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TOROIDAL AND REDUCTIVE BOREL-SERRE COMPACTIFICATIONS
OF LOCALLY SYMMETRIC SPACES

By MARK GoResky and YUNG-SHENG TAI

Abstract. By “Hermitian locally symmetric space” we mean an arithmetic quotient of a bounded
symmetric domain. Both the toroidal and the reductive Borel-Serre compactifications of such a space
come equipped with canonical mappings to the Baily-Borel Satake compactification. In this article
we show that there is a mapping from the toroidal compactification to the reductive Borel-Serre
compactification, whose composition with the projection to the Baily-Borel compactification agrees
with the canonical projection up to an arbitrarily small homotopy. We also consider arithmetic
quotients of a self-adjoint homogeneous cone. There is a canonical mapping from the reductive
Borel-Serre compactification to the standard compactification of such alocally symmetric cone. We
show that this projection, when restricted to the closure of a polyhedral cone, has contractible fibers.

Introduction. During the last twenty years, several topological approaches
have been developed in order to study the action of Hecke operators on the
cohomology of arithmetic groups and of Shimura varieties. Let X = N'\G/K be
a Hermitian locally symmetric space (where G = G(R) are the real points of a
semisimple algebraic group G defined over Q, K € G is a maximal compact
subgroup, ' C G(Q) is a neat arithmetic subgroup, and G/K is assumed to
carry a G-invariant complex structure). A central object of study is the Baily-
Bordl Satake compactification X itisa complex algebraic variety which may
be highly singular. One approach to understanding the topology of this space
is through the toroidal compactification g: X&' — X°° of [AMRT]. It is not
unique but involves a choice X of I'-equivariant polyhedral cone decomposition
of certain self adjoint homogeneous cones; if Z is chosen sufficiently fine then
the toroidal compactification is a resolution of singularities of X8, Essential use
of this resolution was made, for example, by E. Looijenga[L] in his proof of the
Zucker conjecture.

A second approach to understanding the Baily-Borel compactification in-
volves the reductive Borel-Serre compactification ([Z1] §4), u: X oo — X°°.
This compactification is neither complex algebraic, nor is it smooth. Neverthe-
less, its singularities are easily understood. In a series of papers ((GM1], [GM2],
[GHM], [GKM]) it was shown that Arthur’s L2 Lefschetz formula for Hecke
correspondences on X may be interpreted term for term as the Lefschetz fixed

point formula for the weighted cohomology of X85, One is therefore led to
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the problem of comparing these two “resolutions’ of X2, In [Ji], L. Ji showed
that there is little hope in comparing these two compactifications, because their
greatest common quotient is the Baily-Borel compactification. (Ji's paper was
motivated by the paper [HZ] of M. Harris and S. Zucker in which they conjec-
tured that the Baily-Borel compactification is also the greatest common quotient
of the Borel-Serre compactification and the toroidal compactification. In the same
article [Ji], Ji determined the G.C.Q. of the Borel-Serre and toroidal compactifi-
cations and completely determined the conditions under which it coincides with
the Baily-Borel compactification.)

In this paper we revive hopes for comparing the two compactifications XBS
and X2, Let X © X7 x X" denote the closure of the diagonal embedding of

X in these two compactifications. Let #; and 6, denote the projections to the first
and second factor. In §7.2 we prove the following:

THEOREM A. Ifthe ponhedraI decomposmon > ischosen sufficiently fine then
the fibers of the projection fo: X — Xz are contractible.

In §7.3 we conclude:

CoroLLARY. The resolution g: thor — X is homotopic to a mapping ¢
which factors through X o>

It follows, for example, that the compact support cohomology of X, and the

cohomology of X and its compactifications are all related in a single sequence of
compatible homomorphisms,

HE0Q) — H* () — H*(X™) = H*0G") — H(X).

Further applications to automorphic vectorbundles are described in §9.
The mapping g': X' — Xgg is obtained as the composition

<tor T & 1 RBS K BB
Xy X X X

where 7 is a homotopy inverse to 6». In §8 we show that the homotopy inverse ©
may be chosen to be the identity on the complement of an arbitrarily small regular
neighborhood of the boundary. Although it is not possible to find a homotopy
inverse 7 so that 6,7 is the identity, it is possible to guarantee that, for each
stratum S of X, 6,7(S) =, and hence g(S) = ¢'(S).

Theorem A is complementary to the closely related results of M. Harris and
S. Zucker [HZ]. Theorem A was conjectured by R. MacPherson and M. Rapoport
[R] in 1991 and was verified by them in the case that the rational rank of G is 1.
In this case, if apoint x € Ytzor corresponds to a (closed) polyhedral coneo € Z,
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then the fiber 65 1(x) is not only contractible but it may be canonically identified
with the quotient [o] of o — {0} under homotheties, i.e., it is homeomorphic to a
convex polyhedron. The case of higher rank turned out to be much more difficult
than we expected: the fiber 65 1(x) is obtained from the convex polyhedron [o]
by a sequence of “real” blowups.

There are three main steps in the proof of Theorem A. First, suppose that C C
V isa (rationally defined) self-adjoint open homogeneous cone in some rationally
defined real vectorspace V, and suppose that o C V isarational polyhedral cone
whose interior ¢° C C is contained in C. Let [¢°] C [C] c P(V) denote the
quotient under homotheties. Theorem B (§2.8) states that the closure (which we
denote by [0]RBS) of [¢°] in the reductive Borel-Serre partial compactification
WRBS of [C] is contractible. In fact, this closure is a “blowup” of the convex
polyhedron [o]. The fibers of the projection [¢]RBS — [o] are again sets of the
form [7]RBS. (This, in turn, is a consequence of Lemma 2.6.2 which describes the
relationship between convergence in WRBS and convergence in the “standard”
Satake compactification c of C)

Theorem B was proven by M. McConnell [Mc] in the case that C is the
self adjoint cone of positive definite 3 x 3 matrices; in fact, he shows that the
set [0]RBS is homeomorphic to a convex polyhedron, and that the same is true
for the closure of [o] in any Satake compactification of [C]. It seems possible
that this result may hold in generd, i.e., for any rationaly defined self adjoint
homogeneous cone C and for any rational polyhedral cone o C C, the closure
[0]S of [0°] in any Satake partial compactification ms may be homeomorphic
to a convex polyhedron.

The second step in the proof of Theorem A isto guarantee that the appropriate
discrete group I, does not introduce any identifications on [¢]®BS under the
projection [C] > — I‘AWRBS_ This may be accomplished by assuming that
the polyhedral cone o is sufficiently small (§3). We show that any I -equivariant
admissible rational polyhedral decomposition ~ of C admits a I y-equivariant
admissible refinement, each of whose cones is sufficiently small. The existence
of equivariant refinements of polyhedral cone decompositionsis not very carefully
treated in [AMRT], so we quickly review the relevant techniques in §3.

Finally we show that the set [o]RBS appears as the fiber of the projection
0 X — Yt;r. In order to prove this, one is forced to relate convergence in XBS
with the linear structure of the polyhedral cone o C V, which is accomplished in
Theorem C (§4.2). The proof turns out to involve some delicate estimates (55,6)
involving the explicit descriptions of the roots of G.
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1. Symmetric spaces. In thissection we review some basic results of Borel
and Serre [BS] and establish the notation which we will use throughout this paper.

1.1. Parabolic subgroups. Algebraic groupswill be designated by boldface
type (G, P, etc.). If an algebraic group is defined over the real numbers then its
group of real points will be in Roman (G = G(R), P = P(R), etc.). The connected
component of the identity is denoted with a superscript 0 (G°, P9, etc.). If Sis
an algebraic torus then the identity component of the group of real points will
be denoted by A = S(R)?, and may be inaccurately referred to as a torus. If G
is a reductive algebraic group which is defined over the rational numbers Q, we
denote by Sg the greatest Q-split torus in the center of G, and set Ag = Sg(R)°.
Then the group of real points splits as a direct product

(1.1.2) G =As x 'G(R)

where

(1.1.2) G = ker (x?)
X

denotes the intersection of the kernels of all the agebraically defined rational
characters y € Mor (G, GL4). The group °G c G contains all compact and
arithmetic subgroups of G.

For any parabolic subgroup P C G we denote by Up the unipotent radical of
P, and by vp: P — Lp = P/Up the projection to the Levi quotient. We denote by

(1.1.3) Mp =OLp.

If Sp C Lp denotes the greatest Q-split torusin the center of Lp then Lp = ApMp
splits as a (commuting) direct product. Any lifti: Lp — P of Lp determines a
Langlands decomposition (which is a semi-direct product),

(1.1.4) P =Up - i(AoMp).

Choose a minimal rational parabolic subgroup Qo € G and call it standard.
Choose a rationally defined lift i: Lo, — Qo and let S=i(Sqg,) be the resulting
lift of the greatest Q-split torusin the center of L (Qg), sothat S Qg C G. Then
Sisamaxima Q-split torusin G. The root system ®(S, G) admits a linear order
so that the positive roots ®*(S, G) are those occurring in Up. Let A = A(S,G)
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denote the resulting set of simple positive roots. The elements ¢ € A are trivia
on Sg and form a basis for the character module x(S/Sg) ®z Q.

The rational parabolic subgroups which contain Qp are in one-to-one corre-
spondence with subsets | C A. For a given subset | C A define

0
(1.1.5) ) = (ﬂ ker(¢)) .

o€l

If Z, then the corresponding parabolic subgroup is

(1.1.6) P=P(1) = Z(S(N)ttg, = Z(S()up

(the latter decomposition being a semidirect product). Then S(1) = Spgy and
Z(S(1)) is alift of the Levi quotient Lp(). We denote by

(1.1.7) Bp ={¢ [ ) }sen-

the restrictions of the remaining simple roots to the torus S(1); they form arational
basis for the character module x(S(1)/Sg) ® Q. If | € J C A then (1) > S(J)
and P(l) c P(J).

Let K C G be amaximal compact subgroup and define D = G/K. The space
D is referred to as a “generalized symmetric space.” If Sg is not trivial, then
we denote by [D] = G/KAg the quotient of D under the identity component of
this central torus. There is a unique basepoint Xp € D with K = Stabg (Xp). This
choice also determines the following data:

(1) A maxima compact subgroup Kp = Kp(Xg) = KNP and a diffeomorphism
P/Kp — D.

(2) A Cartan involution #: G — G with G? =K.

(3) A unique lifting ix,: Lp — P of the Levi quotient whose image Lp(Xo) is
f-stable. For any subset B C Lp we denoteitslift by B(Xo) = ix,(B). The basepoint
Xo € D isrational for P if the lift Lp(Xg) C G is a rationally defined algebraic
subgroup.

(4) A diffeomorphism

(1.1.8) Dp = P/KpApUp E Mp/Kp

given by mKp — ix,(MKpAplip.
(5) A canonical rational Langlands' decomposition

(1.1.9) P = UpAp(X0)Mp(X0)-
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(6) A diffeomorphism
(1.12.10) Up x Ap x Dp — D

given by (u,a, mKp) — Uix,(8)ix,(MKp(Xo) (Where mKp € Mp/Kp = Dp).

(7) Projections up: D — Up, ap: D — Ap and ®p: D — Dp to the first,
second, and third factors. (The projection ®p is actually independent of the base-
point.)

In the coordinates given by (1.1.10), the action of g € P on D and the geodesic
action (see below) of b € Ap on D are given by

(1.1.12) g(u, a, mKp) e b = (guix,rp(g™1), abe, xmKp)

where vp(g) = cx € ApMp = Lp.

The canonical Langlands decompositions (1.1.9) of two parabolic subgroups
Q c P are related in the following way. The image Q = vp(Q) C Lp is parabolic
in Lp. Set Ug(xo) = ix,Ug) and A'(xo) = ix,(Aqg) N Mp(Xo). Then

(1.1.12) Q = Uplg (%)) (Ap(X0)A'(X0))Mq(X0)
= UpAp(X0)(Ug(X0)A (Xo)Mq(X0)).

The first is the canonical Langlands decomposition of Q while the second is the
decomposition of Q which isinduced from the canonical Langlands decomposi-
tion of P.

1.2. Borel-Serrepartial compactification. Throughout this section we sup-
pose that G is a reductive algebraic group defined over Q with Sg = {1}. Fix
a basepoint xo € D in the associated generalized symmetric space, with sta-
bilizer K = K(xg) = Stabg (Xp). Let P C G be a rational parabolic subgroup.
The torus Ap C Lp acts on D in two ways. Write D = P/Kp. The action from
the left is given by a - gKp: = iy (a)gKp (for any g € P), while the action
from the right (which is the geodesic action of Borel and Serre) is given by
(gKp) ea := giy,(a)Kp. The geodesic action is well defined since Ap(Xo) = ix,(Ap)
commutes with Kp = ix, (vp(Kp)), and it is even independent of the choice of base-
point. The quotient e = D/Ap is called the Borel-Serre boundary component or
the Borel-Serre stratum corresponding to P.

The characters § € Ap determine a diffeomorphism Ap ¥ (Rs0)"P and we
denote by Ap the partial compactification obtained by adding the point at infinity
to each copy of R~g, i.e.

(1.2.1) Ap * (0, 0o]P.

Then the “corner” associated to P is the (noncompact) smooth manifold with
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corners, D(P) = D xap Ap; it isadigoint union

(1.2.2) DPP)=DU [] e
P'OP

and it is an open neighborhood of ep in the Borel-Serre partial compactification
=BS : o
D™ of D. The canonica projection

(1.2.3) Op: D(P) — D/Ap =ep

is the unique continuous extension of the mapping D = P/Kp — P/KpAp = ep.
Each 3 € Ap determines a root function f5: D — R.o by f5(X) = (ap()).

In other words, write x = uamKp by (1.1.9); then f}; (x) = 5(a). The root function

fg is equivariant with respect to the P action and the geodesic action on D in the

following sense: If g = Uuam € UpAp(Xo)Mp(Xp) and if b’ € Ap then
(1.2.4) f5(gx e b') = f5(x)B(ab)

which follows from (1.1.11). It follows that fﬁF> extends to a function (which we
also denote in the same way),

(1.2.5) f§: D(P) — (0, 0],
hence the mapping
(1.2.6) D(P) — ep x (0, x0]2P

given by X — (6p(X), {fg(x)}geAP) is a diffeomorphism of manifolds with cor-
ners. The following lemma characterizes convergent sequences in the Borel-Serre
partial compactification of D.

LemmA 1.2.7. Let Qg beaminimal parabolic subgroup of G and let P = P(l)
be a standard parabolic subgroup corresponding to a subset | C A. Let X, €
ep. Then a segquence of points {x} C D converges (in the Borel-Serre partial
compactification) to X iff the following two conditions hold:

(1) Op(x) € ep convergesin ep t0 X,
2 ) —ocoforal fen—I.
Proof 1.2.8. Let us consider the convergence of the sequence {X} in the

open corner D(Qp). By (1.2.6) (with P replaced by Qg), we have a diffeomorphism
D(Qo) = €q, x (0, 00]2 which takes ep ~ eq, x (0,00)" x {c0}2~!. So we need
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to show that

(1) 6Og,(X) converges to Og,(Xso),
(2) (%) — fR(xs0) for al a €1,
3 1) —ocoforal pen—1.

Items (1) and (3) follow immediately from the hypotheses. Let us consider item
(2). For any a € Ap = Ap(y and for any o € | C A we have f(xc e @) =
f0(xy) - (@) = £0(x) by (1.2.4) and (1.1.5). But 0p(xc) = Xc(mod Ap) so

(%) = F2(0p (%)) — T (Xs0)
as claimed. O

1.2.9. The action of G(Q) on D extends continuously to the partial com-
pactification D If I ¢ G(Q) is a neat arithmetic group then the quotient
XS = F\ﬁBS is the Borel-Serre compactification of X = '\D. It is a manifold
with corners; the image of each boundary component ep is caled a boundary
stratum.

1.3. Reductive Borel-Serre partial compactification. If P C Gisara
tional parabolic subgroup, define the reductive Borel-Serre boundary component
Dp = P/KpApUp E MP/KP. Let

(1.3.1) CDPZ D= P/Kp — P/KPAPUP =Dp

denote the projection. Then Dp is a“generalized symmetric space” (for the group
Mp) and it inherits a basepoint ®p(Xg). The reductive Borel-Serre partial compact-
ification ([Z1] §4) D% s obtained from the Borel-Serre partial compactification
by collapsing the fibers of the projection ep = P/KpAp — Dp = P/KpAplip t0
points (for every proper rational parabolic subgroup P C G). It is a Hausdorff
topological space. The closure of Dp in D"®% is the reductive Borel-Serre partia
compactification D_pRBS of Dp = Mp/Kp. The projections ep — Dp fit together
to give a G(Q) equivariant continuous surjection D™ — D" which extends
the identity mapping on D. Denote by D[P] C D°° the image of the corner
D(P) under this surjection, so that D[P] = D U [[o-p Dg. Then D[P] is an open
neighborhood in DS of the stratum Dp.

Suppose Q C P are standard rational parabolic subgroups corresponding to
subset J C | C A of the simple rational roots, respectively. Zucker’s vexatious
point [Z1] (3.19) is that the root functions fﬁp and fg usualy do not agree. Let
Q = vp(Q) C Lp be the parabolic subgroup of Lp which is determined by Q. For

x € D use (1.1.12) to write X = uwabm- Xo With U € Up, W € ix,(Ug), a € Ap(X0),
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b e A = Ag(xo) N Mp(Xo), and m € Mq(Xo). Then for al 5 € A we have
(1.3.2) f2() = A(ab), and f5(x) = A(a)

(but 5 €1 = p(a) =1 while g € J = p(a) = f(b) = 1; see also Lemma 1.3.6
(2)). Since ®p(x) = wbm- Pp(X9) € Mp/Kp, we have (for dl 5 € 1),

(1.33) 1(@p() = Alb) = 13()

It follows from (1.2.4) and (1.3.3) that, for all 3 € A the root function fé? admits
a unique well-defined continuous extension f;: D[Q] — (0, 00] by defining, for
any y € Dpq)

00 for BenA—1
(1.3.4) () =19(y) for fel-J
1 for ged.

Similarly, the projection ®g: D — Dq factors,
(135) CDQ(X) = CD@ o CDP(X) =m- cDQ(X()) S DQ =~ MQ/KQ

so it aso has a unigue continuous extension to the neighborhood D[Q] which we
denote by the same symbol, ®q: D[Q] — Dq.

From Lemma 1.2.7, we obtain a characterization for convergence in the re-
ductive Borel-Serre compactification:

LemmA RBS 1.3.6. Let Qg be the standard minimal parabolic subgroup of
G and let P = P(l) be the standard parabolic subgroup corresponding to a subset
| C A Letxs € Dp.Thenasequenceof points{xx} C D converges(inthereductive
Borel-Serre compactification) to X iff the following two conditions hold:

(1) Pp(xx) € Dp convergesin Dp t0 X.
2 fx) —ocoforal gen—I.
Moreover, in the presence of (1), condition (2) is equivalent to the condition

(2) ff(x) —ooforal gen—1.

Proof 1.3.7 Thisis because, within any set CDgl(compact), the ratio f§°: fg
is bounded. To be precise, use (1.1.12) to write Xk = UgWiakhbkmg - Xo with ux € Up,
Wk € ix(Ugy)s & € Ap(Xo), bk € Agy(Xo) N Mp(Xo), and Mk € Mq,(Xo). Then
Pp(xx) = Wibkmy - Pp(Xo) which converges; hence the by converge. So by (1.3.2)
we conclude that fg (X) = B(ak) — oo iff fgo(xk) = B(ak) B(bx) — oo. O
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We shall also need the following consequence of (1.3.5) and Lemma RBS
1.3.6,

ConseQuENCE 1.3.8.  Let P = P(l) be the standard éaarabolic subgroup corre-
sponding to a subset | C A, and let X, € 5,'385 c D™, Suppose {%} c Disa
seguence which convergesin D% to Xs0- Then the sequence {®Pp(Xx)} C Dp also

. —RBS
convergesto X, inD' .

1.3.9. The action of G(Q) extends continuously to the partial compactifi-
cation D>, For any arithmetic group I'  G(Q) the quotient X o> = F\ﬁRBS
is called the reductive Borel-Serre compactification of X = M'\D. The image Xp
of the boundary component Dp is called a boundary stratum, of which there are
finitely many: one for each I'-conjugacy class of rational parabolic subgroups
P C G.If I is neat then X°° is (Whitney-)stratified by these boundary strata.
The projection D™ - D&° passes to a surjective stratum preserving mapping
XB5 _, X" whose restriction to X is the identity.

2. Linear symmetric spaces. The main result in this section is Theorem B
(82.8) which describes the topology of the reductive Borel-Serre compactification
of certain convex polyhedral cones.

2.1. Throughout this section, G denotes a connected reductive algebraic
group defined over Q, and p: G — GL(V) denotes a faithful rational representa-
tion of G on some rational vectorspace V. Let G = G(R)? denote the connected
component of the group of real points. We assume that G acts with an open orbit
C C V =V ®q R such that the stabilizer K = Stabg (€) of a chosen basepoint
e € Cis a maximal compact subgroup of G. Then we may identify the group
G ¥ Aut’(C) ¢ GL(V) with the connected component of the group of linear
automorphisms of V which preserve the orbit C. The vectorspace V admits a
rational inner product (-, -) so that

C={xeV|(xc)>0V¥ceCT—{0}}

coincides with C (and G = G! ¢ GL(V)). Then C is a self adjoint homogeneous
rational cone in V. We shall assume for simplicity that C isirreducible over Q
which implies that the split component Ag = Sg(R)° is 1-dimensional, and acts
on V by homotheties. (The results of this chapter easily extend to the case that
C isreducible, and will eventually be applied to the group G, of Section 4.)
Fix once and for al a basepoint e € C which is rational, e € V(Q). Let
g = ¢dp denote the Cartan decomposition corresponding to the choice of maximal
compact subgroup K = Stabg(e) and let ¢: g — End(V) denote the differential
of p. Then ¢ determines an isomorphism p — V by X — ¢(X)(€) whose inverse
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we denote by a+— T, € p. The vectorspace V admits a Jordan algebra structure
such that, for any x € p, the mapping ¢(x) € End(V) is Jordan multiplication
by the element ¢(X)(€) € V. In other words, ae b = ¢(Ty)b for al a,b € V.
It is customary to drop the explicit mention of ¢ and to write ae b = T4(b).
The basepoint e € C C V is the identity element of the Jordan algebra. For all
a,b,x € V and for al s € R we have Tarsh(X) = Ta(X) + STp(X). The cone C is
given by C = {x? | x € V isinvertible} and its closureis C = {x* | x € V}.

2.2. Standard partial compactification. The standard partial compactifi-
cation of C is the Satake partial compactification which corresponds to the rep-
resentation p. It may be explicitly described as follows.

For each idempotent ¢ € V the associated endomorphism (given by Jor-
dan multiplication) T.: V — V is semisimple with eigenvalues 0, % 5, and 1.
The “Peirce decomposition” V ¥ Vo @ Vl @ V; is the corresponding eigenspace

decomposition. Define boundary components Cole) = |nt(C N Vo) and Cy(e) =
Cole—¢) = |nt(C N V1). These boundary components are rational if the cor-
responding idempotents ¢ and e — ¢ are rational elements of V. The subgroup
P = Normg(Cy(€)) which preserves Cy(¢) is a maximal parabolic subgroup of G.
If e isrational, then P is the real points of a rationally defined maximal parabolic
subgroup P of G. Conversely, every maximal rational parabolic subgroup P C G
preserves a unique rational boundary component.

TheclosureC C V isthe digoint union of C and all its boundary components.
Let C* C V denote the union of C and all its rational boundary components.
Define the Satake topology on C* to be the unique topology so that: (1) for any
Siegel set Q C Cits closure Q C V in V coincides with its closure Q% in
the Satake topology, and (2) if y € C* is a point on the boundary, then for any
arithmetic group ' C G(Q), there exists a basis of neighborhoods U of y (in
the Satake topology) such that 'yU = U where 'y denotes the stabilizer of y
in I'. The existence of such a topology is essentially proven in [S1] §2, [BB]
Thm. 4.9, or [Z2] p. 340, although their proofs must be modified slightly so as to
apply to our G which is reductive, rather than semisimple. The standard partial
compactification cY of Cisthe space C* with the Satake topology. For any
rational idempotent ¢ € V the closure of Cyi(e) in CM is the standard partial
compactification of Cj(e).

Throughout §2 and §3 we let D = C/Ag denote the quotient of C under ho-
motheties. Denote also by p¥d=¢c™ /A (with the Satake topology) the quotient
under homotheties. For any subset S C C we denote by [§ C D itsimage in D.
The group G(Q) of rational points acts on the partial compactification D

ProrosiTion 2.2.1.  For any arithmetic subgroup ' C G the quotient F\BSjtd
is compact. If I' is neat, then F\ﬁStd is a stratified space with one stratum I N
P(e)\C1(€) /A for each I" conjugacy class of rational boundary components Cj (¢).
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2.3. Roots. Throughout the rest of this section we fix a“standard” minimal
rational parabolic subgroup Qo C G. This corresponds to a choice of a complete
set of mutually orthogonal rational idempotents {e1, €2, . . ., €r+1} (in other words,
eioe = 0fori #j, 6i2 = ¢,and eg +ex+ -+ 641 = €). The ¢ may be
ordered so that Qg is the normalizer of the “complete” flag of rational boundary
components

(2.3.1) Ci(e1) C Cie1+€2) C --- C Ciler+ - +er41) = C.

The canonical lift of Ag, (determined by the basepoint e € C) is Ag,(€) =
exp(>_RTg). If 4 € Hom(Ag,, R) denotesthe dual basisto the elementsexp (T;)
then the rational roots ®(Ag,, G) of G are {%(m — )} for i #j and the smple
roots A = Aq, (appearing in the unipotent radical of Qp) are

1 .
(2.3.2) o) = 5(7‘ —7i+1) for 1<i <.

The Dynkin diagram for G islinear and it corresponds to the ordering a1, acz, - . .,
ar of the simple roots (or to the ordering €1, €2, . . ., €, €r+1 Of the idempotents).

2.4. Reductive Borel-Serre boundary components. The immediate goa
is Lemma 2.4.11 which describes the closure of a single boundary component
in the reductive Borel-Serre compactification. Throughout §2.4 we fix a standard
parabolic subgroup Q D Qg corresponding to a subset | C A of the simple roots
asin (1.1.6). Write A — | = {am, amy, .-, amg} (Where L <myp <mp < --- <
mg < r). Then we obtain orthogonal idempotents

(2.4.1) dy

O = em+1+temezt - +em

61+62+“‘+6m1

dyr1 = emgritemge2 + - Hern
so that Q is the normalizer of the (partial rational) flag of boundary components
(2.4.2) Ci(dh) C Cy(dy+dp) C --- € Cy(dy +-- - +dge1) = C.
The canonical lift Ag(e) of the torus Aqg may be parametrized by elements
(24.3) AQ(te, tz, . ., tgra) = exp(siTa, + S2Ta, + -+ - + Sq+1Tdges)

where t; = e25. The torus Ag = Zs(R)? is given by Aq(t,t,...,t). It follows
from(2.3.2) that, when viewed as characters on Ag, the restrictions of the simple
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roots A — I = {am;, amy, - - -, amy } 10 Aq are given by
(2.4.4) am(Aqlty, ta, .- tge1)) = titg for 1< j <.
Let
(2.4.5) V= & Vi
1<i<j<qg+l

denote the (simultaneous) Peirce decomposition of V relative to this collection
di +dy + -+ dge1 = € of idempotents, where V;; = V(d;) and V;; = V%(di) N
V%(dj) for i #j (cf. [AMRT] Il, 3.8, p. 92 or [FK] Thm. 1V.2.1, p. 68). Then
Ag(ty, t2, . . ., tge1) acts on Vj; with eigenvalue titj for 1 <i,j < g+ 1. The Jordan
algebra structure on V restricts to arationally defined Jordan algebra structure on
each Vj; = V1(di) € V with identity element d; and with self adjoint homogeneous
cone Cy(d) =C N Vy(d) (for 1< i < g+1). Let G = Aut®(Cy(dh), Vi)). Then G|
are the real points of a rationally defined algebraic group G; and Ci(d;) = G;/K;
where K; is the isotropy subgroup in G; of the basepoint d;. Let pi: V — Vj
denote the linear projection which is determined by the Peirce decomposition.
Define

(2.4.6) it Lo(e) — G

by ¢i(9) = g | Ci(di). Thus there are two projections C — C;(d;): one given
by the linear projection p; and the second, ¢;, given by the composition C =
Q/Kg — Lo/Kg — Gi/K. The following lemma says that these projections
agree on points x = g - e which are in the orbit of the Levi subgroup Lo(€); the
discrepancy between these two projectionsis analyzed in the proof of Proposition
2.6.2.

Lemma 2.4.7. Forall g € Lo(e) andfor all i (1 <i < g+ 1) wehave
pi(g-€) =¢i(g-€) =7i(g) - di € Cy(dh).

Proof 2.4.8. Since Lg(e) is the centralizer of Ag(e) it follows that each Vij;
is preserved by Lo(e) and that the projection pj commutes with the action of
g € Lo(e) on Vj;. Furthermore, pi(e) = di. O

The mapping

(24.9 ¢QZ LQ(e) — Gy x Gy x - X Gq+1
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given by
¥o(9) = (g | C1(d1),g | Ca(d2),...,9 | Ca(dg+1))

is surjective with compact kernel ([AMRT] 11, 3.9 Prop. 10) and it induces dif-
feomorphisms Cq = Lgo/Kg = Cy(d1) X - - - x Cq(dg+1) and

(2.4.10) LPQZ DQ Dy x - X Dq+1
where D; = Cy(d;)/homothetiesfor 1 <i < q+1.

Lemma 2.4.11.  The mapping g induces a homeomor phism (which is smooth
on each boundary component) between the reductive Borel-Serre partial compact-
ifications,

(2.4.12) Wo: Dp > = Dy o x Dy> x -+ X Dgey

Proof 2.4.13. Each parabolic subgroup of G; x Gp x --- x Gg+1 is of the
form Ry x Ry x --- x Rg+1 With R parabolic in G;. O

2.4.14. The next immediate goal is Corollary 2.6.3 which describes the pro-
jection from the reductive Borel-Serre compactification to the standard compact-
ification. To describe this projection we must associate to each rational parabolic
subgroup of G a maximal rational parabolic subgroup.

The RBS boundary component Dg appears in 5§BS for every parabolic sub-
group P O Q. However the ordering of the roots determines an ordering of the
maximal parabolic subgroups containing Q. Define

(2.4.15) P = Q" = Norm(Cy(d1))

to be the first maximal parabolic subgroup in this ordering. It corresponds to
the single idempotent di. Set Cop = Cyi(e — di), Go = Aut(Co, Vo(d1)), Do =
Co/homotheties (and C = Cl(dl), G = AUt(Cl,Vl(dl)), D; = Cl/homotheti ES)
As in (24.9) and Lemma 2.4.11 set ¢p: Lp — Gy x Go and Wp: D>

=RBS _ =RBS
Dy " xDg .

Lemma 2.4.16. Suppose Q' = P = UpG1Gq as above. There exists a rational
parabolic subgroup H C Gg with corresponding reductive Borel-Serre boundary
component Doy C Dy~ so that

wp(DQ) =D; x DO,H Cc Dy x BgBS.
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Proof 2.4.17. The image of Q under the composition

QcP Lp G1 x Gg

vp ¥p

is of the form G; x H for some parabolic subgroup H C Go. |

2.4.18. These spaces and mappings fit together in the following diagram.
The composition across the top row is ¢; and the composition across the middie
row is @j.

C=P/Kp —— Cp=Lp/Kp HJ—> CixCh —— G
vp P

| | l |

D=P/KpAp —— Dp=Lp/KpAp —— D3 xDy —— D
dp Yp

H | l

D= P/KpAp E— DQ = LQ/KQAQ E— D]_ X DO’H
®q Wp

2.5. Peirce coordinates. The Peirce decomposition gives rise to a coordi-
nate system on C which is analogous to the Siegel coordinate system of Piatetski-
Shapiro for the case of Hermitian symmetric spaces. Let P O Qq be a standard
maximal rational parabolic subgroup of G, (see (2.3.2)) say, P = P(A — {ax}) for
some simpleroot ax € A = Ag,. Then P = Normg(Cy(€)) where e = eg+eot- - -+ey.
Let V = Vi(e) & V%(e) @ Vo(e) denote the resulting Peirce decomposition of
V (with into eigenspaces of T.). Let \p(t1,tg) = exp(s.Te + SoTe_e) denote the
parametrization of Ap asin (2.4.3), witht; = e fori = 1,0. Letv = (vq,V1,V0) €
Vi@ Vs @ Vo, ’

Lemma 2.5.1. Inthese coordinates, the action of P on V isgiven by

A M N\ [v1
g-.v=|/0 C D Vi
0 0 B/ \v

(where A, M, N, C, D, and B arelinear mappingswhich depend on g.) Furthermore,
() gelLpiffM=0,N=0,D=0.
(2) The element g = Ap(t1,to) € Ap isgiven by

2 0 0
Ap(t1,t0) =] 0 titg O
0 0 3



1110 MARK GORESKY AND YUNG-SHENG TAl

(3) Theroot function ff, isgiven by
fsk(u/\P(tl, to)me) = taty *

for any u € Up, Ap(t1,tp) € Ap and m € Mp.

@ IfgeUpthenA=1landB=1.

(5) The orbit of the basepoint e = (¢,0,e — €) under Lp isthe product C;(e) x
{0} x Ci(e—e).

Moreover, there exists a family of bilinear forms h;: V%(e) X V% (6) — Vo(e) de-
pending smoothly on a parameter t € Cy(e) so that the cone C is given by

C={(t,w, 2 evl@v% ®Vp |t e Cyandz— hy(w,w) € Co(e)}

in analogy with the well-known inequality (cf. (7.5.2)) which, in the case of a
Hermitian symmetric space, defines a Segel domain.

Proof 2.5.2. The 1-parameter group A(t) = A(t1,1) = exp(siTe) isin the
center of the Levi quotient Lp and it has the property that (cf. [AMRT] 1, 3.3
and [MF] Ch. 2 §2),

P={geG|lim ADgA(t) lexists}.

Then A()-(v1, V1, Vo) = (t2v1,t1v%,vo). Writing

M
C
W

«Q
I
<C?>»
WO Z

we see that

A tM 2N
Mg\~ t=|tlu cCc ],
t=2v tw B

which impliesthat U =0, V =0, and W = 0. Moreover, g € Lp(€e) = Zp(\(t)) if
and only if A(t)g\(t)~* =g for al t, which impliesthat M =0, N =0, and D = 0.
This proves parts (1) and (5). Part (2) follows from the definition of A(ty,tp) and
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part (3) is a restatement of (2.4.4). Part (4) follows from the observation that the
projection

— (A, B)

co >
o<
w oz

is a group homomorphism P — G; x Gg whose restriction to Lp agrees with
(cf. Lemma 2.4.7). Since G1 x Gy is reductive, the unipotent radical Up isin the
kernel of this mapping.

The “moveover” part of this theorem will not be needed in this paper and is
included for completeness. It is proven in [T]. The bilinear form h(v, v) isin fact
given by the “quadratic representation” [FK] hy(v,Vv) = P(v)(t) = 2v(vt) — v2t. O

2.6. Convergence. Fix any point w € D™®° Then w lies in some RBS
boundary component, say Dq, with normalizing parabolic group Q = Q(R). Let
P = Qf (cf. (2.4.15)) be the maximal parabolic subgroup which is first among the
ordering of all maximal parabolic subgroups containing Q. Then P = Norm(Cy(¢))
for some rational idempotent ¢ (denoted d; in §2.4.14) which determines a Peirce
decomposition V = Vi(e) ® V%(e) @ Vo(e). If v = (vl,v%,vo) € V then we will
write [v] = [vi Vi Vo] € D for its homothety class. Set C; = C N Vj(e),
D; = Ci/homotheties, and G; = Aut®(C;, Vi(¢)) fori = 1,0. Then (2.4.9) ¥p: Lp —
G1 x Gy induces Wp: 5,588 ~ 5?88 X EEBS. The linear projectionspi: V — Vi(e)
determine projectionsp;: C — Cjand pi: D — D;j (fori = 1,0). By Lemma2.4.16
we have

(2.6.1) wp(DQ) =Dy x DO,H C D1 x BCF;BS

for some rational parabolic subgroup H C Gg, and we write Wp(w) = (W1, Wp).

ProPosiTiON 2.6.2. Let {yx} C D be a sequence. If yx converges to w in the
reductive Borel Serrecompactification D then thefollowi ng two conditionshold,

(1) The segquence yi convergestow; € D1 C D™ in the standard compactifi-
cation of D and

(2) the sequence po(Yk) converges to wop € Doy C BEBS in the reductive
Borel-Serre compactification of Dg.

Conversely, suppose {yk} C D iscontained in a Segel set and satisfies condi-

tions (1) and (2) above. Thenyx — win D™,

CoroLLARY 2.6.3 The identity mapping D — D has a unique continuous
extension

1= G 5RBS R Bstd
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which takes boundary components to boundary components. For any maximal ra-
tional parabolic subgroup P = P(¢) C G therestriction y | EEBS is given by the
composition
Bl|§Bs 5?35 o 5555 5?35 de
[ 1 BGy

(where D; = Cj(e)/homotheties and with Wp as in (§2.4.18)). A RBS boundary
component Dg is contained in . ~1(D4) iff QT = P. O

Corollary 2.6.3 is essentially proven in [Z2], however we need a dlightly
more explicit version than appearsin [Z2].

2.6.4. Proof of Proposition 2.6.2. For i =1,0, denote by ®;: D — D; the
composition along the middle row in the diagram in §2.4.18. The proposition is
not trivial because the mapping ®1: C — C; does not necessarily agree with
the linear projection p1: (v1,V 1 , Vo) — V1 given by the Peirce decomposition. For
v € C writev = uame relative to the Langlands decomposition P = UpAp(€)Mp(€)
of P. Using Lemma 2.5.1, write

A 0O 2 0 0 I M N
(265 m=|0 C 0|, a=Xp(ty,tg)=]|0 titg O|,u=|0 C D
0O O B 0O O '[% 0O 0 |

relative to the Peirce decompoasition V = Vi (€) & V% (e) @ Vo(e). Then

€ t2Ac + t3N'B(e — ¢)
(2.6.6) v=uam| 0 |= t2D'B(e — ¢)
e—e t2B(e — ¢)

the first and last coordinates of which are pi(v) and po(v) respectively. On the
other hand by Lemma 2.4.7,

Werp(v) = Wp(ame) = (2A¢, t3B(e — €)) € Cy(e) x Ci(e— ¢).

Hence,

(26.7) [Po(V)] = Po([V]) € Do,

but [ p1(v)] # ®1([v]) € D1 unless N'B = 0.

Suppose the sequence {yx} converges in D% tow e Dq. Sincew € Dg C

5588 we have, (by Corollary 1.3.8 and Lemma 2.4.11),

®p(yk) — Win Dp>> > Do x Dy
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It follows that Do(yi) — Wo in Do > (and that ®4(yi) — wi in DFES). By (2.6.7)
this implies that po(yk) — Wo Which proves (2).

To prove (1), we may assume the parabolic subgroup Q is standard, that it
corresponds to a subset | C A of the simple roots A which occur in the unipotent
radical of Qo (cf. §2.4), and that it normalizesthe partial flag (2.4.2) corresponding
to the ordered set of orthogonal idempotents dy + do + - - - + dgr1 = €. Write

(2.6.8) Yk = Ukaxmy[€]

relative to the canonical Langlands decomposition Q = UgAg(e)Mq(e), where
[e] € D denotes the homothety class of the basepoint e € C. By Lemma RBS
1.3.6, the sequence my may be chosen so as to converge to some limit m,, €
Mg(e). If ' c G(Q) is an arithmetic group, then the quotient Uq/(I N Ug) is
compact. Hence there exists a compact subset F C Uq such that Ug = F.(I NUg).
So we may write ux = U, where 4 € T N Ug stabilizes the point y; € Dy
and where uy lies in the fixed compact subset F C Ug. The sequence {yk}
converges in the Satake topology to wy iff the sequence v, e = uamyle] € D
also converges to wy. So, replacing yk by v, Ly if necessary, we may (and will)
assume the elements uy in equation (2.6.8) remain within somefixed compact subset
F C Ug. Since the {my} also remain within some compact set, the elements y
are contained in a Siegel set.
Let us write

V=V ®Ved - ®Veprg1® P Vi
1<i<j<g+l

Then the Lg orbit of the basepoint e = (dy,da, ..., dg+1,0) is
(2.6.9) Cq = Cy(d1) x Cq(d2) x - -+ x Cq(dge1) x {0},
so the point mye may be expressed as
M€ = (Zuk, Z2ks - - -+ Zg#1ks 0) — Mo€ = (Z1,00, 22,005 - - - 1 Zgl,001 0)-

Asin (2.4.3), write ax = A(tyx, tok, - - -, tgrik)- By (2.4.4), and Lemma 1.3.6 we
have

t1k ok gk
— — 00, — — 0O0,..

(2.6.10) , .
tok t3k to+1k

— OO

while

axmge = (tikzl,k, t%,kzz,k, e ,tc21+1,kzq+1,k’ 0).
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But Uq preserves the flag Vi1 = Vi(d1) C Vi(dp +d) C --- C V hence
(26.11)  wame = (t,z1x, linear combinations of {t3zx} for i > 1)

and the coefficients (of the linear combinations) are restricted to lie in some
compact set. But (2.6.10) implies that, modulo homotheties,

Yk — [21,00:0:0:...:0] =wy € Dg

in the “usual” topology. Since {yk} is contained in a Siegel set it follows that
Yk — Wi in the Satake topology also. This completes the proof of (1).

Now let us prove the conversg, i.e., suppose that {yx} C D is contained in a
Siegel set, yx — Wy € D" and po(Yk) — Wo € BSBS. By Lemma 1.3.6, to show
that yx — w € D> we must verify that

(@ Pg(yk) — wand
() fRAy) — coforal ach—1.

In order to verify (@) it suffices (see the diagram in §2.4.18) to show that (i)
®1(yi) — wy in Dy and (ii) Po(yi) — Wo in Dy, But (ii) follows from (2.6.7)
and the assumption that po(yk) — Wo. So we must verify (i). Choose any lift
vk € C of yx € D and write vy = ukaxmge relative to the Langlands decomposition
P = UpAp(e)Mp(€) of P. Since {vi} liein a Siegel set, the elements ux and my
lie in some compact set. Asin (2.6.5) we may write

2, 0 0
(2.6.12) ax = Ap(trk tox) = | 0 toktox
0 0 t§
and
Ac 0 0 I ML N
(2.6.13) m=[0 C O, adu={0 C D
0 0 Bx 0 O |

Each family of matrices Cy, Ci, Dy, M}, Ny is contained in some compact set of
matrices, while the Ax and By are contained in compact sets of invertible matrices.
Since ykx — [w1:0:0] in the Satake topology, it does so aso in the usual topology,
so it follows from (2.6.6) that

(2.6.14) tyloe — 00

(because the first coordinate dominates the second and third coordinates). From
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this it also follows that p1(yk) — wy in D; and also that
p(Uy yi) = pa(axmyfe]) = [tf Ace:0:t  Bi(e — €)] — [wy:0:0]

as well. So, by Lemma 2.4.7 we have

®1(yk) = P1(Ug Vi) = PrU k) — wy

which completes the proof of (i) and hence also the proof of (a).
Now let us prove part (b). Write A — | = {am, @my, - - -, Qmg,, } @S iN §2.4,
and parametrize Ag(e) by elements A\q(ty,to, . . ., tqr1) asin (2.4.3). Then

Ap(ty, to) = Ao(ty, to, to, - . ., T0).

Write vic = ugaxmge relative to the Langlands decomposition Q = UoAg(e)Mg(€)
and st & = Agltaktok- - - tqrak). BY (24.4) and (2.6.14) we have f9(yi) =
t1 ko, L — oo where 8 = am, is the first of these smple roots. It follows from
(2.6.7) that, for each of the remaining simple roots 3 € A — |, 3 # am, We have
f;(po(yk)) = f/g?(yk). Hence these also diverge, by hypothesis (2) and Lemma
1.3.6. This completes the verification of condition (b). O

2.7. Polyhedral cones. A polyhedral cone o C V is a closed convex set,
o={XeV|4(X)>0withi=1,2,...,k}

for some finite collection {¢1,/¢2,...,¢} of linear functions ¢;: V — R. The
span L, of o isthe smallest vector subspace of V which contains o. A proper
face 7 of o isthe intersection of o with a supporting hyperplane (containing the
origin). It is again a (closed convex) polyhedral cone. The “interior” o° of o is
the complement of its proper faces. The polyhedral conec issimplicial if dim(o)
equals the number of 1-dimensional faces of o.

The vectorspace V is defined over the rationals, V =V ®g R. A polyhedral
cone o isrational if it is possible to find linear functions {¢1, ¢2, . . ., ¢k} defining
o which are defined over the rationals. In this case, al the faces of o are rationa
as well.

Levma 2.7.1. ([AMRT] I, 43, Thm. 1, p. 113) Any rational polyhedral
coneo C C* iscontained in the closure of a Segel set. Theintersection o N Cis
contained in a Segel set.

Thus, for any polyhedral cone o C C* such that ¢° ¢ C we may identify o
with the closure 7° ¢ T of ¢© (in the Satake topology).
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Let 0 C C* beapolyhedral cone. Let L, be the linear subspace of V spanned
by o and let ¢ € L} be an element in the perpendicular complement. Let {v} c C
be a sequence of points, say vk = (V1k,V2k) € L# @ L,.

Definition 2.7.2. We say the sequence vk — C+ oo if
(1) the sequencevik — cin L} and
(2) for every x € L,, thereexists N sothat k > N = v — X € 0.

The following proposition will be needed in §7.9.2 and §7.9.4, but it is most
convenient to prove it here.

ProPosiTion 2.7.3.  Let {vk} C Cbeasequenceand supposethat vy — c+ooo
for some polyhedral cones ¢ C* (with o°  C) and for somec € L. Supposethe
sequence [vk] € D convergesin the reductive Borel-Serre compactification to some

point w € D Let/ e Vbe any element and suppose {/x} C V isa sequence
which convergesto ¢. Then for k sufficiently large, the sequence vy + ¢k is contained
inthe cone C and its quotient modulo homotheties [vi + ¢k] € D convergesin DS

to the same point w. (In particular, the sequence [vg + £] — w also.)

Proof 2.7.4. We must show that the sequence [vx+4x] € D iscontained in a
Siegel set and satisfies conditions (1) and (2) of Proposition 2.6.2. The interior o°
of the polyhedral cone o may be embedded in the interior (¢”)° of a polyhedral
cone ¢/ C C* of top dimension. (There are severa ways to do this. If o is a
polyhedral cone in a polyhedral decomposition Z of C, then ¢/ may be taken to
be the convex hull of the star St(c).) Then v — ooo’. It follows that, for any
¢ €V, there exists N so that whenever k > N we have v+ ¢ € (¢/)° C C, so the
same is true for the sequence vy + 4. By Lemma 2.7.1, the sequence vi + /k IS
therefore contained in a Siegel set.

The limit point w lies in some RBS boundary component, say, Dg. Set
P = P(e) = Qf as in (2.4.15) above. As in (2.4.6) and (2.4.11) the decom-
position Lp ¥ G; x Gg induces Wp: 5,585 = 5?85 X EF;BS with Wp(Dg) =
D1 x Doy by Lemma 2.4.16 (for some rationa parabolic subgroup H C Gg =
Aut®(Co(e), Vo(e))). Set Wp(w) = (Wi, Wo). Write vy = ugaymy relative to the Lang-
lands decomposition of P. Then ax, ux, and my are given by matrices (2.6.12),
(2.6.13). Since [vk] — [wj:0:0] the same argument as that following (2.6.13)
gives t2,to 2 — co. Moreover, since vy — ocoo’ we have

t37k<Bk(e— €),e—€) = (V,e— €) — oo.

But {By} is contained in a compact set of invertible matrices, so we aso have
tg,k — oo. It follows from (2.6.6) that adding a constant ¢ = (zl,z%,zo) will not

affect the limiting homothety class. It follows that [vi + ] — [wy:0:0] in p
which verifies condition (1) of Proposition 2.6.2.
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Condition (2) is verified by induction on the rank of G. For sufficiently large
k we have

Po(Vk) € Po((c")°) C Co(e)

and [po(vk)] converges in EEBS to the point wp. By induction, the sequence

[ Po(Vk) + po(%k)] € Do aso converges to lim[ po(vk)] =Wo in BSBS. m|

2.8. Blowups of polyhedral cones. Let 0 C C* C V be a rational poly-
hedral cone with ¢° c C. Define [¢°] ¢ D and [o] C D™ to be the guotients
modulo homotheties. The RBS blowup [¢]78S c D™ is the closure of [¢°] C D
in the reductive Borel-Serre compactification of D. The restriction of the mapping

1: D = D™ to [0]R8S will be denoted
(2.8.1) o [0]F8S = [o].

THeorREM B. Let C C V be a rational self adjoint homogeneous cone in a
rationally defined real vectorspace. Let o« C C* bearational polyhedral conewith
o°  C. Then both [¢]RBS and [¢] are compact and contractible. Moreover, each
admitsthe structure of a cell complex which isthe closure of thesingle* open” cell
[0°], such that 1, [0]RBS — [o] isa cellular mapping with contractible fibers.

(In fact, we believe that [¢]™8S is homeomorphic to a closed ball.)

First we describe the fibers of the mapping u,. Let ¢ C C* be a rational
polyhedral cone with o° c C. The interior of each face of o is either contained
in C or it is contained in some rational boundary component of C. Suppose
71 C o N Cy(e)* is a proper face of o whose interior 7P is contained in the
proper rational boundary component C4(e) with normalizing parabolic subgroup
P = P(e). Let pi: V — Vi(e) denote the linear projection (for i = 1,0). Set
Di = Ci(e)/homotheties (for i = 1,0) and let Wp: Dp — D3 x Do denote the
diffeomorphism of (2.4.18). Define the rationa polyhedral cone

(2.8.2) T0 = po(U) C Co(e)*.

Lemma 2.8.3. Foranyzec [rf] C Dy wehave u;1(2) C 5?85 and

Wn((110) (@) = {2} x [10]® c D1 x Dg->

where [70]RBS denotes the closure of [7§] C Do in the reductive Borel-Serre com-
pactification of Dp.

Proof 2.8.4. First let us show that Wp(u,) 2(2) C {Z} x [70]"ES. Fix

we u;i2 c D"°°, Then wliesin some RBS boundary component Dq for which
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P = P(c) = Q' (cf. (2.4.15) and Corollary 2.6.3). Put Wp(w) = (z,Wo) € Dy x D,
Since w € [¢]™8S, it is alimit of points yx € [¢°]. By Proposition 2.6.2, yx — z
in D™ and the sequence po(Yk) € [78] converges in ESBS to the point wp. This
proves that wo € [70] S as claimed.

Now let us verify the reverse inclusion. We will show that Wp(u,1(2) O
{z} x [78]; then the full statement follows from the fact that ;5 %(2) is a closed
subset of D™, So choose Wo € [78]. Then there is a point vo € 0° so that
[ Po(vo)] = wo. Also, choose any lift Z € Cy(e) of ze D1 and let z € o° be any
sequence so that z; — Z in the Satake topology of C* and hence also in the usual
topology of V. Then po(z) — 0. Now consider the sequence

V= %+,

IPo(zd) |

Then vk € o° because ¢° is a convex cone; in particular this sequence liesin a
Siegel set. Moreover, [vk] — zin D™ because the homothety class is dominated
by the first term, while [ po(vk)] — [po(Vo)] = Wop in Dg. By Proposition 2.6.2 this
implies that the sequence [vik] € [¢°] convergesin D™ to the point Wp l(z, Wo)
as claimed. |

2.8.4. Proof of Theorem B. Since o C V is a closed convex polyhedral
cone, it admits the structure of a subanalytic set, and its quotient modulo homoth-
eties[o] is compact and is subanal ytically homeomorphic to a convex polyhedron.
The subset [o]RBS also admits the structure of a subanalytic set [Ha], [Hi] so that
the mapping 1,: [0]"8S — [o] is subanalytic. (To see this, it is necessary to
check that all the mappings involved in the definition of the topology on D>
are locally subanalytic.) Hence, both sets may be Whitney stratified so that the
mapping u., is a “weakly” stratified map.

Let z € [o]. Then zliesin the interior [79] of someface[r1] C [o]. If 77 C C
then the fiber 11 1(2) consists of a single point. Otherwise, 70 liesin some proper
boundary component Cy(e), in which case the fiber 1 1(2) has been identified by
Lemma 2.8.3 with a certain subset [o] RS (which is the closure in D> of the
interior [7§] of a certain polyhedral cone 7o modulo homotheties). By induction,
this fiber is compact and contractible. It follows that the mapping . is proper,
that [o]™BS is compact, and by Proposition 8.2 it is contractible.

Finally, we sketch a proof that [¢]RBS admits the structure of a cell complex,
although it will not be needed in this paper. First there is a “paving” of [¢]"8S
by “open” subanalytic cells. If 71 is a face of o then either 7 C C (in which
case i, H([79]) = P isacell) or else 70 liesin some proper boundary component
Ci(e), in which case 17 1(r9) = 0 x [70]"8S which is, by induction, paved by
cells of the form 79 x cell of [70]™BS. It can be shown that the closure of each
of these cells is a subanalytic set. But it follows from stratification theory that
whenever W is a compact subanalytic set which is paved by subanalytic cells,
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then these are in fact the cells of a cell complex: the attaching maps may be
constructed from Thom-Mather tubular neighborhood data. (Note that we have
not shown that this decomposition of [¢]™8S is a regular cell decomposition,
athough we believe this also to be true.)

3. Admissible polyhedral decompositions. In this section we define the
notion of a“sufficiently fine I'-admissible polyhedral decomposition” Z of a self-
adjoint homogeneous cone C, and we show (Theorem 3.7) that they are cofinal
in the collection of al IN-admissible polyhedral decompositions of C.

3.1. Asin§2, wesupposethat C C V=V ®qgR isarationaly defined self
adjoint homogeneous cone with automorphism group G = G(R), and quotient
under homotheties D = [C]. Let C* C V denote the union of C and all its rational
boundary components, and let D denote its guotient under homotheties, with
the Satake topology. Let ' C G(Q) be a neat arithmetic group. Let ~ = {o} be a
collection of rational polyhedral cones o C C*. The collection X is a polyhedral
cone decomposition of C* provided that:

(1) Eacho isaclosed polyhedral conein the (rationally defined) vectorspace
spanned by the 1-dimensional faces of o,.

(2) If o € Z then each face 7 of ¢ is aso an element of .
(3) Each intersection o N 7 is {0} or elseit is a common face of each.
(4) The cone C* is the digoint union

C*:HO_O

oET

of the interiors of the conesin Z.

Such a polyhedral decomposition is IM'-admissible provided that:
(1) For dl v €T and for any polyhedral cone o € %, we have yo € 3.
(2) The collection {o}/T isfinite.

Let us say that a closed subset S C D™ is r-small if, for each v €T, éther
SN~S=¢ or v acts as the identity on SN ~S. A polyhedral cone o C C* isT-
small if its homothetic quotient [o] C D™ isr-small. The cone decomposition X
is-fineif every cone o € ¥ is-small. Let us say that aclosed subset Sc D>
is [-sufficiently small if, for each v € T, either SN ~yS= ¢ or else v acts as the
identity on SN~S. A polyhedral cone o C C* with ¢° C CisT -sufficiently small
if the closed subset [¢]7S is I-sufficiently small. A polyhedral cone o ¢ C*
with o© ¢ Cy(e) is M-sufficiently small if the closed subset [¢]78S ¢ [Cia] >
is Ip-sufficiently small (where 'e = I' N P is the intersection of I with the
parabolic subgroup P which preserves the boundary component Cy(¢)). The cone

decomposition Z is I -sufficiently fine if every cone o, € Z isT-sufficiently small.
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(So thewords “small” and “fine” refer to the standard compactification; the words
“sufficiently small” and “sufficiently fine” refer to the RBS compactification.)

If m: T F\CStd denotes the quotient mapping and if o € C* isT-small,
then m | o is a homeomorphism onto its image; in other words the quotient
under I does not introduce any identifications on . Hence, aI'-fine polyhedral
decomposition of C* induces a (“ flat” ) regular cell decomposition of the standard
compactification F\—DsJtd =\C*/Ag. If the polyhedral decomposition X is sim-
plicial (meaning that it consists of simplicial cones), then the induced regular cell
decomposition of I’\iDStd isa (“flat”) triangulation.

Lemma 3.2. Suppose o C C* is a closed polyhedral cone. Let v € T and
suppose that yo = . Then v acts as the identity on o.

Proof 3.3. The interior of o is contained in some boundary component C’
(possibly C' = C). Let P = UpG1Gp denote the maximal parabolic subgroup which
normalizes C' where Gy = Aut®(C'). Let v1: P — Gy denote the projection. Then
the element ~ acts on o through its projection v1(vy) C I'" = v1(I"). Consider the
subgroup

M ={yer|+yo=0}.
This group is finite since it is contained in the subset
{Ver|yonenC #¢}

(which is finite by Lemma 2.7.1). Since I" is neat, we conclude that '/, = {1} so
~ € kervy = Z(C'). In other words, v acts trivially on C’, hencedsoono. O

3.4. Refinements. If Z is a (rational) polyhedral cone decomposition of
C*, a (rational) first barycentric subdivision of X is determined by a choice of
(rational) 1-dimensional cone (which is usually called “a barycenter”) ¢ € o°
in the interior of each cone o € Z, and consists of simplicia cones which are
spanned by 1-dimensional conesay, o>, ...,0x foreachchaino; C oo C ... C ok
inZ.

If = is a l-admissible polyhedral cone decomposition of C* and if £’ is a
(rational) first barycentric subdivision of < then X' is N-admissible iff the choices
o are [-compatible, i.e., for al v € I and for al o € £ we have Yo = vo. If
is N-admissible then by Lemma 3.2 there exists a I'-compatible set of choices of
(rational) barycenters.

LemmA 3.5. Suppose Z is a [N-admissible polyhedral decomposition of C*.
Let L be a closed subcomplex of X such that its support |L| € C* isT-small. Let L’
be a choice of first (rational) barycentric subdivision of L. Then there is a choice
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of first (rational) barycentric subdivision 2’ of < which is ' -admissible and which
contains L’ as a subcomplex.

Proof 3.6. For each coneo € L and for each v € I the choice of barycenter
o of o determines a unique choice of barycenter yvo of vyo because |L| is I'-
small. Modulo I, there are finitely many remaining cones o ¢ I - L. Choose a
single representative cone o from each equivalence class, choose its barycenter
o arbitrarily, and translate by I'. By Lemma (3.2), this gives a well-defined -
invariant family of barycenters, so the resulting first barycentric subdivision of X
is M-admissible. O

THEOREM 3.7. Let X be arational cone decomposition of C*. Let ' ¢ G(Q)
be a neat arithmetic group.

(D If ZisT-sufficiently fine, then Z isT -fine.

(2) If Zisal-admissible(resp. I'-fing, resp. I'-sufficiently fine) decomposition
of C*and if " C I isan arithmetic subgroup, then Z is a I'"-admissible (resp.
[’-fine, resp. I''-sufficiently fine) decomposition of C*.

(3) SupposeXisal -admissibledecompositionof C*,and Y’ isal -admissible
refinement of Z. If X isT-fine (resp. I-sufficiently fine) then ¥’ isalso I'-fine (resp.
I"-sufficiently fine).

(4) If Zisl-admissible, then thereisarefinement X’ of X whichisT -fine.

(5) If Zisl-fing thenthereisarefinement ¥’ of = whichisT -sufficiently fine.

Proof 3.8. Part (1) follows from the fact that the mapping u: D
D™ commutes with the action of . Parts (2) and (3) follow directly from the
definitions.

Let us consider part (4). We shall prove that any rational first barycentric
subdivision of any I'-admissible decomposition Z is a I'-fine decomposition.

Let X be a I'- admissible polyhedral decomposition of C* and let ¥’ be a
-admissible first barycentric subdivision of Z. Let 7 € ¥’ be a simplicia cone
in the first barycentric subdivision of some simplicial cone o. We claim that 7 is
-small.

Write 7 = (5%%1...5) where 59 < 5 < -+ < 5 are faces of o (and
where (vgvy ... V,) denotes the simplicial cone spanned by 1-dimensiona cones
Vo,V1,---,Vr). SO

7 = ((Y&)(V8) - - - (V&)

Since «y acts linearly and takes 1-dimensional cones of ¥’ to 1-dimensional cones
of ¥, the intersection 7 N~ is precisely the ssimplex which is spanned by the 1-
dimensional cones which are in common among the two sets {%,5,...,5%} and
{(%), (&), - ., (7&) }. However, if § = 1§ then s = v5 and dim(s) = dim(s).
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Since the chain 9 < 51 < -+ < 5 is dtrictly increasing we conclude that s = §.
In other words, any 1-dimensional cone § = v§ which is in common between
these two sets is actually preserved by +. Therefore, 7 N 7 is spanned by 1-
dimensional cones, each of which is preserved by ~. The last 1-dimensional cone
§ liesin (the interior of) the boundary component C' whose closure contains 7.
Sincel isneat, and v preserves % it follows (as in the proof of Lemma 3.2) that
~ acts as the identity on C' and hence it acts as the identity on 7. This completes
the proof that 7 is '-small.

3.9. Therest of §3 is devoted to proving part (5) of Theorem 3.7. Let us
say that a polyhedral cone o C C is flag like if its intersection with the rational
boundary components of C form aflag, i.e., if there is a partial flag of boundary
components

(3.9.1) CicCyc---cCpy
and a (partial) chain of faces
TMCT12C---CTm=0

such that for each i (with 1 < i < m), the interior of 7, is contained in C;
and the intersection n, N 9C" = 1,1 where 0C = C — C; denotes the proper
rational boundary components of C;. If ¢ € X is a flag-like polyhedral cone
with associated partial flag (3.9.1), then there are associated rational idempotents
dq, dz,_ ...,0n so that C; = C4(dy),C5 = Cl(dl +d2),...,Cnh=Cy(dy +- - +dp).
Let pd): Cyq — Co(dy+da+---+d) and p{): Cy — Cy(dy+dp+- - -+d;) denote the
linear projections which are determined by the Peirce decompositions for these
idempotents.

Lemma 3.10. If oisl-small and flag-like and if each for eachi (with1 <i <
m — 1) the image

(3.10.1) pd(o)  Co(dy + - - - + ch)* is-small
then o is-sufficiently small.

The proof is by induction on the Q-rank of the linear symmetric space Cp,
which contains o (with the rank O case being trivial). For notational convenience,
let us assume that 0 C C = Cpy,. Let v € I' and suppose that o satisfies (3.10.1).
Let x € [0]RBSN~[0]R8S. We must show that v = x. Let u: D> — D™ denote
the projection. Then x1 := u(X) lies in some rational boundary component which

is associated to o, say

X1 = p(X) € [Ca(e)],
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wheree =dy +dy +--- +dg for somek, 1 < k < m. Since p commutes with the
action of I', we have x; = u(X) € o N yo hence (since o is I'-small),

(3102) YX1 = X1.

It also follows that v € T'p = ' N P where P denotes the maximal parabolic
subgroup which normalizes this boundary component. (Hence x € 5538.)

Recall (52.4) that the Levi quotient splits as an amost direct product, Lp =
G1 x Gg where G; = Aut%(C;(¢)), and that this splitting induces a homeomorphism

=RBS . sRBS  =RBS
Dpo> = D> x Dg

(where Dj is the linear symmetric space associated with the self adjoint homoge-
neous cone Ci(e), i = 0,1). Write x = (X1, Xp) relative to this product decomposi-
tion. The element ~ acts on the RBS boundary component Dp via its projection,
vp(y) = (v1,72) € Lp to the Levi quotient. In summary,

=RBS
X = (y1%1,70%0) € D1 x Dg

By (3.10.2), since I' is neat, we have v, = 1. Therefore v preserves the fiber
pH(xa) = {xa} x [0] B (by §2.4) where

70 = Po() C Co(e)".

(For simplicity we write py and py rather than p$? and p{9.) But xo € [70]?8S N
vo[ 0] RBS. The assumption (3.10.1) is that 7o is I'-small. Since g is contained in
the lower rank symmetric space Cy(e), it follows from the induction hypothesis
that voXo = Xo. In summary, vX = (v1X1, YoXo) = (X1, Xo) = X as claimed. O

311. If ¢ C C* is a closed polyhedral cone, then any first barycentric
subdivision of ¢ is both flag-like and simplicial. If o € X isflag-like with respect
to a chain of boundary components C; ¢ C, C --- C Cy then any polyhedral
cone 7 in any first barycentric subdivision of ¢ is flag-like with respect to some
sub-chain C; ¢ Cj, C --- C C;,. Let us say that a (closed) polyhedra cone
o C C* is compatible with I" if, for each v € T, either c Ny = ¢ or elseit is
aface of ¢. If ¢ C C* is compatible with I, then (as in the proof of part(4) of
Theorem 3.7) its first barycentric subdivision consists of small cells.

Lemma 3.12. Supposeo C C* isarational (closed) polyhedral cone. Then it
admitsarational refinement, each of whose polyhedral conesiscompatiblewith .

Proof 3.13. By taking arational first barycentric subdivision if necessary, we
may assume that o is flag-like with respect to some chain C; c C, C --- C Cpy
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of rational boundary components. For i = 1,2,...,m let P, = P(C;) denote the
corresponding normalizing maximal parabolic subgroups and define

ei={yel|yononC Zg¢andyoNonNCj=¢foralj>i}.

The flag-like assumption on o guarantees that I',; C P;. (Since the C; form
a chain of boundary components, for any v € I' and for any i # j we have
7CiNGj = ¢. Since o is flag-like, it is the digoint union of the subsets o N C;j.
So, if y €4 theny(eNC)N(eNGC) #¢. Hence vyCiNCi # ¢ so v € P(Cy).)

The discrete group I} = 14(I" NP;) acts on the boundary component C;, where
v; is the composite projection

Pi — Lp, = G1iGo; — G1,i/(Gyi N Go;).
By [AMRT] Il §4.3 p. 116, the set
r{,,i =vi(l,j) C r{

isfinite: itisasubset of {7 €'} | 7(c N C;)) N (0 N Ci) Z ¢} which is finite. Let
Mo C o beasetof lifts of these finitely many elements. Define ;) = UL, ;.
Thisis afinite set of elements which completely captures the possible nontrivial
intersections o N yo for v € I'. Asin [AMRT] 1l §4.3, choose finitely many
rational hyperplanes Hi,H», . .., Hy which define o (and its faces), i.e., so that
Lo =HiNHzN---NHyand sothat o = L, NHE, NHE,. .. NHY, (whereHj+
denotes a chosen halfspace on one side of the hyperplane H;). Then the connected
components of the complement

o—JH |yeryand1<j<m}
(and dl their faces) form a I'-compatible refinement of o. O

CoroLLARY 3.14. Let o C C* be aclosed rational polyhedral cone. Then o
has a rational refinement, each of whose cones are I'-small.

Proof 3.15. First choose a rationa refinement which is compatible with I.
Now choose a rational I-invariant first barycentric subdivision of that. Now the
same argument as in the proof of part (4) of Theorem 3.7 shows that each cell
in this barycentric subdivision is I'-small.

3.16. Proof of part (5). We will need to use the following lemmas from
PL. topology (e.g. [Hu] §3, Cor. 1.6; §4, 1.8; and §4, 1.9):

(1) If K and L are simplicial complexes and if |K| C |L| then for somer there
exists an rth barycentric subdivision L of L which contains a subdivision of K.
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(2) Let K and L be simplicial complexesand f: K — L asimplicial mapping.
Given any subdivision L’ of L there existsasubdivision K’ of K sothat f: K’ — L’
issimplicial.

(3) Let K and L be simplicial complexes, and f: |K| — |L| a continuous
mapping whose restriction to each cell of K is linear. Then there are subdivisions
K’ of K and L’ of L sothat f: K' — L’ issimplicial.

If o C C* is a flag-like polyhedral cone with respect to a flag (3.9.1) of
boundary components, we will say that the resulting projections pg): o — Co(di+
--+d) (for 1 <i <m-—1) arerelevant for o. If o is-small and flag-like and
if, for each relevant projection p the image p(o) is M-small, then the same is true
for every trandate vo (for any v € IN).

Now suppose that X~ is a I-fine, flag-like decomposition of C*. Modulo
I, there are finitely many pairs (o,p) where o € X and where p is a rel-
evant projection for . Order a collection of unique representatives (modulo
M) of these pairs in any way, (o1, p1),(02,p2),...,(on, Pn) (SO @ given polyhe-
dral cone may be repeated many times in this ordering). Let us suppose by
induction that we have found a refinement &' of = with the following prop-
erty:

(Pm—1) Whenever n € ' is a polyhedral cone which is contained in some o;
(where 1 <i < m—1) then pi(n) is M-small.

Now let us further refine ¥’ so that the same holds for all polyhedral cones
contained in o, Let K € 2’ be the simplicial complex consisting of all simplices
in om. Let L be the simplicial complex consisting of the polyhedral cone pm(om)
together with all its faces. By (3) above, there are subdivisions K’ of K and L’
of L so that the projection pm: K’ — L’ is simplicial. By Corollary 3.14 there
is a different subdivision L” of L so that the cones in L” are -small. Let L’
be the common refinement of L’ and L”. By (2) above, there is a subdivision
(let us cal it K"”) of K’ so that pm: K” — L” is simplicial. By (1) above,
there is a barycentric refinement K() which contains a subdivision of K" as a
subcomplex. By Lemma 3.5 this barycentric refinement may be extended to a
[-invariant barycentric refinement =) of =. Since the property of being -small
is inherited by closed subsets, every simplex in Z() whose support is contained
inNocpU---Uony issmal and al of their relevant projections are also small. This
verifies condition (P,) above and completes the inductive step. In summary, it
is possible to find a refinement consisting of simplices which are I'-small, and
for which every relevant projection is I'-small. This means that each simplex is
I-sufficiently small. m|

4. Hermitian symmetric spaces. The main result in this chapter is Theo-
rem C (§4.2). This, together with Theorem B (§2.8) are the main technical results
which are needed for the proof of Theorem A.
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Throughout the rest of the paper, we suppose that G is semisimple over Q
and that the associated symmetric space D = G/K is Hermitian. (This disagrees
with our previous use of the symbol D in §2 and §3.) We may assume that D
is a bounded symmetric domain in some CN. Denote by D its closure in CN;
it is a digoint union of boundary components. The action of G on D extends
continuously to the closure D. As above, let us fix a basepoint xop € D and a
standard minimal rational parabolic subgroup Qo € G.

4.1. Suppose F C D is arational boundary component. Let P C G be its
normalizing subgroup: it is a maximal rational parabolic subgroup of G. After
conjugating by some element of G(Q) (if necessary), we may assume that P
is standard, i.e, P D Qp. The Levi quotient Lp = P/Up splits as an almost
direct product Lp = GG, where Gy, acts transitively on F, and where G, acts
transitively on a certain self adjoint homogeneous cone Cp C 3. (Here, 3 C up is
the center of the Lie algebra up of the unipotent radical Up of P.) Furthermore,
Ap C Gy. The choice of basepoint xg € D determines basepoints zg € F, e € Cp;
it determines maximal compact subgroups Ky = K N Gp(Xo) = Stabg,, (20) C G,
K¢ = KN Gy(xo) = Stabg, (€); and it determines diffeomorphisms Gn/Kn = F,
Gg/Kg > Cp. The mapping

(4.1.) ¥: (Gn/Kp) x (G¢/K¢) =F x Cp — Lp/Kp = P/Kpllp

given by
(4.12) (9nKn, 9rKr) — 0ngrKp

is a diffeomorphism.

Let [Cp] denote the quotient of Cp under the torus of homotheties; hence
[Cp] ¥ Gy/K/Ap, and let Dp = P/KpAplp denote the boundary component of the
reductive Borel-Serre partial compactification DS corresponding to the parabolic
subgroup P. Then the above diffeomorphism ¢ induces a diffeomorphism

(4.13) We: F x [Cp] —— P/KpApllp = Dp

which extends to a stratum preserving homeomorphism (which is smooth on each
stratum),

(414) wp: fRBS % mRBS = BEBS C 5RBS

on the reductive Borel-Serre partial compactifications. Composing the canoni-
cal projection D = P/Kp — P/Kpldp with the diffeomorphism +»~1 and with
projection to the two factors F and Cp, defines smooth mappings ®,: D — F,
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¢¢: D — Cp,and ®p: D — [Cp], i.e,

(4.15) On(gKe) = gKpUpGy € P/KpllpGy = F
de(gKp) = gKpUpGh € P/KpUpGh = Cp
®y(gKp) = gKpARUPGH € P/KpAplpGh = [Cp]

for any gKkp € P/Kp = D. Then the following diagram commutes; the compo-
sition across the top row is ¢, and the composition across the bottom row is
@y,

D—)Lp/Kp; FxCp —— Cp
Y

(4.1.6) H | | |

D—— Dp «—— Fx [CP] —— [Cp].
Pp Yp

If {yx} € Cp C 3 is a sequence of points, we say that yx — ooCp if, for all
¢ € Cp there exists N = N(c) so that k> N = yx — c € Cp.

4.2. THeorem C.  Suppose G isasemisimplealgebraic group over Q, that D =
G/K is a Hermitian symmetric space, F C D isa rational boundary component,
P C G isthe maximal parabolic subgroup which normalizesF, Lp = GGy isits
Levi quotient, and Cp = G;/K; C 3 is the associated self adjoint homogeneous
cone. Let {xc} C D be a sequence of points. Assume that

(D) Pe(X) — ooCp,
~7RBS .

(2) Dy(x) convergesto some point ¢ € [Cp]  in the reductive Borel-Serre
compactification of [Cp], and

(3) Dn(xx) convergesto some pointt € F.

Then the sequence {xx} convergesin D™ tothe point X, = Wp(t,c).

4.3 Preliminaries to the proof. Write x = uubimKp € P/Kp = D relative
to the canonical rational Langlands decomposition P = UpAp(Xo)Mp(Xg) Of P.
Thereisacanonical positive generator 5 € x(Ap) of the (1-dimensional) character
module. We would like to say that the sequence {x} convergesin DS provided

@) B0 =f5(x) — oo and

(b') the sequence ®p(xx) converges in BEBS,
since (1) = (&) and (2),(3) == (b'). Unfortunately it is not true that conditions
(@) and (b') guarantee convergence in the reductive Borel-Serre compactification.
Instead, we must verify the criteria of Lemma RBS §1.3.6.
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4.4. First reduction. The limit point c lies in some RBS boundary com-
ponent Dq, of [Cp] which corresponds to some rational parabolic subgroup, say,
Q¢ € Gy. Then Q := Upiy,(Q,Gn) is independent of the choice of basepoint, and
it is the parabolic subgroup which corresponds to the RBS boundary component
Wp(F x Dg,) of D which contains the limit point X.. After conjugating by an
element of G(Q) (if necessary), we may assume that Q D Qo, i.e, that Q is
standard. We may also assume the basepoint xg € D is rational for Qp. Then
S =ixS(Qo) is arationally defined maximal Q-split torusin G and

(4.4.0 SCQCcQcPkPcG.

Let A = A(S G) denote the resulting set of simple roots. Then the (maximal)
parabolic subgroup P corresponds to the subset A — {3} (for some 5 € A), and
the parabolic subgroup Q corresponds to some subset | € A — {3}. By Lemma
RBS (§1.3.6) we need to show

(@ ®o(x) € Do converges to the point X, = Wp(t, €) € Dq,
() T(x) — oo foral acA—I

The mapping ®q: D — Dq factors as the composition in the following diagram,
which is easily seen (using 1.1.12) to be commutative,

D —— Dp<—;—|:><[cp]

Pp
Cbél llxdﬂQg

Dg «—— F x Dq,
W]

(where Q = vp(Q) = G,Q, istheimage of Q in the Levi quotient of P). Hypothesis
(2) and Corollary 1.3.8 guarantee that ®q,(P,(%)) — € € Dg,. Together with

hypothesis (3), thisimplies that ®o(Xk) — X, Which proves statement (a) above.
Moreover, it implies statement (b') above, that

(4.4.2) Pp(X) — Xoo in DR,

which we shall need in the next paragraph.
Now let us verify condition (b). By (4.4.2) and Lemma RBS (51.3.6) we have

£Qo(Pp(xQ) — oo for al o€ A— (1 U {B})

where Qg = vp(Qop) C Lp. Now apply (1.3.3) (with x replaced by xx, | replaced
by A — {5}, and Q replaced by Qo). This gives

f0(x) — oo foral a e A— (1 U{BY).
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Thus, in order to prove Theorem C (§4.2), it remains to show that the hypotheses
imply:

(4.4.3) F92(x) — o0.

The splitting Lp = GG, induces a splitting vp(Qo) = QonQor such that Qon
is a minimal rational parabolic subgroup of G, and Qg is a minimal rational
parabolic subgroup of G,, each of which has an associated canonical rational
Langlands decomposition:

(4.4.4) Qon = UohAon(0)Mon(z0)  Qor = UorAoe(€)Moe(€).

Hence the canonical rational Langlands decomposition of Qg is given by

Qo = Upix, (Uonlor)ix, (Aon(20)Aoc(€))ix,(Mon(20)Mor(€)),
S0 X« € D = Qo/Kg, may be expressed as follows:

— 10 (0 (0 00 00 i) (K
X = U ugg g 2y ag) mh mh? Ko,

Then

£2(x = B@gald).

Since ®h(x) = uWa®m¥) e Gn/K, = F converges, we see that the sequence a})
converges to some element agy € Aor. Hence, in order to verify (4.4.3) it suffices
to prove that 4(a) — oo.

Set yic = Dy(x) = u3YalImiIKo, € Gor/Kor  Cp. Then (al)) = £ (yi) so
it suffices to prove the following:

ProrosiTion 4.5.  SQuppose G is a semisimple algebraic group over Q, that
D = G/K isaHermitian symmetric space, Qo C Gisaminimal rational parabolic
subgroup and xg € D isa basepoint which isrational for Qo. Let S= So,(X0) € Qo
be the resulting maximal Q-split torus. Let A = A(S, G) denote the simple rational
rootsof G occurringinlg,. Fix 5 € AandletP = P(A—{3}) C G bethe maximal
rational proper parabolic subgroup corresponding to the subset A — {53}, with
Levi quotient vp: P — Lp = GG, and corresponding self adjoint homogeneous
cone Cp = Gy/K; C 3 with induced basepoint e € Cp. Let Qo = vp(Qo) N G, be
the corresponding minimal rational parabolic subgroup of G, and let fE‘M: Cp —
(0, o) be the resulting root function on Cp. Let {yk} € Cp be a sequence of points
and suppose that yi — 00Cp. Then f5% (yi) — oc.
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We do not know any simple proof of this fact, athough it is easy to verify
in specia cases (e.g., G = $(2n,R), J(n, 1), or the Hilbert modular cases). The
general proof requires explicit formulae for the roots of G. In §6.7 we will prove
the analog of Proposition 4.5 for algebraic groups G which are ssmple over R,
and in §6.8 we will prove proposition 4.5 for algebraic groups G which are ssmple
over Q. The genera case follows from this. (The converse of Proposition 4.5 is
false: the condition that yx — coCp aso implies that f(f’“(yk) — oo for a certain
additional characters 6 of Ay.)

5. Real roots of G. Throughout this section we suppose that G is a semi-
simple algebraic group defined over R (and for much of the chapter, G is assumed
to be simple over R). Most of the chapter consists of the explicit description of
the roots of G and their relationship to the associated Jordan algebras; these facts
are recaled from [BB], [AMRT], and [He]. We use this description to prove a
special case of Proposition 4.5 at the end of the chapter. Suppose A is atorusin
G and a = Lie(A) isits Lie algebra. So as to agree with the notation in [BS], in
this §5 only, we consider each root ¢ € ®(a,g) to be a linear functional on a,
and we denote the corresponding character of A by a — a®.

5.1. Let G be asemisimple agebraic group defined over R. Let G = G(R)°
be the connected component of the group of rea points, and let K ¢ G be a
maximal compact subgroup. This corresponds to a choice of basepoint xo € D =
G/K and a Cartan involution on G. Let g = gr = Lie(G) denote the Lie algebra
of G, with Cartan decomposition g = £ & p. We suppose the symmetric space
D = G/K is Hermitian. So there is an invariant complex structure J: p — p with
J? = —1. Extending J to a complex linear involution on the complexification
pc determines a decomposition pc = p+ @ p_ into *i eigenspaces of J; hence
gc =tcDp+Dp_. Let t C € bea(compact) Cartan subgroup and ®¢ = P(tc, ge)
be the roots of t¢ in gc. Then we have the root decomposition

gc=te® Y gb

pEPe

Asin [BB], [He] §VI (3.1) and §VIII (7.1), it is possible to choose root vectors
e, € go and vectors hy, € it such that

(1) [es e_p] =hy.
(2) ey =e_4 whenever e, € p.

(3) (hy) = 25;%;;? for all ¢ € dc.

Set x4 =€y +e_y, andy, =i(e, —e_y) and let 7. = {¢ € Pc | €, € p+}. Then
{X4: Yo }oer, form abasis of p. For any ¢ € ®¢ set €5 = 3(y, — ihy). The proof
of the following is a direct computation:
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Lemma 5.1.1. For all ¢ € ®¢ we have [3x,, €5] = €. O

5.2. In this section we recall the explicit description of the roots of G
relative to areal split torus, under the additional assumption that G issimple over
R. As in [He] §VIII (7.4), choose a maximal set of strongly orthogonal roots
{1 Y% -7} C Pc such that a = >{_; Rx is a maximal abelian subgroup of
p. (Here, and in what follows, we use the notation x; = X0 Yi = Yyt etc.) Let
®r = ®(a, g) denote the roots of a in g = gg, SO g = Z(a) + > 4cq, g®. (Here,
Z(a) denotes the centralizer of a in g.) Define y1,72,...,% € a* by

(5.2.1) i(x) = 26; (for 1<i,j <r).

Then each 4 € ®y is aroot of multiplicity one ([BB] §1.15, [AMRT] p. 185)
and there is an explicit description of ®g in terms of these elements. If D = G/K
isirreducible then there are two possibilities. The roots are the nonzero elements
in the collection

it
CDR:{%} - case C;
1<i<j<r
ity £y
Op = {71 ﬂ} case BC;.
" 22 Jicigjer '

Choose a linear order on the set of roots ®r. We assume that the ordering
{v1,72,...,%} is chosen so that i < j iff i > 7;. Then the resulting set of
simple roots

AR = {a1’a21‘ . ;OCI‘}
is given as follows:
ai:%(%—’riﬂ) for1<i<r-1
(522) ar = Yr case Cr
Qy = %'}/r case BCr,
and the positive roots @}, are given by

oF = {’Yi"”Yj} U {’Yi*’Yj} case C,
R 2 fi<i<j<r 2 Ja<i<j<r

* = 7iW} {Vi—w} il
(DR { 2 1<i<j<r U 2 1<i<j<r U { 2 }1§i§r case BCr

5.3. Parabolic subgroups. Let Qg bethe minimal (real) parabolic subgroup
of G whose group of real points Qo = Qo(R) is generated by N = exp(n) and
by Z(A) where A = exp(a) and n = > {g? | ¢ € ®%}. The parabolic subgroups
which contain Qg are called standard. Let 5 € Ag, say 5 = an in (5.2.2). Let
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P = P(A — {an}) denote the corresponding maximal proper standard parabolic

subgroup. In this section we will explicitly describe the Lie algebra of P.
Set Wp = X1 + X+ - - - + X4. Define

(5.3.1) u=Y" {g¢ | ¢ € O and p(wy) > o} .

The sumin (5.3.1) is over

it } {’Yii’Yj }
U , case C
{ 2 Ji1<i<j<n 2 f1<i<n T
j>n
it } {’Yii”/j } %
{ 2 Ji<i<j<n AR 1<i<n Uiz }1§iSﬂ case BC:.
j>n

(The possible values ¢(wp) are 0, =1, +2 so the 1-parameter subgroup generated
by w, acts on u with eigenvalues 0,1, and 2.) Set

(5.3.2) Up = exp(u) and Ap = [ Ker ().
j7n

Then
P=P(Ar — {an}) = Z(Ap)Up

has unipotent radical Up and Levi factor Lp = Z(Ap) = GG, for which the simple
(real) roots may be illustrated in the following Dynkin diagrams:

Qr Qr—1 a1

& 0—0.0 0000

P O0=0-20 0—0—0
Gh G,

Let m(a) = Z(a) N ¢ be the intersection of ¢ with the centralizer of a. This
“compact factor” appears in the minimal parabolic subgroup Qp and hence in
each standard parabolic subgroup. Write A, = exp(a,) and A, = exp(an) where

(5.3.9) ag = ZRXl ﬂ ker (vi) = ﬂ ker (i)
i=n+1 i=n+1

and

(5.3.9) an = Z Rx; = m ker (7).

i=n+1
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(Itisnot true that an=N1<j<p ker (ci) but (5.2.2) implies an C N1<j<n_1 ker (i).)
Then

Lie(Gy) =ay+ Z (g¢ + [g¢, gf‘b] Nm(a))

o=t(7i—7)/2
1<i<j<n

Lie(Gp) =an+> (g% +[g% g “I N m(a)),
é

where the second sum is taken over al nonzero ¢ in the collection

+yityi .
o€ {%} o in case C;
. n<i<j<r o
¢ € {% v %} ~ incaeBC,.
n<i<j<r n<j

5.4. Jordan algebra. Let

— o :7i+7jf 1<'<'<}
3 Z{g [¢= "5 forl<i<j<n

denote the center of u. The parabolic group P acts on 3 via the adjoint action.
The subgroup G, acts with an open orbit C = Cp = G, - e which is an open self
adjoint homogeneous cone in 3 with respect to the positive definite inner product
(x,y) = —=B(x, o(y)), where B denotes the Killing form and ¢ denotes the Cartan
involution. Then K, = K N Gy is the stabilizer of the basepoint e € Cp and we
obtain a diffeomorphism

(5.4.1) Gy/K¢ * Cp.

If we denote by g, = €& & p, = (EN g¢) & (p N g¢) the Cartan decomposition of
ge = Lig(Gy), then the differential of (5.4.1) gives an isomorphism

(5.4.2) pe = Ti(Gr/Ke) = TeCp = 3

which is given by x — ¢(X)(€) where

(5.4.3) ¢: g¢ — ENd(3)

is the differential of the adjoint action G, — GL(3). The vectorspace 3 has the
following Jordan algebra structure: for any a € 3 there is (by 5.4.2) a unique

element T, € p, such that ¢(Ty)(e) = a. Then ae b = ¢(Ta)(b) for a,b € 3. It
follows that the closure Cp = {X? | X € 3}.
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Foreachj (1<j<n)sete¢ = %(yj — ihy). It follows from Lemma 5.1.1 that
i 1 =
(5.4.4) g’ and [é)(j,ej] = €.

ProrosiTion 5.5.  Thecollection {e1, e, . . ., en} isa complete set of mutually
orthogonal idempotents of 3, and e = Zjnzl ¢j istheidentity element, relativeto this
Jordan algebra structure.

Proof 5.6. By (5.4.4), T, = 3% because [3X, €] =[3X, €] =¢j SO ¢je¢ = ¢
and ¢ e ¢ = 0 (for i 7 j). The collection is complete since this is a maximal
set of idempotents and Zj”:l Rx; is amaximal abelian subalgebrain p, = 3. The
identification of e with the basepoint isin [AMRT] p. 242. O

5.7. Root function. The minimal parabolic subgroup Qo C P determines a
minimal parabolic subgroup Qus = vp(Qo) N G, C Gy (Where vp: P — P/Up =
Lp denotes the projection to the Levi quotient). Associated to the simple root
B = an € Ar (cf. (5.2.2) and §1.2) we have the root function

f = Cp — (0,00).

If g € Qo isgiven by g = uam € Ug,,Aq,,Mq,, relative to the canonical real
Langlands decomposition of Qq, then f(ge) = a*n. It follows from (5.3.3) that
Y1 IS trivial on A, so by (5.2.2) we have,

an/2 ifn<r
f(ge) = am ifn=rincaseC
am'2 if n=r in case BC,.

ProrosiTioN 5.8. Suppose G isR-simple. Let {yx} C Cp be a sequence of
pointsin Cp and suppose that yx — coCp. Then f(yyx) — oo.

Proof 5.9. Sincee, isan idempotent, we have e, € 9Cp. Therefore (i, en) —
oo. Write yx = gke with g« € Qo. Then (gke en) = (€ 0gen) — oo where g7
denotes the transpose of g. Now let fy = €1, fo=e1+e, ..., fn=e1+---+en=¢€
The parabolic subgroup Qg is the subgroup of G which normalizes the flag

0C Vi(f)) c Va(fr) C --- C Vi(fn) =3.

In fact, for each m with 1 < m < n the maximal parabolic subgroup P
(which corresponds to the simple root o) preserves the subspace

3m= Z g(’Yi""Yj)/Z

1<i,j<m
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since it is the Lie agebra of the center of the unipotent radical of Pn. Hence
Pi1NnPyNn--- NPy preserves the flag 0 C 31 C 32 C -+ C 3n. S0 Qf, is the
subgroup of G which normalizes the flag

3 D Vo(f1) D Vo(f2) D --- D Vo(fn) = {0}.

But Vo(fn—1) = Vi(en) = g"" isonedimensional ([BB] §1.15, [AMRT] p. 185). Let
9" € Qp- Then g™ - en = Aep for some A = A\(g7) € R. Then X is aread character
of Qg it istrivial on Ug;, and on Mgy, and it coincides with yn on Agz, = Aqy,
(because g™ is the subspace of g on which Aq,, acts with weight ~,). Hence
(& gken) = m(@J(e en) = "1 — oo where gk = UM € Uqy, AgyMay,- It
follows that f(yx) = a)" — ooc. O

6. Rational theory.

6.1. In this section we complete the proof of Proposition 4.5. Throughout
we assume that G is an algebraic group defined over Q which is semisimple over
Q, and that D = G/K is a Hermitian symmetric space. We refer to the statement
of Proposition 4.5 for the definitions and choices of the following items, which
will be fixed throughout this chapter: Qo C G, Xg € D, S = Sg,(X0) C Qo,
AQ =A§G), g € AQ, P= P(AQ — {ﬁ}), vp: P — Lp = GhGy, Cp = Gg/Kg C
3 Cu=LielUp), € € Cp, Qo = 1p(Qo) N Gy, and f = 7% Cp — (0,00). Let
{y«} € Cp and suppose that yx — coCp. We must show that f(yx) — oo.

Throughout §6.2 to §6.7 we assume that G is simple over R.

6.2. We must compare the real roots and the rational roots. Let T be a
maximal R split torus in G with S ¢ T. We assume that T is defined over Q.
Choose a minimal real parabolic subgroup Po C G suchthat SC T C Py C Qp.
Let us denote the corresponding groups of real points by

Ag, = S(R)° C Ap, = T(R)° C Py C Qo.
Associated to these choices there are root systems ®g = ®(SG) and Pr =
®(T, G), positive roots ®F,, ®p (which occur in the unipotent radical of Py and
Qo respectively), and simple roots Ag C Pp,, Ag C ®p. A fundamental result of
Baily and Borel [BB] states:

LEMmA 6.3. For each ¢ € Ag there exists a unique simpleroot ¢’ € Ag such
that ¢ = ¢' | S. Let A, C Ar denote the resulting subset of Ag. If ¢ € Ag then

(6.3.1) ¢ ¢ Diffp|S=1

(i.e. theremaining simple roots aretrivial on S). O
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6.4. Theroot 3 € Ag corresponds (by Lemma 6.3) to a unique real root
B € Dg. It follows from (6.3.1) that 3 gives rise to the same maximal parabolic
subgroup,

P=P(Ag — {6}) =P(br — {6'})
because

Sar—{BN= [ ker(¢)CT(R)
pebr—{6'}

coincides with

S - {8 = [) ker()CSR).
debg—{B}

We obtain a minimal rea parabolic subgroup Pos = vp(Pg) N Gy C Gy and an
associated root function f5%: Cp — (0, ).

Lemma 6.5. Theroot functions fg,“ and f[?"‘f coincide.

Proof 6.6. Define

Tan= () ker(p)cCT
#ex(Tg

to be the maximal Q-anisotropic torus in T, where x(T)q denotes the group of
rationally defined characters of T. Then Agy = Tan(R)° € Mq,. Since Sc T is
a maximal Q-split torusin T, we have an amost direct product (cf. [B] §8.14),
T = S.T 4 from which it follows that

(6.6.1) Ap, = AgyAan.
In fact, this is a direct product since the intersection is finite but each factor is

torsion free. If a € Ap, decomposes as a = bba, in (6.6.1), then b isthe unique
element in Ag, such that

(6.6.2) #'(@) = ¢'(b) = ¢(b) for al ¢ € Ag,
since the corresponding elements ¢’ € A, form a rational basis of the module

X(T)g ® Q of rationally defined characters of T.
Now let y = ge for some g € Py, C Qp,. Decompose

(6.6.3) g = Uarmg = UagMp
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relativeto the canonical real Langlands decomposition Pg; = U (Pge) A(Poe)M(Por)
and relative to the canonical rational Langlands decomposition Qg
= U(Qor)A(Qor)M(Qor). Using (6.6.1), write ag = bbay with b € Ag, and
Dan € Aan. We claim that b € Aq,, and that ba, € M(Qqe). It suffices to show
that b € G, (from which it follows that bs, = agb™ € G, as well). By (5.3.3)
the linear part Ag,, is the intersection of the kernels of certain real simple roots
{a1,az,...,an} C Ogp. If a; ¢ AR then aj(b) = 1 by (6.3.1). If a; € A then by
(6.6.2), aj(b) = aj(ag) = 1, which completes the proof of the claim.

Now it followsthat g=u- b (baym) is the rational Langlands decomposition
of g, in other words, that b = ag. We conclude (again using (6.6.2)) that

£99(y) = #'(ag) = ' (D)5 (ban) = Blag)-1=13(y)
which completes the proof of the lemma. 0

6.7. Proof of Proposition 4.5 when G is R-simple. Let {yx} € Cp be a
sequence of points in the cone Cp with yx — ooCp. Then by Proposition 5.8, we

have 5% (yi) — oo, but by Lemma 6.5, {5 (yi) = 2 (). O

6.8. The Q-simple case. Throughout §6.8 to §6.9 we assume that G is
simple over Q@ but is not necessarily ssmple over R. By Baily-Borel [BB] and
Borel-Tits [BT], there exists an algebraic group G’ defined over a totally real
number field k such that G’ is absolutely simple (and hence is simple over R)
and

Res¢ /oG’ =G

(where Res denotes Weil’s restrictions of scalars). Let o4,...,04 denote the d
different embeddings of k into R and write k; = oi(k) = k7i. Set G; = (G’)”i. Then
there is an isomorphism of real algebraic groups,

GGy x- - xGy.

We have chosen a maximal Q-split torus S C G. There is an isomorphism over k
of tori, S S, where S' ¢ G’ is amaximal k-split torus (and so S is isomorphic
to a maximal Q split torus in Res,/(S)). Let § = (S)7 be the corresponding
maximal k;-split torus in G;. These tori are al isomorphic over R so we may
identify the root systems

(6.8.1) ®(S,G) « P(S,G) — P(S,G))
and corresponding subsets of positive and simple roots Ag = A(S, G), A(S, G'),

A(S, Gi) respectively. The chosen simple root 8 € A(S, G) corresponds to simple
roots i € A(S, Gj).
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The minimal and maximal rational parabolic subgroups Qo C P = P(Ag —
{B}) € G correspond to minimal and maximal k;-parabolic subgroups Qg C
P; C Gj. Then, as real parabolic subgroups, we have an isomorphism

PPy x-- xPq.

Write C = Cp = Gy /K, for the self adjoint homogeneous cone associated to P,
and write C; = Cp, = Gy,i /K, for the corresponding cones associated to P;. Then
we also have a diffeomorphism,

C¥CixCrx---xCq.

Each minimal parabolic subgroup Qo C G; determines a corresponding minimal
parabolic subgroup Qo¢i C G, with root function

fi =12 G — (0,00).

6.9. Proof of Proposition 4.5 when G isQ-simple. If y, € Cisasequence

of points, with yx — coC, then the corresponding factors yﬂ) € G aso satisfy

k') — 00Cj. Since G; is R-simple, we may apply (6.7) to each factor (replacing

Q by ki in the statement and proof of Case 1) to conclude that each of the root
functions fi(yﬂ)) — 00.

On the other hand, we claim that f5(yi) = fi(y\) for each i, from which
the result follows. Write yx = gke with gk € Qo. Then gk = (g(kl),...,g(kd)) €
Qo1 X - -+ x Qogd, each of which may be decomposed according to compatibly
chosen Langlands decompositions,

0 = el
However, by our identification (6.8.1) of the roots and the torus we have,
fa(yi) = A(a) = Ai(a) for each .
This completes the proof of Proposition 4.5. m|
7. Statement and proof of Theorem A.

7.1. Let G be asemisimple agebraic group defined over Q. Let G = G(R)
be the group of real points. Let us assume that G = Aut’(D) is the connected
component of the group of automorphisms of a Hermitian symmetric space D.
Let ' C G(Q) be a neat arithmetic subgroup. Set X = N'\D. Let ¥ = {Z¢} be a
I"-admissible collection of polyhedral cone decompositions of the homogeneous
cones Cr (asF runs over al the rational boundary components of D). In [AMRT]
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this data is used to construct a toroidal compactification thor of X. Let us say that
the collection of polyhedral decompositions X is I-sufficiently fine if, for every
rational parabolic subgroup P = P(F) the polyhedral decomposition 2 of C¢ is
I-sufficiently fine (where 'y = G, N vp(lC N P), with vp: P — Lp = GG, the
projection to the Levi quotient).

Let X"2° denote the reductive Borel-Serre compactification and let X°° denote
the Baily-Borel Satake compactification of X. Let

wRBS _ tor

d
X —— Xx X X ¢ XS

denote the diagonal inclusion of X into the product of two compactifications of

X, and let X denote the closure of the image of X in Xo° x Xy Let a € Xy,
and define

X@) = {be X% (b,3) € X} c X2,

Then X(a) = 616, (@) = 6, (@) where 61,6, denote the projections from X to

X 2% and X2 respectively.

THeoREM A 7.2.  Suppose the collection {Z¢ } of polyhedral cone decomposi-

tionsis I -sufficiently fine. Then for any a € thor the set X(@) is contractible.

In fact we will show that the set X(@) is canonically homeomorphic to a set
of the form [o]R8S which, by Theorem B, is contractible.

CoroLLARY 7.3. If the collection {Z¢} of polyhedral decompositions is T -
sufficiently flne then the resolution g: thor X
wtor

g: X5 —

is homotopic to a mapping
— X% which factors through the projection X8S _, xB8

Moreover it is possible to choose ¢’ so that g(S = ¢/(9 for each stratum S of
X The mapping g may also be taken to be the identity on the complement
K of aregular neighborhood of the boundary Xy" = Xy' — X. (Such a closed
subset K C X is described in [Le] and [Sa] where it is shown to be homotopy

equivalent to X.)

7.4. Proof of corollary. Choose atriangulation of X which isacompatible
with the gtratification [G]. In Proposition 8.2 we construct a homotopy inverse
Xz — X to the projection 6,. Take ¢’ to be the composition

<tor T ¢ 1 RBS K BB

Since rg(o’) C o for each (closed) simplex o ¢ X we seethat g/ (S) = pub17( =
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9927( = g(S for each stratum S of X . By Addendum 8.3 the mapping = may
be taken to be the identity on K C X. O

7.5. The remainder of §7 is devoted to the proof of Theorem A. Let us
recall some of the notation involved in the construction of the toroida reso-
lution. If we suppose that a € 8Ytz°r then its image in the Baily-Borel com-
pactification X lies in some stratum which we may take to be an arithmetic
quotient of some rational boundary component F. Let P be the associated max-
imal rational parabolic subgroup of G, so P = P(R) = Norm(F) normalizes
F. Let U = Up denocte its unipotent radical and Zr = Zp denote the cen-
ter of Up. Set Ap = Zg(R) N I'. The exponential mapping 3r — Zg(R) de-
termines a vectorspace structure on the group Zg(R) which in turn admits an
integral structure so that the inclusion A — Zg(R) induces a vectorspace iso-
morphism Ag ® R = Zg(R) which takes A isomorphically to Zg(Z). Then
T(F) = Zg(C)/Ar is an algebraic torus with cocharacter group Ag = x.(T(F)):
each A € Ag determines a mapping C — Zg(C) by t — At and this deter-
mines a cocharacter C* = C/Z — Zg(C)/Ag. In summary we will use these
isomorphisms to make the canonical identifications

x«(T(F)) @ R = Z§(R) = 3F.

The Levi quotient Lp = P/Up decomposes as an aimost direct product, Lp =
Gy x G, of a“linear” and a Hermitian factor. The action by conjugation of G,
on Zg induces a diffeomorphism between G,/K, and the open orbit Ck C Z.
The adjoint action of G, on 3 = Lie(Zr) induces a diffeomorphism between
G¢/K; and the open orbit Cp C 3. The exponential mapping exp: Cp — Cg is
compatible with these diffeomorphisms. Abusing the notation of (4.1.5), we will
write ¢y: D — Cr and ®;,: D — [Cfg] for the resulting projections. (And, as
in (4.1.5) we aso have a projection ®,: D — F.) Set D(F) = Zg(C) - D (the
product taken in the compact dual symmetric space). Then there is a holomorphic
isomorphism given by Siegel coordinates, [AMRT] p. 235, [S] §lII (Thm. 7.1),
[KW]

(75.1) D(F) ¥ F x (Ue/Zr) x Zg(C)
with the following properties:
(1) There exists a real bilinear form h; which depends real analytically on
the parameter t € F such that
D ={(t,w,2) | Im(2) — hy(w,w) € Cg}.
(2) For dl (t,w,2) € D we have ®n(t,w,2) =t and

(7.5.2) Y = ¢p(t,w, 2) = Im(2) — he(w, w).
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(Abusing notation, we will write (s /Z¢) = CX for simplicity.) Then the torus
T(F) acts freely on the quotient Ag\D(F) with quotient D(F) = F x CK. So
A(F)\D(F) isa“torusbundle” over D(F)’, thefibers of which will be compactified
in the following paragraph.

The choice Z¢ of polyhedral cone decomposition determines a partial com-
pactification (T(F))s of the torus T(F). This gives rise to a partial compactifi-
cation

(7.5.3) (AF\D(F))sx = Ae\D(F) x1(F) (T(F))z-

Let (Ar\D)s. denote the interior of the closure of Ag\D(F) in (Ar\D(F))s.
The action of Ag\l'r on Ag\D(F) extends to an action of Ag\l'r on the partial
compactification (Ar\D(F))s.. (Here, Te =T NP.)

75.4. Fact. (JAMRT] p. 250) There exists a collection of maps =g:
(AF\D)g; — X3 such that:

(1) Each 7g is open and analytic with discrete fibers.

(2) The mapping 7 commutes with the action of /\E\FF and, near the
zLor

boundary it induces an embedding (Ar\D)s /(Ar\lF) — X5 .

(3) Theunion, taken over all I' conjugacy classes of rational boundary com-
ponents F,

T (A=\D)s, — X5
F

IS surjective.

7.6. Notation. In order to avoid double subscripts, whenever no confusion
will arise, we will write Z for Zg, A for Ag, and X for Zg. Let T = Z(R)/A
be the compact torus in T(F) = Z(C)/A. The map ord: Z(C) — Z(R) given by
ord(x +iy) =y induces a map T(F) — Z(R). From [AMRT] | §1.1 the map ord
extends to a map

ord: T(F)s — Zs

where

Zs=Z®R) U [] O,
oEX

with O, = Z(R)/L,. Each point in O, can be expressed asv + L, withv € L},
Following [AMRT] we use the (confusing) notation v+ooo to denote such apoint.
This notation may be justified by considering the topology on Zs. If {yn} C Z(R)
is a sequence, then y, — v +ooo provided the following holds: write y, =y, +yi
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withy, € L+ and y/! € L,. Theny}, — v and for any w € L, if n is sufficiently
large then ¥/ — w € o (cf. Definition 2.7.2).

The map ord induces a homeomorphism T\T(F)s = Zs. Hence we may
express every edement in T(F)s — T(F) as X +i(y+ooc) where X' € T. However
X" is only uniquely determined modulo the sub compact torus T, = O, /A, where
Noe =N/(ANNOL,).

Using Siegel coordinates (7.5.1), if a = (t,w, 2) € D(F) then we will write
a =(t,w,Z) foritsimagein Ag\D(F) = F x (Ur/Zr) x T(F). The projections @y,
and ¢, pass to this quotient with @ (&) =t and ¢,(a') = Im(Z) —hy(w,w) € Ce C
Z(R). Now suppose @ € (Ag\D);s is a point on the boundary corresponding to
some (closed) polyhedra cone o € Zg with 0° C Cg. We will write

(7.6.1) a =(t,w,X +iv +iocoo)

if there is a sequence &, = (tn, Wn, Z,) € Ar\D such that
1D ty—teF,
(2 Wn— We Ur/Zr) = CK,
(3) Re(z) — X € AP\Z(R),
(4) (@) — v+ oo,

where X' € Ag\Zr(R) and v € L}, the perpendicular complement to the linear
space L, spanned by o.

7.7. Lift to the partial compactification. The purpose of this section is to
lift the subset X(a) c XS 10 the reductive Borel-Serre partial compactification
D", Suppose, as above, that @ € OXY" projects to some stratum Xg C X8
which is an arithmetic quotient of some rational boundary component F with
normalizing maximal parabolic subgroup P. Fix any point & € (Ag\D)s so that
me(a') = a. Let us say that a point b € D™ is closure related to a ¢ (Ar\D)s
if there exists a sequence a, € D with the following two properties:

(1) a,— & in(As\D)s and

(2 a,— binD™S.
(Here, &, € Ag\D denotes the image of a, mod Ag.)

Thenb e 5?83 is in the closure of the reductive Borel-Serre boundary com-
ponent Dp. Let @, € MN\D = X denote the image of a, modulo ' (so a, € D,
a, € Af\D, and &, € N'\D). Then we aso have:

wtor

3 ayn—a=mp(@)inXs and
@) @ —binXo=r\pe°
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since the following diagram commutes,

an € D — D°x (Ae\D)s > (b a)
| |lmxmE B
an € X —  XOxXY 5 (ba).
Define
A@)={be DRBS| b is closure related to @'} C DEBS.

If D denotes the closure of the diagonal embedding of D in Do (As\D)s and if
91 and 6, denote the projections of D to the first and second factors respectively,
then A(@) = 0165 (&) = 65 }(&). The following proposition immediately implies
Theorem A.

ProPOSITION 7.8. Leta € 9Xy . Choose F, P, and @ = (t,w,X + iV +icoo)

asin (7.6.1) with re(a’) = aand with 0° C Ck. Let [Cg] denote the quotient of Cr
under homotheties, and (4.1.4) let
RBS

RBS ., ~RBS

wpi F X [CF] E DP

be the resulting homeomor phismwhich we will take to be a canoni cal identification

(sowewill usually omit explicit mention of Wp). Let [o]RES [CF] ®S hetheclosure

of the quotient [¢°] C [Cg] in the reductive Borel Serre compactification. Then
(1) the identification Wp restricts to a homeomor phism

(1} x [0]F . A@).

~RBS v RBS

(2) If ZisT-sufficiently fine then the mapping 7: D~ — X restrictsto a

homeomor phism
7| AE): A@R) —— X(@).

Proof 7.9. It is clear from properties (3) and (4) above that the restriction
7 | A(@') takes A(&) into X(@). First let us show that 7: A(a) — X(a) is surjective.
Fix any b € X(a). Then (b,a) € X so there exists a sequence {a,} C X so that
a, — ain thor and so thaI an — b in X", Since 7 isaloca homeomorphism,

there is a unique lift &, € (Ag\D)s of the sequence a, so that a;, — & in
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(Ar\D)s. Asin (7.5.1) write

a;“| = (tnaWn,Z%)-
It follows that tn, — t, wy, — w and that y, := ¢(a},) € Cr.

Claim 7.9.1. There exists a subsequence (which we also denote by &) so
that the corresponding elements [yn] € [Cr] converge to some point ¢ € [o]RES.
(Here, [ y] denotes the image of y under the quotient by homotheties, Ck — [Cg].)

7.9.2. Proof of claim. Since y, — V +ooo, and v € L} we may write
Yo = Yo+ Yl with y, € Lt and ¥/ € o° for n sufficiently large. Therefore
y, — v and y! — ooo. Since [y!] € [¢°] C [¢]™BS which is compact, there
exists a subsequence (which we denote by by [y/]] as well) which converges,
[y!] — c € [¢]®S. By Proposition 2.7.3, the sequence [yn] = [Y, +Y/] converges
in [CET > to the same point c. O

7.9.3. Using this claim, and choosing any lift a, € D of this subsequence
we see that

(D) ¢elan) = yn — ooC,

(2) Pn(an) =ta — 1,

(3) Pu(an) =[yn] — cin[Cf]
Here, ®y: D — F and ®,: D — [Cfg] are the canonical projections (4.1.5) (so,

if 4o Eﬁ — TCAT™® denotes the projection to the second factor, then &, =

1 0 Pp). By Theorem C (84.2), this implies that the sequence a, — b :=(t,c) €

DSBS_ RS « [C] Insummary,beA(a)(smcean—>bandan—>a)and

m(b) = b (by (4) above) which proves that = | A(&) is surjective to X(a).

RBS

7.9.4. Let us verify part (1) of Proposition 7.8: that A(@) = {t} x [¢]™BS

(where @ = (t,w, X +iv +icoc)). Asin the preceding paragraph, let v,: DSBS

[CF]RBS denote the projection to the second factor. Let b € A(@) C Dp , say
b = (t,c). Choose {a,} C D as above, with a, — b in D> and &, — & in
(Ar\D)s as described above. Then (by the same argument as in the proof of
the claim above), ¢(b) = ¢ € [0]FBS. Since t € F is fixed, we conclude that
Yo | A@@) is injective. To see that it is surjective, let ¢ € [0]BS and choose
Yn € 0 0 that [yn] — ¢ and define

an = (t,w, X +iv +i\nyn + he(w, w))

where A\, € R and A\, — oo. Then ®n(a,) =t, dy(an) — ¢ (again by Propo-
sition 2.7.3), and ¢,(ay) — ooCg. So by Theorem C (54.2), the sequence a,
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. =RBS
converges in D

part (1).

to the limit b = (t,c) € A(@) which completes the proof of

7.95. Now let us prove that the mapping =: A(@) — X(3) is injective.
Since

A@) Y {th x[0]FS ¢ D> ¢ DT
!
X(@) c Tp\Dp° c X°°

commutes, we see that 7 isinjective if and only if the quotient under I'p does not
introduce any identificationson [¢]RES. Let 'y = vp(TNP)NG, where vp: P — Lp
is the projection to the Levi quotient. Corresponding to the exact sequence

1—-Ty—wvp(TNP) =T, —1
there is a fiber bundle FP\BEBS — g\fRBS with fiber I‘Z\@RBS. Sincete F
is fixed, it suffices to verify that ', does not introduce any identifications on
[o]RBS. However this is precisely the assumption that o is Ip- sufficiently small
(§3.1). It is guaranteed by the assumption that Z is I"-sufficiently fine (§7.1). This
concludes the proof of Proposition 7.8 and hence also of Theorem A. O

8. Contractible cell complexes.

8.1. In this section we review some standard facts from homotopy theory
which are needed for the proof of Theorem B (§2.8). Throughout this section
we suppose that f: X — Y is a weakly stratified mapping between two compact
(finite dimensional) Whitney stratified spaces. (This means that f takes strata to
strata by a smooth submersion.) Fix a triangulation of Y.

ProposITION 8.2.  Suppose that f is surjective and that each fiber f~1(y) is
contractible. Then f isa homotopy equivalence. Moreover there exists a homotopy
inverseg: Y — X such that, for each (closed) simplex o C Y,

(1) fg(o) C o and

(2) therestrictiong | o: o — f~1(0) isahomotopy inversefor the restriction
f~1(0) — 0.

In particular, if Y is contractible then X is also contractible.

Apbenbum 8.3. Suppose that K C Y is a closed union of simplices of the
chosen triangulation. Suppose that f ~1(K) — K is a homeomorphism. Then the
homotopy inverseg: Y — X may be chosen so asto agree with f =1 on points of K.
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Proof 8.4. Thisfollows from standard results in homotopy theory, however
in what follows we will indicate how to construct the homotopy inverse g ex-
plicitly. Fix a triangulation of Y which refines the stratification. We will find a
mapping g: Y — X (which agrees with f =1 on K) and a homotopy H: X x| — X
between Hg = | and H; = gf so that H isthe constant homotopy (from the identity
to the identity) on K x | and so that, for each simplex ¢ C Y we have

(1) fg(o) C o,
(2) H(f o) x 1) c f1(0).

This is accomplished by induction on the dimension of o. For dim(c) = 0O let
g(o) be any point in the fiber f ~1(¢) and let H be a homotopy which contracts
the fiber f~1(0) to the point g(c). For the inductive step, suppose o C Y is
an n-dimensional simplex with boundary do, that g: 0o — f~1(00) has been
defined and that a homotopy H: f=1(00) x [0,1] — f~1(d0) between Hg = |
and Hi = gf has been constructed. We wish to extend both g and H to all of
o. If o C K, these extensions have already been defined: g = f~! and H is the
constant homotopy. So we may assume that int(c) C Y — K. Since the extensions
will be made simplex by simplex without changing choices which were made on
previous simplices, we may (for the sake of notational convenience) replace X
by f~1(0).

It is possible to triangulate X so that f ~(dc) is a union of simplices. In par-
ticular, the inclusion f~1(90) C X is a cofibration, i.e., it satisfies the homotopy
extension property, which we apply to the following situation:

X x {0}
/! ! N
f-190) x {0} —— X x[0,1] - — X
N i /!

f=1(90) x [0,1]

Thus, we obtain a homotopy F between Fo = | and some mapping F1: X — X
which collapses f ~1(00) to the section g(do).
Choose a trivialization

(8.4.1) f1(c°%) ¥ 0° x A

of the mapping f over the interior ¢° of the simplex o (such a trivialization
exists by Thom's first isotopy lemma) and let ag € A be a point in the fiber.
Let ¢i: A — A be a contracting homotopy from ¢g = | to the constant mapping
#x(@) = ap. Define g: 0° — f=1(6°) by g'(y) = (y,a0). Then g is a homotopy
inverse for f on the interior of o, but we must patch together g’ on the interior
with g on the boundary.
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Definition 8.5. The section g: o — X is given by

_ JFig'(y) foryeo®
9(y) = { g(y) forye do.

To verify that g is continuous, choose a strong deformation retraction
¥ N(f~X00)) — fHd0)
from a regular neighborhood of f~1(d0) to f~1(do). Suppose y; € o° is a se-

guence of points converging to some point yo € do. Then for any choice of
metric on X we have

dist(F1g'(yi), 9(yo)) < dist(F1g'(yi), F19g'(yi)) + dist(gf g’ (i), 9(Yo))

(since F1 = gf on f~1(90)). The first term goes to 0 because F; is continuous
and dist(g'(yi), ¥d'(yi)) — 0 (since ¢ is a strong deformation retraction which
approaches the identity as the point g/(y;) approaches the boundary f~1(00)).
To show that the second term goes to O, it suffices to show that f1/g'(yi) — Yo.
But

dist( fyg'(vi), yo) < dist(fy g (vi), fg' (1)) + dist( fg'(vi), yo)-
Again the first term goes to 0 because ) — | on f ~1(dc) while the second term
is dist(vi,Yo) — O.

Now let us define the extension of the homotopy H. Choose a collaring of
the boundary of the simplex,

r- o —[0,1]

o that r=1(0) = 9o and define the function T: [0, 1] x [0, 1] — [0, 1] by

t ifr+t>1
T(r,t) = : ~
{ftt ifr+t<1.

With respect to the trivialization (8.4.1) define
Hi(y, &) = Fe(Y, é1((y).0(8))-
Although the function T fails to be continuous at (r = 0,t = 1) it is easy

to see (using the same argument involving v: N(f~(d0)) — f~(9d0)) as
above) that the function H; is continuous as y — Jo. Furthermore for



1148 MARK GORESKY AND YUNG-SHENG TAl
(v.a) € f(c9),

Ho(y, @) = Fo(y, ¢0(a)) = (v, )

Hi(y, @) = Fa(y, ¢1(8)) = Fi(d'(y)) = of (y, @)
as desired. This completes the proof of Proposition 8.2. O
9. Automor phic vectorbundles.

9.1. Throughout this section, G denotes a semisimple algebraic group de-
fined over Q, with group of real points G = G(R). We assume that G = Aut® (D)
is the connected component of the group of automorphisms of a Hermitian sym-
metric space D = G/K, where K is the maximal compact subgroup of G corre-
sponding to a choice of basepoint xo € D. Let ' € G(Q) be a neat arithmetic

subgroup. Let X =\D and let p: X85 _, X®8 pe its reductive Borel-Serre and
Baily-Borel Satake compactifications.
Let A\: K — GL(E) be a representation of K on some (finite dimensional)

complex vectorspace E. the homogeneous vectorbundle
E'=GxgE

is the quotient of G x E under the equivalence relation (g, €) ~ (gk, A(k~1)e) (for
al ge G, ke K, and e € E); we will denote the associated equivalence class by
[g,€]. The group G acts by g'[g,€] = [d'g,€] and the quotient under I C G is
an automor phic vectorbundle on X = IM'\D, which we denote by

E=T\G xk E.

Except in specia cases, the vectorbundle E does not admit an extension (even as
a topological vectorbundle) to the Baily-Borel compactification.

ProrosiTioN 9.2, The automor phic vectorbundle E has a canonical extension
ERBS _, XS (as a topological complex vectorbundle) over the reductive Borel-

Serre compactification.

Proof 9.3. Asin§l.1,letP C G beaproper rational parabolic subgroup with
unipotent radical Up and Levi quotient vp: P — Lp = ApMp. Let vy:P — Mp
denote the further projection to Mp. Then Kp = KNP C Mp(Xg) is a maximal
compact subgroup of Mp and I'. = vp(I' N P) C Mp is an arithmetic subgroup
of Mp and the associated RBS boundary stratum is Xp = ' \Mp/Kp. Restricting
the representation \ to Kp C Lp we obtain a homogeneous vectorbundle E =
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Mp x, E on Dp, which passes to an automorphic vectorbundle
Ep = rp\Mp XKp E

on the boundary stratum Xp. The extension E™® will be obtained by gluing E
together with these vectorbundies Ep on the strata.

The projection ®p: P — Dp of (1.3.1) is covered by a mapping of P-
homogeneous vectorbundles

OPZ E’ZPXKPEHMPXKPEZE;:;

which is given by [g, €] — [vm(Q),€]. It is well defined (since A(K) = A(vm(K))
for al k € Kp) and is P-equivalent, (where P acts on Mp xx, E by p-[m, €] =
[vm(p)m, €]) and it is an isomorphism on each fiber. It follows that the union
E’' UEp admits the unique structure of a P-homogeneous vectorbundle on D UDp
such that any choice of trivialization 5: Ep — E of Ep extends continuously to
atrivialization of E' U Ep which is given by the composition

El — Ep — E.
©p B

If P C Q then we similarly obtain a P-equivariant vectorbundle mapping Opg:
Eb — Ep which is compatible with the mappings ©p and O, that is, ©p is the
composition

This endows the union

E'U J] Er,

PCG

with the structure of a G(Q)-homogeneous vectorbundle on BRBS, which then
passes to a vectorbundle structure on the quotient by I,

=RBS

E" =EU]J]Er

{P}

where the union is taken over a collection of representatives, one from each
I-conjugacy class {P} of proper rationa parabolic subgroups of G. O

9.4. Toroidal compactification. Let = {Zg} be a sufficiently fine I'-

admissible collection of polyhedral cone decompositions of the homogeneous

cones Cr (asF runs over al the rational boundary components of D), and let thor
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be the resulting toroidal compactification with its canonical mapping g: thor —

X 1In [M], D. Mumford shows that every homogeneous vectorbundle E on X
admits a canonical extension Etzor to the toroidal compactification. In Theorem A
and its corollary (57.2, §7.3) a mapping

h=60107: thor —>YRBS

is constructed, so that g’ = o h: Ytzor — X is homotopic to and is C°-close
to g.

Conjecture 9.5. The topological (complex) vectorbundlesEtzOr and h* (ERBS)
are isomorphic.
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