(u�1

k yk) �! w1

which completes the proof of (i) and hence also the proof of (a).
Now let us prove part (b). Write ∆ � I = f�m1 ,�m2 , : : : ,�mq+1g as in x2.4,

and parametrize AQ(e) by elements �Q(t1, t2, : : : , tq+1) as in (2.4.3). Then

�P(t1, t0) = �Q(t1, t0, t0, : : : , t0).

Write vk = ukakmke relative to the Langlands decomposition Q = UQAQ(e)MQ(e)
and set ak = �Q(t1,k, t2,k, : : : , tq+1,k). By (2.4.4) and (2.6.14) we have f Q

� (yk) =

t1,kt�1
2,k ! 1 where � = �m1 is the first of these simple roots. It follows from

(2.6.7) that, for each of the remaining simple roots � 2 ∆� I, � 6= �m1 we have
f H
� (p0(yk)) = f Q

� (yk). Hence these also diverge, by hypothesis (2) and Lemma
1.3.6. This completes the verification of condition (b).

2.7. Polyhedral cones. A polyhedral cone � � V is a closed convex set,

� = fx 2 V j `i(x) � 0 with i = 1, 2, : : : , kg

for some finite collection f`1, `2, : : : , `kg of linear functions `i: V ! R . The
span L� of � is the smallest vector subspace of V which contains �. A proper
face � of � is the intersection of � with a supporting hyperplane (containing the
origin). It is again a (closed convex) polyhedral cone. The “interior” �o of � is
the complement of its proper faces. The polyhedral cone � is simplicial if dim(�)
equals the number of 1-dimensional faces of �.

The vectorspace V is defined over the rationals, V = V 
Q R . A polyhedral
cone � is rational if it is possible to find linear functions f`1, `2, : : : , `kg defining
� which are defined over the rationals. In this case, all the faces of � are rational
as well.

LEMMA 2.7.1. ([AMRT] II, 4.3, Thm. 1, p. 113) Any rational polyhedral
cone � � C� is contained in the closure of a Siegel set. The intersection � \ C is
contained in a Siegel set.

Thus, for any polyhedral cone � � C� such that �o � C we may identify �
with the closure �o � Cstd of �o (in the Satake topology).
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Let � � C� be a polyhedral cone. Let L� be the linear subspace of V spanned
by � and let c 2 L?� be an element in the perpendicular complement. Let fvkg � C
be a sequence of points, say vk = (v1,k, v2,k) 2 L?� � L�.

Definition 2.7.2. We say the sequence vk ! c +1� if

(1) the sequence v1,k ! c in L?� and

(2) for every x 2 L�, there exists N so that k � N =) v2,k � x 2 �.

The following proposition will be needed in x7.9.2 and x7.9.4, but it is most
convenient to prove it here.

PROPOSITION 2.7.3. Let fvkg � C be a sequence and suppose that vk ! c+1�
for some polyhedral cone � � C� (with �o � C) and for some c 2 L?� . Suppose the
sequence [vk] 2 D converges in the reductive Borel-Serre compactification to some
point w 2 DRBS. Let ` 2 V be any element and suppose f`kg � V is a sequence
which converges to `. Then for k sufficiently large, the sequence vk + `k is contained
in the cone C and its quotient modulo homotheties [vk + `k] 2 D converges in DRBS

to the same point w. (In particular, the sequence [vk + `]! w also.)

Proof 2.7.4. We must show that the sequence [vk +`k] 2 D is contained in a
Siegel set and satisfies conditions (1) and (2) of Proposition 2.6.2. The interior �o

of the polyhedral cone � may be embedded in the interior (�0)o of a polyhedral
cone �0 � C� of top dimension. (There are several ways to do this. If � is a
polyhedral cone in a polyhedral decomposition Σ of C, then �0 may be taken to
be the convex hull of the star St(�).) Then vk ! 1�

0. It follows that, for any
` 2 V , there exists N so that whenever k � N we have vk + ` 2 (�0)o � C, so the
same is true for the sequence vk + `k. By Lemma 2.7.1, the sequence vk + `k is
therefore contained in a Siegel set.

The limit point w lies in some RBS boundary component, say, DQ. Set
P = P(�) = Qy as in (2.4.15) above. As in (2.4.6) and (2.4.11) the decom-
position LP

�= G1 � G0 induces ΨP: DRBS
P
�= DRBS

1 � DRBS
0 with ΨP(DQ) =

D1 � D0,H by Lemma 2.4.16 (for some rational parabolic subgroup H � G0 =
Aut0(C0(�), V0(�))). Set ΨP(w) = (w1, w0). Write vk = ukakmk relative to the Lang-
lands decomposition of P. Then ak, uk, and mk are given by matrices (2.6.12),
(2.6.13). Since [vk] ! [w1:0:0] the same argument as that following (2.6.13)
gives t2

1,kt�2
0,k !1. Moreover, since vk !1�

0 we have

t2
0,khBk(e� �), e� �i = hvk, e� �i ! 1.

But fBkg is contained in a compact set of invertible matrices, so we also have
t2
0,k ! 1. It follows from (2.6.6) that adding a constant ` = (`1, ` 1

2
, `0) will not

affect the limiting homothety class. It follows that [vk + `k] ! [w1:0:0] in Dstd

which verifies condition (1) of Proposition 2.6.2.
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Condition (2) is verified by induction on the rank of G. For sufficiently large
k we have

p0(vk) 2 p0((�0)o) � C0(�)

and [p0(vk)] converges in DRBS
0 to the point w0. By induction, the sequence

[p0(vk) + p0(`k)] 2 D0 also converges to lim [p0(vk)] = w0 in DRBS
0 .

2.8. Blowups of polyhedral cones. Let � � C� � V be a rational poly-
hedral cone with �o � C. Define [�o] � D and [�] � Dstd to be the quotients
modulo homotheties. The RBS blowup [�]RBS � DRBS is the closure of [�o] � D
in the reductive Borel-Serre compactification of D. The restriction of the mapping
�: DRBS

! Dstd to [�]RBS will be denoted

��: [�]RBS ! [�].(2.8.1)

THEOREM B. Let C � V be a rational self adjoint homogeneous cone in a
rationally defined real vectorspace. Let � � C� be a rational polyhedral cone with
�o � C. Then both [�]RBS and [�] are compact and contractible. Moreover, each
admits the structure of a cell complex which is the closure of the single “open” cell
[�o], such that ��: [�]RBS ! [�] is a cellular mapping with contractible fibers.

(In fact, we believe that [�]RBS is homeomorphic to a closed ball.)
First we describe the fibers of the mapping ��. Let � � C� be a rational

polyhedral cone with �o � C. The interior of each face of � is either contained
in C or it is contained in some rational boundary component of C. Suppose
�1 � � \ C1(�)� is a proper face of � whose interior � o

1 is contained in the
proper rational boundary component C1(�) with normalizing parabolic subgroup
P = P(�). Let pi: V ! Vi(�) denote the linear projection (for i = 1, 0). Set
Di = Ci(�)=homotheties (for i = 1, 0) and let ΨP: DP ! D1 � D0 denote the
diffeomorphism of (2.4.18). Define the rational polyhedral cone

�0 = p0(�) � C0(�)�.(2.8.2)

LEMMA 2.8.3. For any z 2 [� o
1 ] � D1 we have ��1

� (z) � DRBS
P and

ΨP((��)�1(z)) = fzg � [�0]RBS � D1 � DRBS
0

where [�0]RBS denotes the closure of [� o
0 ] � D0 in the reductive Borel-Serre com-

pactification of D0.

Proof 2.8.4. First let us show that ΨP(��)�1(z)) � fzg � [�0]RBS. Fix
w 2 ��1

� (z) � DRBS. Then w lies in some RBS boundary component DQ for which
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P = P(�) = Qy (cf. (2.4.15) and Corollary 2.6.3). Put ΨP(w) = (z, w0) 2 D1�DRBS
0 .

Since w 2 [�]RBS, it is a limit of points yk 2 [�o]. By Proposition 2.6.2, yk ! z
in Dstd and the sequence p0(yk) 2 [� o

0 ] converges in DRBS
0 to the point w0. This

proves that w0 2 [�0]RBS as claimed.
Now let us verify the reverse inclusion. We will show that ΨP(��1

� (z)) �
fzg � [� o

0 ]; then the full statement follows from the fact that ��1
� (z) is a closed

subset of DRBS. So choose w0 2 [� o
0 ]. Then there is a point v0 2 �o so that

[p0(v0)] = w0. Also, choose any lift z0 2 C1(�) of z 2 D1 and let zk 2 �
o be any

sequence so that zk ! z0 in the Satake topology of C� and hence also in the usual
topology of V . Then p0(zk)! 0. Now consider the sequence

vk =
zkp
kp0(zk)k

+ v0.

Then vk 2 �
o because �o is a convex cone; in particular this sequence lies in a

Siegel set. Moreover, [vk]! z in Dstd because the homothety class is dominated
by the first term, while [p0(vk)]! [p0(v0)] = w0 in D0. By Proposition 2.6.2 this
implies that the sequence [vk] 2 [�o] converges in DRBS to the point Ψ�1

P (z, w0)
as claimed.

2.8.4. Proof of Theorem B. Since � � V is a closed convex polyhedral
cone, it admits the structure of a subanalytic set, and its quotient modulo homoth-
eties [�] is compact and is subanalytically homeomorphic to a convex polyhedron.
The subset [�]RBS also admits the structure of a subanalytic set [Ha], [Hi] so that
the mapping ��: [�]RBS ! [�] is subanalytic. (To see this, it is necessary to
check that all the mappings involved in the definition of the topology on DRBS

are locally subanalytic.) Hence, both sets may be Whitney stratified so that the
mapping �� is a “weakly” stratified map.

Let z 2 [�]. Then z lies in the interior [� o
1 ] of some face [�1] � [�]. If � o

1 � C
then the fiber ��1

� (z) consists of a single point. Otherwise, � o
1 lies in some proper

boundary component C1(�), in which case the fiber ��1
� (z) has been identified by

Lemma 2.8.3 with a certain subset [�0]RBS (which is the closure in DRBS
0 of the

interior [� o
0 ] of a certain polyhedral cone �0 modulo homotheties). By induction,

this fiber is compact and contractible. It follows that the mapping �� is proper,
that [�]RBS is compact, and by Proposition 8.2 it is contractible.

Finally, we sketch a proof that [�]RBS admits the structure of a cell complex,
although it will not be needed in this paper. First there is a “paving” of [�]RBS

by “open” subanalytic cells. If �1 is a face of � then either � o
1 � C (in which

case ��1
� ([� o

1 ]) �= � o
1 is a cell) or else � o

1 lies in some proper boundary component
C1(�), in which case ��1

� (� o
1 ) �= � o

1 � [�0]RBS which is, by induction, paved by
cells of the form � o

1 � cell of [�0]RBS. It can be shown that the closure of each
of these cells is a subanalytic set. But it follows from stratification theory that
whenever W is a compact subanalytic set which is paved by subanalytic cells,
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then these are in fact the cells of a cell complex: the attaching maps may be
constructed from Thom-Mather tubular neighborhood data. (Note that we have
not shown that this decomposition of [�]RBS is a regular cell decomposition,
although we believe this also to be true.)

3. Admissible polyhedral decompositions. In this section we define the
notion of a “sufficiently fine Γ-admissible polyhedral decomposition” Σ of a self-
adjoint homogeneous cone C, and we show (Theorem 3.7) that they are cofinal
in the collection of all Γ-admissible polyhedral decompositions of C.

3.1. As in x2, we suppose that C � V = V
Q R is a rationally defined self
adjoint homogeneous cone with automorphism group G = G(R ), and quotient
under homotheties D = [C]. Let C� � V denote the union of C and all its rational
boundary components, and let Dstd denote its quotient under homotheties, with
the Satake topology. Let Γ � G(Q ) be a neat arithmetic group. Let Σ = f�g be a
collection of rational polyhedral cones � � C�. The collection Σ is a polyhedral
cone decomposition of C� provided that:

(1) Each � is a closed polyhedral cone in the (rationally defined) vectorspace
spanned by the 1-dimensional faces of ��.

(2) If � 2 Σ then each face � of � is also an element of Σ.

(3) Each intersection � \ � is f0g or else it is a common face of each.

(4) The cone C� is the disjoint union

C� =
a
�2Σ

�o

of the interiors of the cones in Σ.

Such a polyhedral decomposition is Γ-admissible provided that:

(1) For all  2 Γ and for any polyhedral cone � 2 Σ, we have � 2 Σ.

(2) The collection f�g=Γ is finite.

Let us say that a closed subset S � Dstd is Γ-small if, for each  2 Γ, either
S \ S = � or  acts as the identity on S \ S. A polyhedral cone � � C� is Γ-
small if its homothetic quotient [�] � Dstd is Γ-small. The cone decomposition Σ
is Γ-fine if every cone � 2 Σ is Γ-small. Let us say that a closed subset S � DRBS

is Γ-sufficiently small if, for each  2 Γ, either S \ S = � or else  acts as the
identity on S\S. A polyhedral cone � � C� with �o � C is Γ-sufficiently small
if the closed subset [�]RBS is Γ-sufficiently small. A polyhedral cone � � C�

with �o � C1(�) is Γ-sufficiently small if the closed subset [�]RBS � [C1(�)]RBS

is ΓP-sufficiently small (where ΓP = Γ \ P is the intersection of Γ with the
parabolic subgroup P which preserves the boundary component C1(�)). The cone
decomposition Σ is Γ-sufficiently fine if every cone �� 2 Σ is Γ-sufficiently small.
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(So the words “small” and “fine” refer to the standard compactification; the words
“sufficiently small” and “sufficiently fine” refer to the RBS compactification.)

If �: Cstd
! ΓnCstd denotes the quotient mapping and if � � C� is Γ-small,

then � j � is a homeomorphism onto its image; in other words the quotient
under Γ does not introduce any identifications on �. Hence, a Γ-fine polyhedral
decomposition of C� induces a (“flat”) regular cell decomposition of the standard

compactification ΓnDstd
= ΓnC�=AG. If the polyhedral decomposition Σ is sim-

plicial (meaning that it consists of simplicial cones), then the induced regular cell

decomposition of ΓnDstd
is a (“flat”) triangulation.

LEMMA 3.2. Suppose � � C� is a closed polyhedral cone. Let  2 Γ and
suppose that � = �. Then  acts as the identity on �.

Proof 3.3. The interior of � is contained in some boundary component C0

(possibly C0 = C). Let P = UPG1G0 denote the maximal parabolic subgroup which
normalizes C0 where G1 = Aut0(C0). Let �1: P! G1 denote the projection. Then
the element  acts on � through its projection �1() � Γ0 = �1(Γ). Consider the
subgroup

Γ0� = f0 2 Γ0 j 0� = �g.

This group is finite since it is contained in the subset

f0 2 Γ0 j 0� \ � \ C0 6= �g

(which is finite by Lemma 2.7.1). Since Γ is neat, we conclude that Γ0� = f1g so
 2 ker �1 = Z(C0). In other words,  acts trivially on C0, hence also on �.

3.4. Refinements. If Σ is a (rational) polyhedral cone decomposition of
C�, a (rational) first barycentric subdivision of Σ is determined by a choice of
(rational) 1-dimensional cone (which is usually called “a barycenter”) b� 2 �o

in the interior of each cone � 2 Σ, and consists of simplicial cones which are
spanned by 1-dimensional cones b�1, b�2, : : : , b�k for each chain �1 � �2 � : : : � �k

in Σ.
If Σ is a Γ-admissible polyhedral cone decomposition of C� and if Σ0 is a

(rational) first barycentric subdivision of Σ then Σ0 is Γ-admissible iff the choicesb� are Γ-compatible, i.e., for all  2 Γ and for all � 2 Σ we have c� = b�. If Σ
is Γ-admissible then by Lemma 3.2 there exists a Γ-compatible set of choices of
(rational) barycenters.

LEMMA 3.5. Suppose Σ is a Γ-admissible polyhedral decomposition of C�.
Let L be a closed subcomplex of Σ such that its support jLj � C� is Γ-small. Let L0

be a choice of first (rational) barycentric subdivision of L. Then there is a choice
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of first (rational) barycentric subdivision Σ0 of Σ which is Γ-admissible and which
contains L0 as a subcomplex.

Proof 3.6. For each cone � 2 L and for each  2 Γ the choice of barycenterb� of � determines a unique choice of barycenter b� of � because jLj is Γ-
small. Modulo Γ, there are finitely many remaining cones � =2 Γ � L. Choose a
single representative cone � from each equivalence class, choose its barycenterb� arbitrarily, and translate by Γ. By Lemma (3.2), this gives a well-defined Γ-
invariant family of barycenters, so the resulting first barycentric subdivision of Σ
is Γ-admissible.

THEOREM 3.7. Let Σ be a rational cone decomposition of C�. Let Γ � G(Q )
be a neat arithmetic group.

(1) If Σ is Γ-sufficiently fine, then Σ is Γ-fine.

(2) If Σ is a Γ-admissible (resp. Γ-fine, resp. Γ-sufficiently fine) decomposition
of C� and if Γ0 � Γ is an arithmetic subgroup, then Σ is a Γ0-admissible (resp.
Γ0-fine, resp. Γ0-sufficiently fine) decomposition of C�.

(3) Suppose Σ is a Γ-admissible decomposition of C�, and Σ0 is a Γ-admissible
refinement of Σ. If Σ is Γ-fine (resp. Γ-sufficiently fine) then Σ0 is also Γ-fine (resp.
Γ-sufficiently fine).

(4) If Σ is Γ-admissible, then there is a refinement Σ0 of Σ which is Γ-fine.

(5) If Σ is Γ-fine, then there is a refinement Σ0 of Σ which is Γ-sufficiently fine.

Proof 3.8. Part (1) follows from the fact that the mapping �: DRBS
!

Dstd commutes with the action of Γ. Parts (2) and (3) follow directly from the
definitions.

Let us consider part (4). We shall prove that any rational first barycentric
subdivision of any Γ-admissible decomposition Σ is a Γ-fine decomposition.

Let Σ be a Γ- admissible polyhedral decomposition of C� and let Σ0 be a
Γ-admissible first barycentric subdivision of Σ. Let � 2 Σ0 be a simplicial cone
in the first barycentric subdivision of some simplicial cone �. We claim that � is
Γ-small.

Write � = hŝ0ŝ1 : : : ŝri where s0 < s1 < � � � < sr are faces of � (and
where hv0v1 : : : vri denotes the simplicial cone spanned by 1-dimensional cones
v0, v1, : : : , vr). So

� = h(ŝ0)(ŝ1) � � � (ŝr)i.

Since  acts linearly and takes 1-dimensional cones of Σ0 to 1-dimensional cones
of Σ0, the intersection � \ � is precisely the simplex which is spanned by the 1-
dimensional cones which are in common among the two sets fŝ0, ŝ1, : : : , ŝrg and
f(ŝ0), (ŝ1), : : : , (ŝr)g. However, if ŝi = ŝj then si = sj and dim (si) = dim (sj).
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Since the chain s0 < s1 < � � � < sr is strictly increasing we conclude that si = sj.
In other words, any 1-dimensional cone ŝi = ŝj which is in common between
these two sets is actually preserved by . Therefore, � \ � is spanned by 1-
dimensional cones, each of which is preserved by . The last 1-dimensional cone
ŝr lies in (the interior of) the boundary component C0 whose closure contains � .
Since Γ is neat, and  preserves ŝr it follows (as in the proof of Lemma 3.2) that
 acts as the identity on C0 and hence it acts as the identity on � . This completes
the proof that � is Γ-small.

3.9. The rest of x3 is devoted to proving part (5) of Theorem 3.7. Let us
say that a polyhedral cone � � C is flag like if its intersection with the rational
boundary components of C form a flag, i.e., if there is a partial flag of boundary
components

C1 � C2 � � � � � Cm(3.9.1)

and a (partial) chain of faces

�1 � �2 � � � � � �m = �

such that for each i (with 1 � i � m), the interior of �i is contained in Ci

and the intersection �i \ @C�i = �i�1 where @C�i = C�i � Ci denotes the proper
rational boundary components of Ci. If � 2 Σ is a flag-like polyhedral cone
with associated partial flag (3.9.1), then there are associated rational idempotents
d1, d2, : : : , dm so that C1 = C1(d1), C2 = C1(d1 + d2), : : : , Cm = C1(d1 + � � � + dm).
Let p(i)

0 : Cd ! C0(d1 +d2 + � � �+di) and p(i)
1 : Cd ! C1(d1 +d2 + � � �+di) denote the

linear projections which are determined by the Peirce decompositions for these
idempotents.

LEMMA 3.10. If � is Γ-small and flag-like and if each for each i (with 1 � i �
m� 1) the image

p(i)
0 (�) � C0(d1 + � � � + di)

� is Γ-small(3.10.1)

then � is Γ-sufficiently small.

The proof is by induction on the Q -rank of the linear symmetric space Cm

which contains � (with the rank 0 case being trivial). For notational convenience,
let us assume that � � C = Cm. Let  2 Γ and suppose that � satisfies (3.10.1).
Let x 2 [�]RBS\[�]RBS. We must show that x = x. Let �: DRBS

! Dstd denote
the projection. Then x1 := �(x) lies in some rational boundary component which
is associated to �, say

x1 = �(x) 2 [C1(�)],
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where � = d1 + d2 + � � � + dk for some k, 1 � k � m. Since � commutes with the
action of Γ, we have x1 = �(x) 2 � \ � hence (since � is Γ-small),

x1 = x1.(3.10.2)

It also follows that  2 ΓP = Γ \ P where P denotes the maximal parabolic
subgroup which normalizes this boundary component. (Hence x 2 DRBS

P .)
Recall (x2.4) that the Levi quotient splits as an almost direct product, LP

�=
G1�G0 where Gi = Aut0(Ci(�)), and that this splitting induces a homeomorphism

DRBS
P
�= DRBS

1 � DRBS
0

(where Di is the linear symmetric space associated with the self adjoint homoge-
neous cone Ci(�), i = 0, 1). Write x = (x1, x0) relative to this product decomposi-
tion. The element  acts on the RBS boundary component DP via its projection,
�P() = (1, 2) 2 LP to the Levi quotient. In summary,

x = (1x1, 0x0) 2 D1 � DRBS
0 .

By (3.10.2), since Γ is neat, we have 1 = 1. Therefore  preserves the fiber
��1(x1) = fx1g � [�0]RBS (by x2.4) where

�0 = p0(�) � C0(�)�.

(For simplicity we write p0 and p1 rather than p(k)
0 and p(k)

1 .) But x0 2 [�0]RBS \
0[�0]RBS. The assumption (3.10.1) is that �0 is Γ-small. Since �0 is contained in
the lower rank symmetric space C0(�), it follows from the induction hypothesis
that 0x0 = x0. In summary, x = (1x1, 0x0) = (x1, x0) = x as claimed.

3.11. If � � C� is a closed polyhedral cone, then any first barycentric
subdivision of � is both flag-like and simplicial. If � 2 Σ is flag-like with respect
to a chain of boundary components C1 � C2 � � � � � Ck then any polyhedral
cone � in any first barycentric subdivision of � is flag-like with respect to some
sub-chain Ci1 � Ci2 � � � � � Cir . Let us say that a (closed) polyhedral cone
� � C� is compatible with Γ if, for each  2 Γ, either � \ � = � or else it is
a face of �. If � � C� is compatible with Γ, then (as in the proof of part(4) of
Theorem 3.7) its first barycentric subdivision consists of small cells.

LEMMA 3.12. Suppose � � C� is a rational (closed) polyhedral cone. Then it
admits a rational refinement, each of whose polyhedral cones is compatible with Γ.

Proof 3.13. By taking a rational first barycentric subdivision if necessary, we
may assume that � is flag-like with respect to some chain C1 � C2 � � � � � Cm
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of rational boundary components. For i = 1, 2, : : : , m let Pi = P(Ci) denote the
corresponding normalizing maximal parabolic subgroups and define

Γ�,i = f 2 Γ j � \ � \ Ci 6= � and � \ � \ Cj = � for all j > ig.

The flag-like assumption on � guarantees that Γ�,i � Pi. (Since the Ci form
a chain of boundary components, for any  2 Γ and for any i 6= j we have
Ci \ Cj = �. Since � is flag-like, it is the disjoint union of the subsets � \ Cj.
So, if  2 Γ�,i then (� \ Ci) \ (� \ Ci) 6= �. Hence Ci \ Ci 6= � so  2 P(Ci).)

The discrete group Γ0i = �i(Γ\Pi) acts on the boundary component Ci, where
�i is the composite projection

Pi ! LPi = G1,iG0,i ! G1,i=(G1,i \ G0,i).

By [AMRT] II x4.3 p. 116, the set

Γ0�,i = �i(Γ�,i) � Γ0i

is finite: it is a subset of f� 2 Γ0i j � (� \ Ci) \ (� \ Ci) 6= �g which is finite. Let
Γ00�,i � Γ�,i be a set of lifts of these finitely many elements. Define Γ00� = [m

i=1Γ00�,i.
This is a finite set of elements which completely captures the possible nontrivial
intersections � \ � for  2 Γ. As in [AMRT] II x4.3, choose finitely many
rational hyperplanes H1, H2, : : : , Hm which define � (and its faces), i.e., so that
L� = H1 \ H2 \ � � � \ Hk and so that � = L� \ H+

k+1 \ H+
k+2 : : : \ H+

m (where H+
j

denotes a chosen halfspace on one side of the hyperplane Hj). Then the connected
components of the complement

� �
[
fHj j  2 Γ00� and 1 � j � mg

(and all their faces) form a Γ-compatible refinement of �.

COROLLARY 3.14. Let � � C� be a closed rational polyhedral cone. Then �
has a rational refinement, each of whose cones are Γ-small.

Proof 3.15. First choose a rational refinement which is compatible with Γ.
Now choose a rational Γ-invariant first barycentric subdivision of that. Now the
same argument as in the proof of part (4) of Theorem 3.7 shows that each cell
in this barycentric subdivision is Γ-small.

3.16. Proof of part (5). We will need to use the following lemmas from
P.L. topology (e.g. [Hu] x3, Cor. 1.6; x4, 1.8; and x4, 1.9):

(1) If K and L are simplicial complexes and if jKj � jLj then for some r there
exists an rth barycentric subdivision L(r) of L which contains a subdivision of K.
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(2) Let K and L be simplicial complexes and f : K ! L a simplicial mapping.
Given any subdivision L0 of L there exists a subdivision K0 of K so that f : K0 ! L0

is simplicial.
(3) Let K and L be simplicial complexes, and f : jKj ! jLj a continuous

mapping whose restriction to each cell of K is linear. Then there are subdivisions
K0 of K and L0 of L so that f : K0 ! L0 is simplicial.

If � � C� is a flag-like polyhedral cone with respect to a flag (3.9.1) of
boundary components, we will say that the resulting projections p(i)

0 : � ! C0(d1+
� � � + di) (for 1 � i � m� 1) are relevant for �. If � is Γ-small and flag-like and
if, for each relevant projection p the image p(�) is Γ-small, then the same is true
for every translate � (for any  2 Γ).

Now suppose that Σ is a Γ-fine, flag-like decomposition of C�. Modulo
Γ, there are finitely many pairs (�, p) where � 2 Σ and where p is a rel-
evant projection for �. Order a collection of unique representatives (modulo
Γ) of these pairs in any way, (�1, p1), (�2, p2), : : : , (�n, pn) (so a given polyhe-
dral cone may be repeated many times in this ordering). Let us suppose by
induction that we have found a refinement Σ0 of Σ with the following prop-
erty:

(Pm�1) Whenever � 2 Σ0 is a polyhedral cone which is contained in some �i

(where 1 � i � m� 1) then pi(�) is Γ-small.

Now let us further refine Σ0 so that the same holds for all polyhedral cones
contained in �m. Let K � Σ0 be the simplicial complex consisting of all simplices
in �m. Let L be the simplicial complex consisting of the polyhedral cone pm(�m)
together with all its faces. By (3) above, there are subdivisions K0 of K and L0

of L so that the projection pm: K0 ! L0 is simplicial. By Corollary 3.14 there
is a different subdivision L00 of L so that the cones in L00 are Γ-small. Let L000

be the common refinement of L0 and L00. By (2) above, there is a subdivision
(let us call it K000) of K0 so that pm: K000 ! L000 is simplicial. By (1) above,
there is a barycentric refinement K(r) which contains a subdivision of K000 as a
subcomplex. By Lemma 3.5 this barycentric refinement may be extended to a
Γ-invariant barycentric refinement Σ(r) of Σ. Since the property of being Γ-small
is inherited by closed subsets, every simplex in Σ(r) whose support is contained
in �1 [ � � � [ �m is small and all of their relevant projections are also small. This
verifies condition (Pm) above and completes the inductive step. In summary, it
is possible to find a refinement consisting of simplices which are Γ-small, and
for which every relevant projection is Γ-small. This means that each simplex is
Γ-sufficiently small.

4. Hermitian symmetric spaces. The main result in this chapter is Theo-
rem C (x4.2). This, together with Theorem B (x2.8) are the main technical results
which are needed for the proof of Theorem A.
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Throughout the rest of the paper, we suppose that G is semisimple over Q
and that the associated symmetric space D = G=K is Hermitian. (This disagrees
with our previous use of the symbol D in x2 and x3.) We may assume that D
is a bounded symmetric domain in some C N . Denote by D its closure in C N ;
it is a disjoint union of boundary components. The action of G on D extends
continuously to the closure D̄. As above, let us fix a basepoint x0 2 D and a
standard minimal rational parabolic subgroup Q0 2 G.

4.1. Suppose F � D is a rational boundary component. Let P � G be its
normalizing subgroup: it is a maximal rational parabolic subgroup of G. After
conjugating by some element of G(Q ) (if necessary), we may assume that P
is standard, i.e., P � Q0. The Levi quotient LP = P=UP splits as an almost
direct product LP = GhG` where Gh acts transitively on F, and where G` acts
transitively on a certain self adjoint homogeneous cone CP � z. (Here, z � uP is
the center of the Lie algebra uP of the unipotent radical UP of P.) Furthermore,
AP � G`. The choice of basepoint x0 2 D determines basepoints z0 2 F, e 2 CP;
it determines maximal compact subgroups Kh = K \ Gh(x0) = StabGh (z0) � Gh,
K` = K \ G`(x0) = StabG`

(e); and it determines diffeomorphisms Gh=Kh
�= F,

G`=K` �= CP. The mapping

 : (Gh=Kh)� (G`=K`) = F � CP ! LP=KP
�= P=KPUP(4.1.1)

given by

(ghKh, g`K`) 7! ghg`KP(4.1.2)

is a diffeomorphism.
Let [CP] denote the quotient of CP under the torus of homotheties; hence

[CP] �= G`=K`AP, and let DP = P=KPAPUP denote the boundary component of the
reductive Borel-Serre partial compactification DRBS corresponding to the parabolic
subgroup P. Then the above diffeomorphism  induces a diffeomorphism

ΨP: F � [CP]
�=

���! P=KPAPUP = DP
(4.1.3)

which extends to a stratum preserving homeomorphism (which is smooth on each
stratum),

ΨP: FRBS
� [CP]RBS

�=
���! DRBS

P � DRBS(4.1.4)

on the reductive Borel-Serre partial compactifications. Composing the canoni-
cal projection D = P=KP ! P=KPUP with the diffeomorphism  �1 and with
projection to the two factors F and CP, defines smooth mappings Φh: D ! F,
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�`: D! CP, and Φ`: D! [CP], i.e.,

Φh(gKP) = gKPUPG` 2 P=KPUPG`
�= F(4.1.5)

�`(gKP) = gKPUPGh 2 P=KPUPGh
�= CP

Φ`(gKP) = gKPAPUPGh 2 P=KPAPUPGh
�= [CP]

for any gKP 2 P=KP
�= D. Then the following diagram commutes; the compo-

sition across the top row is �` and the composition across the bottom row is
Φ`,

D ���! LP=KP

�=
 ���

 
F � CP ���! CP ??y ??y ??y

D ���!
ΦP

DP

�=
 ���

ΨP

F � [CP] ���! [CP].

(4.1.6)

If fykg � CP � z is a sequence of points, we say that yk ! 1CP if, for all
c 2 CP there exists N = N(c) so that k � N =) yk � c 2 CP.

4.2. THEOREM C. Suppose G is a semisimple algebraic group over Q , that D =
G=K is a Hermitian symmetric space, F � D is a rational boundary component,
P � G is the maximal parabolic subgroup which normalizes F, LP = GhG` is its
Levi quotient, and CP = G`=K` � z is the associated self adjoint homogeneous
cone. Let fxkg � D be a sequence of points. Assume that

(1) �`(xk)!1CP,

(2) Φ`(xk) converges to some point c 2 [CP]RBS
in the reductive Borel-Serre

compactification of [CP], and

(3) Φh(xk) converges to some point t 2 F.

Then the sequence fxkg converges in DRBS to the point x1 = ΨP(t, c).

4.3 Preliminaries to the proof. Write xk = u0kb0km0
kKP 2 P=KP = D relative

to the canonical rational Langlands decomposition P = UPAP(x0)MP(x0) of P.
There is a canonical positive generator � 2 �(AP) of the (1-dimensional) character
module. We would like to say that the sequence fxkg converges in DRBS provided

(a0) �(b0k) = f P
� (xk)!1 and

(b0) the sequence ΦP(xk) converges in DRBS
P ,

since (1) =) (a0) and (2),(3) =) (b0). Unfortunately it is not true that conditions
(a0) and (b0) guarantee convergence in the reductive Borel-Serre compactification.
Instead, we must verify the criteria of Lemma RBS x1.3.6.
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4.4. First reduction. The limit point c lies in some RBS boundary com-
ponent DQ`

of [CP] which corresponds to some rational parabolic subgroup, say,
Q` � G`. Then Q := UPix0(Q`Gh) is independent of the choice of basepoint, and
it is the parabolic subgroup which corresponds to the RBS boundary component
ΨP(F � DQ`

) of D which contains the limit point x1. After conjugating by an
element of G(Q ) (if necessary), we may assume that Q � Q0, i.e., that Q is
standard. We may also assume the basepoint x0 2 D is rational for Q0. Then
S = ix0S(Q0) is a rationally defined maximal Q -split torus in G and

S � Q0 � Q � P � G.(4.4.1)

Let ∆ = ∆(S, G) denote the resulting set of simple roots. Then the (maximal)
parabolic subgroup P corresponds to the subset ∆ � f�g (for some � 2 ∆), and
the parabolic subgroup Q corresponds to some subset I � ∆ � f�g. By Lemma
RBS (x1.3.6) we need to show

(a) ΦQ(xk) 2 DQ converges to the point x1 = ΨP(t, c) 2 DQ,

(b) f Q0
� (xk)!1 for all � 2 ∆� I

The mapping ΦQ: D! DQ factors as the composition in the following diagram,
which is easily seen (using 1.1.12) to be commutative,

D ���!
ΦP

DP

�=
 ���

Ψ
F � [CP]

ΦQ̄

??y ??yI�ΦQ`

DQ

�=
 ���

Ψ
F � DQ`

(where Q = �P(Q) = GhQ` is the image of Q in the Levi quotient of P). Hypothesis
(2) and Corollary 1.3.8 guarantee that ΦQ`

(Φ`(xk)) ! c 2 DQ`
. Together with

hypothesis (3), this implies that ΦQ(xk)! x1, which proves statement (a) above.
Moreover, it implies statement (b0) above, that

ΦP(xk)! x1 in DRBS
P ,(4.4.2)

which we shall need in the next paragraph.
Now let us verify condition (b). By (4.4.2) and Lemma RBS (x1.3.6) we have

f Q̄0
� (ΦP(xk))!1 for all � 2 ∆� (I [ f�g)

where Q0 = �P(Q0) � LP. Now apply (1.3.3) (with x replaced by xk, I replaced
by ∆� f�g, and Q replaced by Q0). This gives

f Q0
� (xk)!1 for all � 2 ∆� (I [ f�g).



COMPACTIFICATIONS OF LOCALLY SYMMETRIC SPACES 1129

Thus, in order to prove Theorem C (x4.2), it remains to show that the hypotheses
imply:

f Q0
� (xk)!1.(4.4.3)

The splitting LP = GhG` induces a splitting �P(Q0) = Q0hQ0` such that Q0h

is a minimal rational parabolic subgroup of Gh and Q0` is a minimal rational
parabolic subgroup of G`, each of which has an associated canonical rational
Langlands decomposition:

Q0h = U0hA0h(z0)M0h(z0) Q0` = U0`A0`(e)M0`(e).(4.4.4)

Hence the canonical rational Langlands decomposition of Q0 is given by

Q0 = UPix0(U0hU0`)ix0(A0h(z0)A0`(e))ix0(M0h(z0)M0`(e)),

so xk 2 D = Q0=KQ0 may be expressed as follows:

xk = u(k)
P u(k)

0h u(k)
0` a(k)

0h a(k)
0`m(k)

0h m(k)
0`KQ0 .

Then

f Q0
� (xk) = �(a(k)

0h a(k)
0` ).

Since Φh(xk) = u(k)
0h a(k)

0h m(k)
0h 2 Gh=Kh

�= F converges, we see that the sequence a(k)
0h

converges to some element a10h 2 A0h. Hence, in order to verify (4.4.3) it suffices

to prove that �(a(k)
0` )!1.

Set yk = Φ`(xk) = u(k)
0` a(k)

0`m(k)
0`K0` 2 G0`=K0`

�= CP. Then �(a(k)
0` ) = f Q0`

� (yk) so
it suffices to prove the following:

PROPOSITION 4.5. Suppose G is a semisimple algebraic group over Q , that
D = G=K is a Hermitian symmetric space, Q0 � G is a minimal rational parabolic
subgroup and x0 2 D is a basepoint which is rational for Q0. Let S = SQ0 (x0) � Q0

be the resulting maximal Q -split torus. Let ∆ = ∆(S, G) denote the simple rational
roots of G occurring in UQ0 . Fix � 2 ∆ and let P = P(∆�f�g) � G be the maximal
rational proper parabolic subgroup corresponding to the subset ∆ � f�g, with
Levi quotient �P: P ! LP = GhG` and corresponding self adjoint homogeneous
cone CP = G`=K` � z with induced basepoint e 2 CP. Let Q0` = �P(Q0) \ G` be
the corresponding minimal rational parabolic subgroup of G` and let f Q0`

� : CP !
(0,1) be the resulting root function on CP. Let fykg 2 CP be a sequence of points
and suppose that yk !1CP. Then f Q0`

� (yk)!1.
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We do not know any simple proof of this fact, although it is easy to verify
in special cases (e.g., G = Sp(2n, R ), SU(n, 1), or the Hilbert modular cases). The
general proof requires explicit formulae for the roots of G. In x6.7 we will prove
the analog of Proposition 4.5 for algebraic groups G which are simple over R ,
and in x6.8 we will prove proposition 4.5 for algebraic groups G which are simple
over Q . The general case follows from this. (The converse of Proposition 4.5 is
false: the condition that yk !1CP also implies that f Q0`

� (yk)!1 for a certain
additional characters � of A`.)

5. Real roots of G. Throughout this section we suppose that G is a semi-
simple algebraic group defined over R (and for much of the chapter, G is assumed
to be simple over R ). Most of the chapter consists of the explicit description of
the roots of G and their relationship to the associated Jordan algebras; these facts
are recalled from [BB], [AMRT], and [He]. We use this description to prove a
special case of Proposition 4.5 at the end of the chapter. Suppose A is a torus in
G and a = Lie(A) is its Lie algebra. So as to agree with the notation in [BS], in
this x5 only, we consider each root � 2 Φ(a, g) to be a linear functional on a,
and we denote the corresponding character of A by a 7! a�.

5.1. Let G be a semisimple algebraic group defined over R . Let G = G(R )0

be the connected component of the group of real points, and let K � G be a
maximal compact subgroup. This corresponds to a choice of basepoint x0 2 D =
G=K and a Cartan involution on G. Let g = gR = Lie(G) denote the Lie algebra
of G, with Cartan decomposition g = k � p. We suppose the symmetric space
D = G=K is Hermitian. So there is an invariant complex structure J: p! p with
J2 = �1. Extending J to a complex linear involution on the complexification
pC determines a decomposition pC = p+ � p� into �i eigenspaces of J; hence
gC = kC �p+�p�. Let t � k be a (compact) Cartan subgroup and ΦC = Φ(tC , gC )
be the roots of tC in gC . Then we have the root decomposition

gC = tC �
X
�2ΦC

g
�
C .

As in [BB], [He] xVI (3.1) and xVIII (7.1), it is possible to choose root vectors
e� 2 g

�
C and vectors h� 2 it such that

(1) [e�, e��] = h�.

(2) ē� = e�� whenever e� 2 p�.

(3)  (h�) = 2h ,�i
h�,�i for all  2 ΦC .

Set x� = e� + e��, and y� = i(e� � e��) and let �+ = f� 2 ΦC j e� 2 p+g. Then
fx�, y�g�2�+ form a basis of p. For any � 2 ΦC set �� = 1

2(y� � ih�). The proof
of the following is a direct computation:



COMPACTIFICATIONS OF LOCALLY SYMMETRIC SPACES 1131

LEMMA 5.1.1. For all � 2 ΦC we have [ 1
2x�, ��] = ��.

5.2. In this section we recall the explicit description of the roots of G
relative to a real split torus, under the additional assumption that G is simple over
R . As in [He] xVIII (7.4), choose a maximal set of strongly orthogonal roots
f01, 02, : : : , 0rg � ΦC such that a =

Pr
i=1 R xi is a maximal abelian subgroup of

p. (Here, and in what follows, we use the notation xi = x0

i
, yi = y0

i
, etc.) Let

ΦR = Φ(a, g) denote the roots of a in g = gR , so g = Z(a) +
P
�2ΦR

g�. (Here,
Z(a) denotes the centralizer of a in g.) Define 1, 2, : : : , r 2 a� by

i(xj) = 2�ij (for 1 � i, j � r).(5.2.1)

Then each i 2 ΦR is a root of multiplicity one ([BB] x1.15, [AMRT] p. 185)
and there is an explicit description of ΦR in terms of these elements. If D = G=K
is irreducible then there are two possibilities. The roots are the nonzero elements
in the collection

ΦR =
n
�i�j

2

o
1�i�j�r

case Cr

ΦR =
n
�i�j

2 , �i
2

o
1�i�j�r

case BCr.

Choose a linear order on the set of roots ΦR . We assume that the ordering
f1, 2, : : : , rg is chosen so that i < j iff i > j. Then the resulting set of
simple roots

∆R = f�1,�2, : : : ,�rg

is given as follows:

�i = 1
2 (i � i+1) for 1 � i � r � 1

�r = r case Cr

�r = 1
2r case BCr,

(5.2.2)

and the positive roots Φ+
R are given by

Φ+
R =

n
i+j

2

o
1�i�j�r

[
n
i�j

2

o
1�i<j�r

case Cr

Φ+
R =

n
i+j

2

o
1�i�j�r

[
n
i�j

2

o
1�i<j�r

[
�i

2

	
1�i�r case BCr.

5.3. Parabolic subgroups. Let Q0 be the minimal (real) parabolic subgroup
of G whose group of real points Q0 = Q0(R ) is generated by N = exp (n) and
by Z(A) where A = exp (a) and n =

P
fg� j � 2 Φ+

Rg. The parabolic subgroups
which contain Q0 are called standard. Let � 2 ∆R , say � = �n in (5.2.2). Let
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P = P(∆ � f�ng) denote the corresponding maximal proper standard parabolic
subgroup. In this section we will explicitly describe the Lie algebra of P.

Set wn = x1 + x2 + � � � + xn. Define

u =
Xn

g� j � 2 Φ+
R and �(wn) > 0

o
.(5.3.1)

The sum in (5.3.1) is overn
i+j

2

o
1�i�j�n

[
n
i�j

2

o
1�i�n

j>n

case Cr

n
i+j

2

o
1�i�j�n

[
n
i�j

2

o
1�i�n

j>n

[
�i

2

	
1�i�n case BCr.

(The possible values �(wn) are 0,�1,�2 so the 1-parameter subgroup generated
by wn acts on u with eigenvalues 0,1, and 2.) Set

UP = exp (u) and AP =
\
j 6=n

ker (�j).(5.3.2)

Then

P = P(∆R � f�ng) = Z(AP)UP

has unipotent radical UP and Levi factor LP = Z(AP) = GhG` for which the simple
(real) roots may be illustrated in the following Dynkin diagrams:

�r �r�1 �n �2 �1

G       

P      
Gh G`

Let m(a) = Z(a) \ k be the intersection of k with the centralizer of a. This
“compact factor” appears in the minimal parabolic subgroup Q0 and hence in
each standard parabolic subgroup. Write A` = exp (a`) and Ah = exp (ah) where

a` =
nX

i=1

R xi =
r\

i=n+1

ker (i) =
r\

i=n+1

ker (�i)(5.3.3)

and

ah =
rX

i=n+1

R xi =
n\

i=1

ker (i).(5.3.4)
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(It is not true that ah =
T

1�i�n ker (�i) but (5.2.2) implies ah�
T

1�i�n�1 ker (�i).)
Then

Lie(G`) = a` +
X

�=�(i�j)=2

1�i<j�n

(g� + [g�, g��] \m(a))

Lie(Gh) = ah +
X
�

(g� + [g�, g��] \m(a)),

where the second sum is taken over all nonzero � in the collection

� 2
n
�i�j

2

o
n<i<j�r

in case Cr

� 2
n
�i�j

2

o
n<i<j�r

[
n
�j

2

o
n<j

in case BCr.

5.4. Jordan algebra. Let

z =
X�

g� j � =
i + j

2
, for 1 � i � j � n

�
denote the center of u. The parabolic group P acts on z via the adjoint action.
The subgroup G` acts with an open orbit C = CP = G` � e which is an open self
adjoint homogeneous cone in z with respect to the positive definite inner product
hx, yi = �B(x,�(y)), where B denotes the Killing form and � denotes the Cartan
involution. Then K` = K \ G` is the stabilizer of the basepoint e 2 CP and we
obtain a diffeomorphism

G`=K` �= CP.(5.4.1)

If we denote by g` = k` � p` = (k \ g`) � (p \ g`) the Cartan decomposition of
g` = Lie(G`), then the differential of (5.4.1) gives an isomorphism

p`
�= T1(G`=K`) �= TeCP

�= z(5.4.2)

which is given by x 7! �(x)(e) where

�: g` ! End(z)(5.4.3)

is the differential of the adjoint action G` ! GL(z). The vectorspace z has the
following Jordan algebra structure: for any a 2 z there is (by 5.4.2) a unique
element Ta 2 p` such that �(Ta)(e) = a. Then a � b = �(Ta)(b) for a, b 2 z. It
follows that the closure C̄P = fx2 j x 2 zg.
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For each j (1 � j � n) set �j = 1
2 (yj � ihj). It follows from Lemma 5.1.1 that

�j 2 gj and [
1
2

xj, �j] = �j.(5.4.4)

PROPOSITION 5.5. The collection f�1, �2, : : : , �ng is a complete set of mutually
orthogonal idempotents of z, and e =

Pn
j=1 �j is the identity element, relative to this

Jordan algebra structure.

Proof 5.6. By (5.4.4), T�j = 1
2 xj because [1

2xj, �] = [ 1
2xj, �j] = �j so �j � �j = �j

and �i � �j = 0 (for i 6= j). The collection is complete since this is a maximal
set of idempotents and

Pn
j=1 R xj is a maximal abelian subalgebra in p`

�= z. The
identification of e with the basepoint is in [AMRT] p. 242.

5.7. Root function. The minimal parabolic subgroup Q0 � P determines a
minimal parabolic subgroup Q0` = �P(Q0) \ G` � G` (where �P: P ! P=UP =
LP denotes the projection to the Levi quotient). Associated to the simple root
� = �n 2 ∆R (cf. (5.2.2) and x1.2) we have the root function

f = f Q0`
�n : CP ! (0,1).

If g 2 Q0` is given by g = uam 2 UQ0`AQ0`MQ0` relative to the canonical real
Langlands decomposition of Q0`, then f (ge) = a�n . It follows from (5.3.3) that
n+1 is trivial on A` so by (5.2.2) we have,

f (ge) =

8><>:
an=2 if n < r

an if n = r in case Cr

an=2 if n = r in case BCr.

PROPOSITION 5.8. Suppose G is R -simple. Let fykg � CP be a sequence of
points in CP and suppose that yk !1CP. Then f (yk)!1.

Proof 5.9. Since �n is an idempotent, we have �n2@CP. Therefore hyk, �ni!
1. Write yk = gke with gk 2 Q0`. Then hgke, �ni = he, g�k �ni ! 1 where g�

denotes the transpose of g. Now let f1 = �1, f2 = �1 + �2, : : :, fn = �1 + � � � + �n = e.
The parabolic subgroup Q0` is the subgroup of G which normalizes the flag

0 � V1( f1) � V1( f2) � � � � � V1( fn) = z.

In fact, for each m with 1 � m � n the maximal parabolic subgroup Pm

(which corresponds to the simple root �m) preserves the subspace

zm =
X

1�i, j�m

g(i+j)=2
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since it is the Lie algebra of the center of the unipotent radical of Pm. Hence
P1 \ P2 \ � � � \ Pn preserves the flag 0 � z1 � z2 � � � � � zn. So Q�

0` is the
subgroup of G which normalizes the flag

z � V0( f1) � V0( f2) � � � � � V0( fn) = f0g.

But V0( fn�1) = V1(�n) = gn is one dimensional ([BB] x1.15, [AMRT] p. 185). Let
g� 2 Q�

0`. Then g� � �n = ��n for some � = �(g� ) 2 R . Then � is a real character
of Q�

0`, it is trivial on UQ�

0`
and on MQ�

0`
and it coincides with n on AQ�

0`
= AQ0`

(because gn is the subspace of g on which AQ0` acts with weight n). Hence
he, g�k �ni = n(ak)he, �ni = an

k .1 ! 1 where gk = ukakmk 2 UQ0`AQ0`MQ0` . It
follows that f (yk) = an

k !1.

6. Rational theory.

6.1. In this section we complete the proof of Proposition 4.5. Throughout
we assume that G is an algebraic group defined over Q which is semisimple over
Q , and that D = G=K is a Hermitian symmetric space. We refer to the statement
of Proposition 4.5 for the definitions and choices of the following items, which
will be fixed throughout this chapter: Q0 � G, x0 2 D, S = SQ0 (x0) � Q0,
∆Q = ∆(S, G), � 2 ∆Q , P = P(∆Q � f�g), �P: P ! LP = GhG`, CP = G`=K` �
z � u = Lie(UP), e 2 CP, Q0` = �P(Q0) \ G`, and f = f Q0`

� : CP ! (0,1). Let
fykg � CP and suppose that yk !1CP. We must show that f (yk)!1.

Throughout x6.2 to x6.7 we assume that G is simple over R .

6.2. We must compare the real roots and the rational roots. Let T be a
maximal R split torus in G with S � T. We assume that T is defined over Q .
Choose a minimal real parabolic subgroup P0 � G such that S � T � P0 � Q0.
Let us denote the corresponding groups of real points by

AQ0 = S(R )0 � AP0 = T(R )0 � P0 � Q0.

Associated to these choices there are root systems ΦQ = Φ(S, G) and ΦR =
Φ(T , G), positive roots Φ+

Q , Φ+
R (which occur in the unipotent radical of P0 and

Q0 respectively), and simple roots ∆Q � Φ+
Q , ∆R � Φ+

R . A fundamental result of
Baily and Borel [BB] states:

LEMMA 6.3. For each � 2 ∆Q there exists a unique simple root �0 2 ∆R such
that � = �0 j S. Let ∆0R � ∆R denote the resulting subset of ∆R . If � 2 ∆R then

� =2 ∆0R iff � j S = 1(6.3.1)

(i.e. the remaining simple roots are trivial on S).
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6.4. The root � 2 ∆Q corresponds (by Lemma 6.3) to a unique real root
�0 2 ∆R . It follows from (6.3.1) that �0 gives rise to the same maximal parabolic
subgroup,

P = P(∆Q � f�g) = P(∆R � f�
0g)

because

S(∆R � f�
0g) =

\
�2∆R�f�0g

ker (�) � T(R )

coincides with

S(∆Q � f�g) =
\

�2∆Q�f�g
ker (�) � S(R ).

We obtain a minimal real parabolic subgroup P0` = �P(P0) \ G` � G` and an
associated root function f P0`

�0 : CP ! (0,1).

LEMMA 6.5. The root functions f P0`
�0 and f Q0`

� coincide.

Proof 6.6. Define

Tan =
\

�2�(T)Q

ker (�) � T

to be the maximal Q -anisotropic torus in T, where �(T)Q denotes the group of
rationally defined characters of T. Then Aan = Tan(R )0 � MQ0 . Since S � T is
a maximal Q -split torus in T, we have an almost direct product (cf. [B] x8.14),
T = S.Tan from which it follows that

AP0 = AQ0Aan.(6.6.1)

In fact, this is a direct product since the intersection is finite but each factor is
torsion free. If a 2 AP0 decomposes as a = bban in (6.6.1), then b is the unique
element in AQ0 such that

�0(a) = �0(b) = �(b) for all � 2 ∆Q ,(6.6.2)

since the corresponding elements �0 2 ∆0R form a rational basis of the module
�(T)Q 
 Q of rationally defined characters of T.

Now let y = ge for some g 2 P0` � Q0`. Decompose

g = uaRmR = uaQ mQ(6.6.3)
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relative to the canonical real Langlands decomposition P0` = U(P0`)A(P0`)M(P0`)
and relative to the canonical rational Langlands decomposition Q0`

= U(Q0`)A(Q0`)M(Q0`). Using (6.6.1), write aR = bban with b 2 AQ0 and
ban 2 Aan. We claim that b 2 AQ0` and that ban 2 M(Q0`). It suffices to show
that b 2 G` (from which it follows that ban = aRb�1 2 G` as well). By (5.3.3)
the linear part AQ0` is the intersection of the kernels of certain real simple roots
f�1,�2, : : : ,�ng � ∆R . If �i =2 ∆0R then �i(b) = 1 by (6.3.1). If �i 2 ∆0 then by
(6.6.2), �i(b) = �i(aR ) = 1, which completes the proof of the claim.

Now it follows that g = u � b � (banm) is the rational Langlands decomposition
of g, in other words, that b = aQ . We conclude (again using (6.6.2)) that

f P0`
�0 (y) = �0(aR ) = �0(b)�0(ban) = �(aQ ).1 = f Q0`

� (y)

which completes the proof of the lemma.

6.7. Proof of Proposition 4.5 when G is R -simple. Let fykg � CP be a
sequence of points in the cone CP with yk !1CP. Then by Proposition 5.8, we
have f P0`

�0 (yk)!1, but by Lemma 6.5, f P0`
�0 (yk) = f Q0`

� (yk).

6.8. The Q -simple case. Throughout x6.8 to x6.9 we assume that G is
simple over Q but is not necessarily simple over R . By Baily-Borel [BB] and
Borel-Tits [BT], there exists an algebraic group G0 defined over a totally real
number field k such that G0 is absolutely simple (and hence is simple over R )
and

Resk=Q G0 = G

(where Res denotes Weil’s restrictions of scalars). Let �1, : : : ,�d denote the d
different embeddings of k into R and write ki = �i(k) = k�i . Set Gi = (G0)�i . Then
there is an isomorphism of real algebraic groups,

G �= G1 � � � � �Gd.

We have chosen a maximal Q -split torus S � G. There is an isomorphism over k
of tori, S �= S0, where S0 � G0 is a maximal k-split torus (and so S is isomorphic
to a maximal Q split torus in Resk=Q (S0)). Let Si = (Si)�i be the corresponding
maximal ki-split torus in Gi. These tori are all isomorphic over R so we may
identify the root systems

Φ(S, G)$ Φ(S0, G0)$ Φ(Si, Gi)(6.8.1)

and corresponding subsets of positive and simple roots ∆Q = ∆(S, G), ∆(S0, G0),
∆(Si, Gi) respectively. The chosen simple root � 2 ∆(S, G) corresponds to simple
roots �i 2 ∆(Si, Gi).
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The minimal and maximal rational parabolic subgroups Q0 � P = P(∆Q �
f�g) � G correspond to minimal and maximal ki-parabolic subgroups Q0i �
Pi � Gi. Then, as real parabolic subgroups, we have an isomorphism

P �= P1 � � � � � Pd.

Write C = CP = G`=K` for the self adjoint homogeneous cone associated to P,
and write Ci = CPi = G`,i=K`,i for the corresponding cones associated to Pi. Then
we also have a diffeomorphism,

C �= C1 � C2 � � � � � Cd.

Each minimal parabolic subgroup Q0i � Gi determines a corresponding minimal
parabolic subgroup Q0`,i � G`,i with root function

fi = f
Q0`,i
�i

: Ci ! (0,1).

6.9. Proof of Proposition 4.5 when G is Q -simple. If yk 2 C is a sequence
of points, with yk ! 1C, then the corresponding factors y(i)

k 2 Ci also satisfy
y(i)

k !1Ci. Since Gi is R -simple, we may apply (6.7) to each factor (replacing
Q by ki in the statement and proof of Case 1) to conclude that each of the root
functions fi(y(i)

k )!1.
On the other hand, we claim that f�(yk) = fi(y(i)

k ) for each i, from which
the result follows. Write yk = gke with gk 2 Q0. Then gk = (g(1)

k , : : : , g(d)
k ) 2

Q0,1 � � � � � Q0,d, each of which may be decomposed according to compatibly
chosen Langlands decompositions,

g(i)
k = u(i)

k a(i)
k m(i)

k .

However, by our identification (6.8.1) of the roots and the torus we have,

f�(yk) = �(ak) = �i(a
(i)
k ) for each i.

This completes the proof of Proposition 4.5.

7. Statement and proof of Theorem A.

7.1. Let G be a semisimple algebraic group defined over Q . Let G = G(R )
be the group of real points. Let us assume that G = Aut0(D) is the connected
component of the group of automorphisms of a Hermitian symmetric space D.
Let Γ � G(Q ) be a neat arithmetic subgroup. Set X = ΓnD. Let Σ = fΣFg be a
Γ-admissible collection of polyhedral cone decompositions of the homogeneous
cones CF (as F runs over all the rational boundary components of D). In [AMRT]
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this data is used to construct a toroidal compactification Xtor
Σ of X. Let us say that

the collection of polyhedral decompositions Σ is Γ-sufficiently fine if, for every
rational parabolic subgroup P = P(F) the polyhedral decomposition ΣF of C�F is
Γ`-sufficiently fine (where Γ` = G` \ �P(Γ \ P), with �P: P ! LP = GhG` the
projection to the Levi quotient).

Let XRBS denote the reductive Borel-Serre compactification and let XBB denote
the Baily-Borel Satake compactification of X. Let

X
d

���! X � X ,! XRBS
� Xtor

Σ

denote the diagonal inclusion of X into the product of two compactifications of
X, and let bX denote the closure of the image of X in XRBS

� Xtor
Σ . Let ā 2 Xtor

Σ ,
and define

bX(ā) = fb̄ 2 XRBS
j (b̄, ā) 2 bXg � XRBS.

Then bX(ā) = �1�
�1
2 (ā) �= ��1

2 (ā) where �1, �2 denote the projections from bX to

XRBS and Xtor
Σ respectively.

THEOREM A 7.2. Suppose the collection fΣFg of polyhedral cone decomposi-
tions is Γ-sufficiently fine. Then for any ā 2 Xtor

Σ the set bX(ā) is contractible.

In fact we will show that the set bX(ā) is canonically homeomorphic to a set
of the form [�]RBS which, by Theorem B, is contractible.

COROLLARY 7.3. If the collection fΣFg of polyhedral decompositions is Γ-

sufficiently fine, then the resolution g: Xtor
Σ ! XBB is homotopic to a mapping

g0: Xtor
Σ ! XBB which factors through the projection �: XRBS

! XBB.

Moreover it is possible to choose g0 so that g(S) = g0(S) for each stratum S of
Xtor. The mapping g0 may also be taken to be the identity on the complement
K of a regular neighborhood of the boundary @Xtor

Σ = Xtor
Σ � X. (Such a closed

subset K � X is described in [Le] and [Sa] where it is shown to be homotopy
equivalent to X.)

7.4. Proof of corollary. Choose a triangulation of Xtor which is a compatible
with the stratification [G]. In Proposition 8.2 we construct a homotopy inverse
� : Xtor

Σ ! X̂ to the projection �2. Take g0 to be the composition

Xtor
Σ

�
���! X̂

�1
���! XRBS �

���! XBB.

Since �g(�) � � for each (closed) simplex � � Xtor we see that g0(S) = ��1� (S) =
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g�2� (S) = g(S) for each stratum S of Xtor. By Addendum 8.3 the mapping � may
be taken to be the identity on K � X.

7.5. The remainder of x7 is devoted to the proof of Theorem A. Let us
recall some of the notation involved in the construction of the toroidal reso-
lution. If we suppose that ā 2 @Xtor

Σ then its image in the Baily-Borel com-
pactification XBB lies in some stratum which we may take to be an arithmetic
quotient of some rational boundary component F. Let P be the associated max-
imal rational parabolic subgroup of G, so P = P(R ) = Norm(F) normalizes
F. Let UF = UP denote its unipotent radical and ZF = ZP denote the cen-
ter of UP. Set ΛF = ZF(R ) \ Γ. The exponential mapping zF ! ZF(R ) de-
termines a vectorspace structure on the group ZF(R ) which in turn admits an
integral structure so that the inclusion ΛF ,! ZF(R ) induces a vectorspace iso-
morphism ΛF 
 R �= ZF(R ) which takes ΛF isomorphically to ZF(Z). Then
T(F) = ZF(C )=ΛF is an algebraic torus with cocharacter group ΛF

�= ��(T(F)):
each � 2 ΛF determines a mapping C ! ZF(C ) by t 7! �t and this deter-
mines a cocharacter C � = C =Z ! ZF(C )=ΛF . In summary we will use these
isomorphisms to make the canonical identifications

��(T(F))
 R �= ZF(R ) �= zF.

The Levi quotient LP = P=UP decomposes as an almost direct product, LP =
G` � Gh of a “linear” and a Hermitian factor. The action by conjugation of G`

on ZF induces a diffeomorphism between G`=K` and the open orbit CF � ZF.
The adjoint action of G` on z = Lie(ZF) induces a diffeomorphism between
G`=K` and the open orbit CP � z. The exponential mapping exp: CP ! CF is
compatible with these diffeomorphisms. Abusing the notation of (4.1.5), we will
write �`: D ! CF and Φ`: D ! [CF] for the resulting projections. (And, as
in (4.1.5) we also have a projection Φh: D ! F.) Set D(F) = ZF(C ) � D (the
product taken in the compact dual symmetric space). Then there is a holomorphic
isomorphism given by Siegel coordinates, [AMRT] p. 235, [S] xIII (Thm. 7.1),
[KW]

D(F) �= F � (UF=ZF)� ZF(C )(7.5.1)

with the following properties:
(1) There exists a real bilinear form ht which depends real analytically on

the parameter t 2 F such that

D = f(t, w, z) j Im(z)� ht(w, w) 2 CFg.

(2) For all (t, w, z) 2 D we have Φh(t, w, z) = t and

y = �`(t, w, z) = Im(z)� ht(w, w).(7.5.2)
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(Abusing notation, we will write (UF=ZF) = C k for simplicity.) Then the torus
T(F) acts freely on the quotient ΛFnD(F) with quotient D(F)0 = F � C k . So
Λ(F)nD(F) is a “torus bundle” over D(F)0, the fibers of which will be compactified
in the following paragraph.

The choice ΣF of polyhedral cone decomposition determines a partial com-
pactification (T(F))ΣF of the torus T(F). This gives rise to a partial compactifi-
cation

(ΛFnD(F))ΣF = ΛFnD(F)�T(F) (T(F))ΣF .(7.5.3)

Let (ΛFnD)ΣF denote the interior of the closure of ΛFnD(F) in (ΛFnD(F))ΣF .
The action of ΛFnΓF on ΛFnD(F) extends to an action of ΛFnΓF on the partial
compactification (ΛFnD(F))ΣF . (Here, ΓF = Γ \ P.)

7.5.4. Fact. ([AMRT] p. 250) There exists a collection of maps �F:
(ΛFnD)ΣF ! Xtor

Σ such that:

(1) Each �F is open and analytic with discrete fibers.

(2) The mapping �F commutes with the action of ΛFnΓF and, near the
boundary it induces an embedding (ΛFnD)ΣF

�
(ΛFnΓF) ,! Xtor

Σ .

(3) The union, taken over all Γ conjugacy classes of rational boundary com-
ponents F, a

F

(ΛFnD)ΣF ! Xtor
Σ

is surjective.

7.6. Notation. In order to avoid double subscripts, whenever no confusion
will arise, we will write Z for ZF, Λ for ΛF, and Σ for ΣF. Let T = Z(R )=Λ
be the compact torus in T(F) = Z(C )=Λ. The map ord: Z(C ) ! Z(R ) given by
ord(x + iy) = y induces a map T(F) ! Z(R ). From [AMRT] I x1.1 the map ord
extends to a map

ord: T(F)Σ ! ZΣ

where

ZΣ = Z(R ) [
a
�2Σ
O�

with O� = Z(R )=L� . Each point in O� can be expressed as v + L� with v 2 L?� .
Following [AMRT] we use the (confusing) notation v+1� to denote such a point.
This notation may be justified by considering the topology on ZΣ. If fyng � Z(R )
is a sequence, then yn ! v +1� provided the following holds: write yn = y0n + y00n



1142 MARK GORESKY AND YUNG-SHENG TAI

with y0n 2 L?� and y00n 2 L�. Then y0n ! v and for any w 2 L�, if n is sufficiently
large then y00n � w 2 � (cf. Definition 2.7.2).

The map ord induces a homeomorphism TnT(F)Σ �= ZΣ. Hence we may
express every element in T(F)Σ� T(F) as x0 + i(y +1�) where x0 2 T . However
x0 is only uniquely determined modulo the sub compact torus T� = O�=Λ� where
Λ� = Λ=(Λ \ L�).

Using Siegel coordinates (7.5.1), if a = (t, w, z) 2 D(F) then we will write
a0 = (t, w, z0) for its image in ΛFnD(F) �= F�(UF=ZF)�T(F). The projections Φh

and �` pass to this quotient with Φh(a0) = t and �`(a0) = Im(z0)�ht(w, w) 2 CF �
Z(R ). Now suppose a0 2 (ΛFnD)Σ is a point on the boundary corresponding to
some (closed) polyhedral cone � 2 ΣF with �o � CF. We will write

a0 = (t, w, x0 + iv + i1�)(7.6.1)

if there is a sequence a0n = (tn, wn, z0n) 2 ΛFnD such that

(1) tn ! t 2 F,

(2) wn ! w 2 (UF=ZF) �= C k ,

(3) Re(z0n)! x0 2 ΛFnZ(R ),

(4) �`(a0n)! v +1�,

where x0 2 ΛFnZF(R ) and v 2 L?� , the perpendicular complement to the linear
space L� spanned by �.

7.7. Lift to the partial compactification. The purpose of this section is to
lift the subset bX(ā) � XRBS to the reductive Borel-Serre partial compactification
DRBS. Suppose, as above, that ā 2 @Xtor

Σ projects to some stratum XF � XBB

which is an arithmetic quotient of some rational boundary component F with
normalizing maximal parabolic subgroup P. Fix any point a0 2 (ΛFnD)Σ so that
�F(a0) = ā. Let us say that a point b 2 DRBS is closure related to a0 2 (ΛFnD)Σ
if there exists a sequence an 2 D with the following two properties:

(1) a0n ! a0 in (ΛFnD)Σ and

(2) an ! b in DRBS.

(Here, a0n 2 ΛFnD denotes the image of an mod ΛF.)
Then b 2 DRBS

P is in the closure of the reductive Borel-Serre boundary com-
ponent DP. Let ān 2 ΓnD = X denote the image of an modulo Γ (so an 2 D,
a0n 2 ΛFnD, and ān 2 ΓnD). Then we also have:

(3) ān ! ā = �F(a0) in Xtor
Σ and

(4) ān ! b̄ in XRBS = ΓnDRBS
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since the following diagram commutes,

an 2 D ,! DRBS
� (ΛFnD)Σ 3 (b, a0)

�# #���F

ān 2 X ,! XRBS
� Xtor

Σ 3 (b̄, ā).

Define

∆(a0) = fb 2 DRBS
j b is closure related to a0g � DRBS

P .

If bD denotes the closure of the diagonal embedding of D in DRBS
�(ΛFnD)Σ and if

�1 and �2 denote the projections of bD to the first and second factors respectively,
then ∆(a0) = �1�

�1
2 (a0) �= ��1

2 (a0). The following proposition immediately implies
Theorem A.

PROPOSITION 7.8. Let ā 2 @Xtor
Σ . Choose F, P, and a0 = (t, w, x0 + iv + i1�)

as in (7.6.1) with �F(a0) = ā and with �o � CF. Let [CF] denote the quotient of CF

under homotheties, and (4.1.4) let

ΨP: FRBS
� [CF]RBS �= DRBS

P

be the resulting homeomorphism which we will take to be a canonical identification
(so we will usually omit explicit mention of ΨP). Let [�]RBS � [CF]RBS

be the closure
of the quotient [�o] � [CF] in the reductive Borel Serre compactification. Then

(1) the identification ΨP restricts to a homeomorphism

ftg � [�]RBS
�=

���! ∆(a0).

(2) If Σ is Γ-sufficiently fine then the mapping �: DRBS
! XRBS restricts to a

homeomorphism

� j ∆(a0): ∆(a0)
�=

���! bX(ā).

Proof 7.9. It is clear from properties (3) and (4) above that the restriction
� j ∆(a0) takes ∆(a0) into bX(ā). First let us show that �: ∆(a0)! bX(ā) is surjective.
Fix any b̄ 2 bX(ā). Then (b̄, ā) 2 bX so there exists a sequence fāng � X so that
ān ! ā in Xtor

Σ and so that ān ! b̄ in XRBS. Since �F is a local homeomorphism,
there is a unique lift a0n 2 (ΛFnD)Σ of the sequence ān so that a0n ! a0 in
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(ΛFnD)Σ. As in (7.5.1) write

a0n = (tn, wn, z0n).

It follows that tn ! t, wn ! w and that yn := �`(a0n) 2 CF.

Claim 7.9.1. There exists a subsequence (which we also denote by a0n) so
that the corresponding elements [yn] 2 [CF] converge to some point c 2 [�]RBS.
(Here, [y] denotes the image of y under the quotient by homotheties, CF ! [CF].)

7.9.2. Proof of claim. Since yn ! v +1�, and v 2 L?� we may write
yn = y0n + y00n with y0n 2 L?� and y00n 2 �o for n sufficiently large. Therefore
y0n ! v and y00n ! 1�. Since [y00n ] 2 [�o] � [�]RBS which is compact, there
exists a subsequence (which we denote by by [y00n] as well) which converges,
[y00n]! c 2 [�]RBS. By Proposition 2.7.3, the sequence [yn] = [y0n + y00n] converges
in [CF]RBS to the same point c.

7.9.3. Using this claim, and choosing any lift an 2 D of this subsequence
we see that

(1) �`(an) = yn !1C,

(2) Φh(an) = tn ! t,

(3) Φ`(an) = [yn]! c in [CF]RBS.

Here, Φh: D ! F and Φ`: D ! [CF] are the canonical projections (4.1.5) (so,

if  2: DRBS
P ! [CF]RBS denotes the projection to the second factor, then Φ` =

 2 �ΦP). By Theorem C (x4.2), this implies that the sequence an ! b := (t, c) 2

DRBS
P
�= FRBS

� [CF]RBS. In summary, b 2 ∆(a0) (since an ! b and a0n ! a0) and
�(b) = b̄ (by (4) above) which proves that � j ∆(a0) is surjective to X̂(ā).

7.9.4. Let us verify part (1) of Proposition 7.8: that ∆(a0) = ftg � [�]RBS

(where a0 = (t, w, x0 + iv + i1�)). As in the preceding paragraph, let  2: DRBS
P !

[CF]RBS denote the projection to the second factor. Let b 2 ∆(a0) � DRBS
P , say

b = (t, c). Choose fang � D as above, with an ! b in DRBS and a0n ! a0 in
(ΛFnD)Σ as described above. Then (by the same argument as in the proof of
the claim above),  2(b) = c 2 [�]RBS. Since t 2 F is fixed, we conclude that
 2 j ∆(a0) is injective. To see that it is surjective, let c 2 [�]RBS and choose
yn 2 � so that [yn]! c and define

an = (t, w, x0 + iv + i�nyn + ht(w, w))

where �n 2 R and �n ! 1. Then Φh(an) = t, Φ`(an) ! c (again by Propo-
sition 2.7.3), and �`(an) ! 1CF. So by Theorem C (x4.2), the sequence an
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converges in DRBS to the limit b = (t, c) 2 ∆(a0) which completes the proof of
part (1).

7.9.5. Now let us prove that the mapping �: ∆(a0) ! bX(ā) is injective.
Since

∆(a0) �= ftg � [�]RBS � DRBS
P � DRBS

# # #bX(ā) � ΓPnD
RBS
P � XRBS

commutes, we see that � is injective if and only if the quotient under ΓP does not
introduce any identifications on [�]RBS. Let Γ` = �P(Γ\P)\G` where �P: P! LP

is the projection to the Levi quotient. Corresponding to the exact sequence

1! Γ` ! �P(Γ \ P)! Γ0h ! 1

there is a fiber bundle ΓPnD
RBS
P ! Γ0hnF

RBS with fiber Γ`n[CF]RBS. Since t 2 F
is fixed, it suffices to verify that Γ` does not introduce any identifications on
[�]RBS. However this is precisely the assumption that � is Γ`- sufficiently small
(x3.1). It is guaranteed by the assumption that Σ is Γ-sufficiently fine (x7.1). This
concludes the proof of Proposition 7.8 and hence also of Theorem A.

8. Contractible cell complexes.

8.1. In this section we review some standard facts from homotopy theory
which are needed for the proof of Theorem B (x2.8). Throughout this section
we suppose that f : X ! Y is a weakly stratified mapping between two compact
(finite dimensional) Whitney stratified spaces. (This means that f takes strata to
strata by a smooth submersion.) Fix a triangulation of Y .

PROPOSITION 8.2. Suppose that f is surjective and that each fiber f�1(y) is
contractible. Then f is a homotopy equivalence. Moreover there exists a homotopy
inverse g: Y ! X such that, for each (closed) simplex � � Y,

(1) fg(�) � � and

(2) the restriction g j �: � ! f�1(�) is a homotopy inverse for the restriction
f�1(�)! �.

In particular, if Y is contractible then X is also contractible.

ADDENDUM 8.3. Suppose that K � Y is a closed union of simplices of the
chosen triangulation. Suppose that f�1(K) ! K is a homeomorphism. Then the
homotopy inverse g: Y ! X may be chosen so as to agree with f�1 on points of K.
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Proof 8.4. This follows from standard results in homotopy theory, however
in what follows we will indicate how to construct the homotopy inverse g ex-
plicitly. Fix a triangulation of Y which refines the stratification. We will find a
mapping g: Y ! X (which agrees with f�1 on K) and a homotopy H: X� I ! X
between H0 = I and H1 = gf so that H is the constant homotopy (from the identity
to the identity) on K � I and so that, for each simplex � � Y we have

(1) fg(�) � �,

(2) H( f�1(�)� I) � f�1(�).

This is accomplished by induction on the dimension of �. For dim (�) = 0 let
g(�) be any point in the fiber f�1(�) and let H be a homotopy which contracts
the fiber f�1(�) to the point g(�). For the inductive step, suppose � � Y is
an n-dimensional simplex with boundary @�, that g: @� ! f�1(@�) has been
defined and that a homotopy H: f�1(@�) � [0, 1] ! f�1(@�) between H0 = I
and H1 = gf has been constructed. We wish to extend both g and H to all of
�. If � � K, these extensions have already been defined: g = f�1 and H is the
constant homotopy. So we may assume that int(�) � Y�K. Since the extensions
will be made simplex by simplex without changing choices which were made on
previous simplices, we may (for the sake of notational convenience) replace X
by f�1(�).

It is possible to triangulate X so that f�1(@�) is a union of simplices. In par-
ticular, the inclusion f�1(@�) � X is a cofibration, i.e., it satisfies the homotopy
extension property, which we apply to the following situation:

X � f0g

% # &

f�1(@�)� f0g ���! X � [0, 1]
F

� � � �! X

& " %

f�1(@�)� [0, 1]

Thus, we obtain a homotopy F between F0 = I and some mapping F1: X ! X
which collapses f�1(@�) to the section g(@�).

Choose a trivialization

f�1(�o) �= �o � A(8.4.1)

of the mapping f over the interior �o of the simplex � (such a trivialization
exists by Thom’s first isotopy lemma) and let a0 2 A be a point in the fiber.
Let �t: A! A be a contracting homotopy from �0 = I to the constant mapping
�x(a) = a0. Define g0: �o ! f�1(�o) by g0(y) = (y, a0). Then g0 is a homotopy
inverse for f on the interior of �, but we must patch together g0 on the interior
with g on the boundary.
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Definition 8.5. The section g: � ! X is given by

g(y) =

(
F1g0(y) for y 2 �o

g(y) for y 2 @�.

To verify that g is continuous, choose a strong deformation retraction

 : N( f�1(@�))! f�1(@�)

from a regular neighborhood of f�1(@�) to f�1(@�). Suppose yi 2 �
o is a se-

quence of points converging to some point y0 2 @�. Then for any choice of
metric on X we have

dist(F1g0(yi), g(y0)) � dist(F1g0(yi), F1 g0(yi)) + dist(gf g0(yi), g(y0))

(since F1 = gf on f�1(@�)). The first term goes to 0 because F1 is continuous
and dist(g0(yi), g0(yi)) ! 0 (since  is a strong deformation retraction which
approaches the identity as the point g0(yi) approaches the boundary f�1(@�)).
To show that the second term goes to 0, it suffices to show that f g0(yi) ! y0.
But

dist( f g0(yi), y0) � dist( f g0(yi), fg0(yi)) + dist( fg0(yi), y0).

Again the first term goes to 0 because  ! I on f�1(@�) while the second term
is dist(yi, y0)! 0.

Now let us define the extension of the homotopy H. Choose a collaring of
the boundary of the simplex,

r: � ! [0, 1]

so that r�1(0) = @� and define the function T: [0, 1]� [0, 1]! [0, 1] by

T(r, t) =

(
t if r + t � 1

rt
1�t if r + t � 1.

With respect to the trivialization (8.4.1) define

Ht(y, a) = Ft(y,�T(r(y),t)(a)).

Although the function T fails to be continuous at (r = 0, t = 1) it is easy
to see (using the same argument involving  : N( f�1(@�)) ! f�1(@�)) as
above) that the function Ht is continuous as y ! @�. Furthermore for
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(y, a) 2 f�1(�o),

H0(y, a) = F0(y,�0(a)) = (y, a)

H1(y, a) = F1(y,�1(a)) = F1(g0(y)) = gf (y, a)

as desired. This completes the proof of Proposition 8.2.

9. Automorphic vectorbundles.

9.1. Throughout this section, G denotes a semisimple algebraic group de-
fined over Q , with group of real points G = G(R ). We assume that G = Aut0 (D)
is the connected component of the group of automorphisms of a Hermitian sym-
metric space D = G=K, where K is the maximal compact subgroup of G corre-
sponding to a choice of basepoint x0 2 D. Let Γ � G(Q ) be a neat arithmetic

subgroup. Let X = ΓnD and let �: XRBS
! XBB be its reductive Borel-Serre and

Baily-Borel Satake compactifications.
Let �: K ! GL(E) be a representation of K on some (finite dimensional)

complex vectorspace E. the homogeneous vectorbundle

E0 = G�K E

is the quotient of G�E under the equivalence relation (g, e) � (gk,�(k�1)e) (for
all g 2 G, k 2 K, and e 2 E); we will denote the associated equivalence class by
[g, e]. The group G acts by g0[g, e] = [g0g, e] and the quotient under Γ � G is
an automorphic vectorbundle on X = ΓnD, which we denote by

E = ΓnG�K E.

Except in special cases, the vectorbundle E does not admit an extension (even as
a topological vectorbundle) to the Baily-Borel compactification.

PROPOSITION 9.2. The automorphic vectorbundle E has a canonical extension
ERBS

! XRBS (as a topological complex vectorbundle) over the reductive Borel-
Serre compactification.

Proof 9.3. As in x1.1, let P � G be a proper rational parabolic subgroup with
unipotent radical UP and Levi quotient vP: P ! LP = APMP. Let vM: P ! MP

denote the further projection to MP. Then KP = K \ P � MP(x0) is a maximal
compact subgroup of MP and ΓL = vP(Γ \ P) � MP is an arithmetic subgroup
of MP and the associated RBS boundary stratum is XP = ΓLnMP=KP. Restricting
the representation � to KP � LP we obtain a homogeneous vectorbundle E0P =
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MP �KP E on DP, which passes to an automorphic vectorbundle

EP = ΓPnMP �KP E

on the boundary stratum XP. The extension ERBS will be obtained by gluing E
together with these vectorbundles EP on the strata.

The projection ΦP: P ! DP of (1.3.1) is covered by a mapping of P-
homogeneous vectorbundles

ΘP: E0 = P�KP E! MP �KP E = E0P

which is given by [g, e] 7! [vM(g), e]. It is well defined (since �(k) = �(vM(k))
for all k 2 KP) and is P-equivalent, (where P acts on MP �KP E by p � [m, e] =
[vM(p)m, e]) and it is an isomorphism on each fiber. It follows that the union
E0[E0P admits the unique structure of a P-homogeneous vectorbundle on D[DP

such that any choice of trivialization �: E0P ! E of E0P extends continuously to
a trivialization of E0 [ E0P which is given by the composition

E0 �!
ΘP

E0P �!
�

E.

If P � Q then we similarly obtain a P-equivariant vectorbundle mapping ΘPQ:
E0Q ! E0P which is compatible with the mappings ΘP and ΘQ, that is, ΘP is the
composition

E0 �!
ΘQ

E0Q �!ΘPQ
E0P.

This endows the union

E0 [
a

P�G

EP,

with the structure of a G(Q )-homogeneous vectorbundle on DRBS, which then
passes to a vectorbundle structure on the quotient by Γ,

ERBS = E [
a
fPg

EP,

where the union is taken over a collection of representatives, one from each
Γ-conjugacy class fPg of proper rational parabolic subgroups of G.

9.4. Toroidal compactification. Let Σ = fΣFg be a sufficiently fine Γ-
admissible collection of polyhedral cone decompositions of the homogeneous
cones CF (as F runs over all the rational boundary components of D), and let Xtor

Σ



1150 MARK GORESKY AND YUNG-SHENG TAI

be the resulting toroidal compactification with its canonical mapping g: Xtor
Σ !

XBB. In [M], D. Mumford shows that every homogeneous vectorbundle E on X
admits a canonical extension Etor

Σ to the toroidal compactification. In Theorem A
and its corollary (x7.2, x7.3) a mapping

h = �1 � � : Xtor
Σ ! XRBS

is constructed, so that g0 = � � h: Xtor
Σ ! XBB is homotopic to and is C0-close

to g.

Conjecture 9.5. The topological (complex) vectorbundles Etor
Σ and h�(ERBS)

are isomorphic.
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