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In this paper we study arithmetic correlations of sequences. Arithmetic correlations are

the with-carry analogs of classical correlations. We analyze the arithmetic autocorre-
lations of non-binary `-sequences, showing that they are nearly optimal. We analyze

the expected auto- and cross-correlations of sequences with fixed shift, averaged over

all seqeunces with a fixed period. We analyze the expected autocorrelations of a fixed
sequence, averaged over all shifts.
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1. Introduction

Sequences with good correlation properties are essential ingredients in a wide range
of applications including CDMA systems and radar ranging. A great deal of research
has gone into the design and generation of sequences and families of sequences
with good correlation properties. For example, for CDMA we want large families of
sequences with small pairwise correlations. Unfortunately, we also know that there
are fundamental limits on the sizes of families of sequences with such properties
[10].

In this paper we consider an arithmetic or “with-carry” analog of the correla-
tion of sequences, previously introduced by the authors in the binary case [2]. In
this paper we generalize this notion to non-binary sequences. We study the average

∗Some of the results in this paper have appeared without proof in the conference SETA 2008
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behavior of the arithmetic correlation of sequences, averaged in two different ways,
and compare to the average behavior of the classical correlation function. The new
notion of correlation is interesting in part because it is known (in the binary case)
that they do not suffer from some of the constraints on sizes of families of sequences
with good classical correlations. However, we do not as yet know of any signifi-
cant applications of arithmetic correlations. Nonetheless, it is worthwhile studying
properties of arithmetic correlations in hope that applications will come.

In previous work we have studied arithmetic auto- and cross-correlations (de-
fined below) of a class of binary sequences called `-sequences [2, 3, 5]. The arithmetic
autocorrelations of these sequences were previously studied in the context of arith-
metic coding [8, 9]. It is known that the shifted arithmetic autocorrelations of binary
`-sequences are identically zero and that the arithmetic cross-correlations of any two
distinct decimations of a binary `-sequence is identically zero.

In this paper we study the arithmetic correlations of possibly non-binary se-
quences. We show that the arithmetic autocorrelations of `-sequences are at most
one for a prime connection integer and at most two for a prime power connection
integer. We also analyze the expected arithmetic auto- and cross-correlations of
sequences with fixed shift, averaged over all sequences, and in the binary case we
analyze the expected arithmetic autocorrelations of a fixed sequence, averaged over
all shifts.

2. Balance and Classical Correlations

In his section we recall some basic facts about balance and classical notions of the
correlation of sequences. Here and throughout the paper let N ≥ 2 be a natural
number. Let a = a0, a1, · · · be a periodic sequence with ai ∈ {0, 1, · · · , N − 1},
i = 0, 1, · · ·.

For each i = 0, 1, · · · , N − 1, let µi be the number of occurrences of i in one
complete period of a. Let

ζ = e2πi/N

be a complex primitive Nth root of 1. Let

Z(a) = Z(a) =
N−1∑
i=0

µiζ
i,

the imbalance of a or of a.
The periodic sequence a is said to be balanced if µi = µj for all i, j. It is weakly

balanced if Z(a) = 0.
For example, let N = 3 and a = 3/5 = 0 + 2 · 3 + 0 · 32 + 1 · 33 + 2 · 34 + 1 · 35 + 0 ·

36 + 1 · 37 + · · ·. This sequence is periodic with period 4 from the 32 term on. Thus
µ0 = 1, µ1 = 2, and µ2 = 1. We have Z(a) = 1 + 2ζ + ζ2 = ζ. The sequence is not
weakly balanced.
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Lemma 1. If the N -ary sequence a is balanced, then it is weakly balanced. If N is
prime, then a is balanced if and only if it is weakly balanced.

Proof. The element ζ is a root of the polynomial xN −1 = (x−1)(xN−1 + · · ·+1),
so it is a root of xN−1 + · · · + 1. This proves the first statement. If N is prime,
then the latter polynomial is irreducible [7] . If the µi were not all equal, then we
could form a linear combination of Z(a) and

∑N−1
i=0 ζi whose value is zero and that

does not include some power ζj , j < N . By multiplying by ζN−j−1 we obtain a
nontrivial integer linear combination of 1, ζ, · · · , ζN−2 that equals 0. Thus ζ is a
root of a polynomial with integer coefficients and degree less than N − 1. This is a
contradiction.

For any N -ary sequence b, let bτ be the sequence formed by shifting b by τ

positions, bτi = bi+τ .

Definition 2. Let a and b be two eventually periodic sequences with period T and
let 0 ≤ τ < T . Then the sequence a− b(τ) (term by term subtraction modulo N) is
periodic and its period divides T . The shifted cross-correlation of a and b is

Ca,b(τ) = Z(a−b(τ)) =
T−1∑
i=0

ζai−bi+τ =
∑

0≤c<N

|{0 ≤ i < T : ai−bi+τ ≡ c (mod N)}|ζc,(1)

where the imbalance is taken over a full period of length T . When a = b, the cross-
correlation is called the autocorrelation of a and is denoted Aa(τ).

The ordinary cross-correlation with shift τ of two N -ary sequences a and b of
period T is the imbalance of the term by term difference of a and bτ , or equivalently,
of the coefficient sequence of the difference between the power series associated with
a and the power series associated with bτ . In the binary case this is the number of
zeros minus the number of ones in one period of the bitwise exclusive-or of a and
the τ shift of b [1]. The arithmetic cross-correlation is the with-carry analog of this
[2].

The most widely used sequences for many applications in cryptography and
communications are m-sequences. These are N -ary sequences of period Nk − 1
generated by LFSRs of length k. It is well known that their autocorrelations with
nonzero shift τ are all −1 (so-called ideal autocorrelations). Many researchers have
studied cross-correlations of cyclically distinct m-sequences, but the the values are
known only in a few cases (such as when m-sequence a is related to m-sequence b
by ai = b(Nj+1)i, a so-called quadratic decimation).

The calculation of the expected auto- and cross-correlation (averaged over all
sequences of a given period T ) is straightforward.

Theorem 3. For any τ , the expected autocorrelation, averaged over all sequences
a of period T , is

Ea[Aa(τ)] = 0.
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The expected cross-correlation, averaged over all pairs of sequences a and b is

Ea,b[Ca,b(τ)] = 0.

Proof. The expected cross-correlation is U/N2T where

U =
∑
a,b

Z(a− b(τ))

=
∑
a,b

T−1∑
i=0

ζai−bi+τ

=
T−1∑
i=0

∑
(· · · , aj , · · ·)

j 6=i

∑
(· · · , bj , · · ·)
j 6=i+τ

∑
ai

∑
bi+τ

ζai−bi+τ

=
T−1∑
i=0

N2T−2
∑
ai

ζai
∑
bi+τ

ζ−bi+τ

= 0.

The calculation of expected autocorrelations is similar.

A similar calculation gives the following.

Theorem 4. For any τ , the second moment of the autocorrelation, averaged over
all sequences a of period T , is

Ea[Aa(τ)2] =


T 2 if τ = 0
2T if N = 2 and T = 2τ
T else.

The second moment of the cross-correlation, averaged over all sequences a and
b of period T , is

Ea,b[Ca,b(τ)2] = T.

We can also average over all shifts. If x is a complex number, then we denote
the complex conjugate of x by x.

Theorem 5. For any sequences a and b with period T , the expected cross-
correlation, averaged over all shifts τ , is

Eτ [Ca,b(τ)] =
Z(a)Z(b)

T
.

Proof. We have

Eτ [Ca,b(τ)] =
1
T

T−1∑
τ=0

T−1∑
i=0

ζai−bi+τ
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=
1
T

T−1∑
i=0

ζai
T−1∑
τ=0

ζ−bi+τ

=
Z(a)Z(b)

T

as claimed.

Corollary 6. For any sequence a with period T , the expected autocorrelation, av-
eraged over all shifts τ , is

Eτ [Ca(τ)] =
|Z(a)|2

T
.

3. Arithmetic Correlations

Let N ≥ 2 be a natural number. In this section we define a with carry analog of
the usual notion of cross-correlations for N -ary sequences.

A fundamental tool we use is the notion of N -adic numbers. An N -adic number
is a formal expression

a =
∞∑
i=0

aiN
i,

where ai ∈ {0, 1, · · · , N − 1}, i = 0, 1, · · ·. The set Ẑn of N -adic numbers forms an
algebraic ring and has been the subject of extensive study for over 100 years [5, 6].
The algebra — addition and multiplication — is defined with carries propagated
to higher and higher terms, just as it is for ordinary nonnegative integers, but
possibly involving infinitely many terms. It is easy to see that Ẑn contains all rational
numbers u/q, u, q ∈ Z, with q relatively prime to N and no other rational numbers.
There is a one to one correspondence between N -adic numbers and infinite N -ary
sequences. Under this correspondence the rational numbers u/q with q relatively
prime to N correspond to the eventually periodic sequences. The rational numbers
u/q with q relatively prime to N and −q ≤ u ≤ 0 correspond to the (strictly)
periodic sequences. If a is periodic (resp., eventually periodic) then we say that
the associated N -adic number is periodic (resp., eventually periodic). Note that,
unlike power series, the sum and difference of strictly periodic N -adic numbers are
eventually periodic but may not be strictly periodic.

Let a be an eventually periodic N -ary sequence and let

a =
∞∑
i=0

aiN
i

be the associated N -adic number.

Definition 7. Let a and b be two eventually periodic sequences with period T and
let 0 ≤ τ < T . Let a and b(τ) be the N -adic numbers whose coefficients are given by
a and bτ , respectively. Then the sequence of coefficients associated with a− b(τ) is
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eventually periodic and its period divides T . The shifted arithmetic cross-correlation
of a and b is

CAa,b(τ) = Z(a− b(τ)), (2)

where the imbalance is taken over a full period of length T . When a = b, the arith-
metic cross-correlation is called the arithmetic autocorrelation of a and is denoted
AAa (τ).

If for all τ such that a and bτ are distinct we have CAa,b(τ) = 0, then a and b are
said to have ideal arithmetic correlations. A family of sequences is said to have ideal
arithmetic correlations if every pair of sequences in the family has ideal arithmetic
correlations.

4. `-Sequences

In this section we consider the arithmetic autocorrelations of `-sequences. These are
the arithmetic analogs of m-sequences, a class of sequences that have been used in
many applications. Recall that an m-sequence over a finite field F is the coefficient
sequence of the power series expansion of a rational function f(x)/q(x) such that the
degree of f is less than the degree of q, q is irreducible, and x is a primitive element
in the multiplicative group of F [x]/(q). It is well known that the classical shifted
autocorrelations of an m-sequence all equal −1. However, the cross-correlations of
m-sequences are only known in a few special cases.

An N -ary `-sequence a is the N -adic expansion of a rational number f/q where
gcd(q,N) = 1, −q < f < 0 (so that a is strictly periodic), and N is a primitive
element in the multiplicative group of integers modulo q. This last condition means
that the multiplicative order of N modulo q, ordq(N), equals φ(q) (Euler’s function).
In particular it implies that q is a power of a prime number, q = pt. For the
remainder of this section we assume that N , a, q, p, t and f satisfy all these
conditions.

Quite a lot is known about `-sequences, especially in the binary (N = 2) case.
For example, we have the following is a remarkable fact about binary `-sequences
[2].

Theorem 8. Suppose that a is a binary `-sequence. If c and b are decimations of
a, then the arithmetic cross-correlation of c and b with shift τ is zero unless τ = 0
and b = c.

Our goal here is to determine the arithmetic autocorrelations of not necessarily
binary `-sequences. First we look at their imbalances.

Theorem 9. Let a be an N -ary `-sequence based on a connection integer q = pe,
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p prime, e ≥ 1. Then

|Z(a)|


≤ 2 for all q
≤ 1 if q is prime
≤ 1 if e ≥ 2 and either q ≡ 1 (mod N) or pe−1 ≡ 1 (mod N)
= 0 if q is prime and q ≡ 1 (mod N)
= 0 if e ≥ 2, q ≡ 1 (mod N), and pe−1 ≡ 1 (mod N)

One of the last two cases always holds when N = 2.

Proof. Let q be the minimal connection element of a and suppose q is prime.
The distribution of occurrences of symbols in a is the same as the distribution of
occurrences of symbols as the first symbols of the various shifts of a. The rational
representations of the shifts of a are the fractions −u/q with 0 < u < q − 1. An
integer b ∈ {0, 1, · · · , N − 1} occurs as the first element in the N -ary expansion of
−u/q if and only if

−u
q
≡ b (mod N).

This holds if and only if

u ≡ −qb (mod N)

since q and N are relatively prime. Equivalently,

−ru ≡ b (mod N),

where rq ≡ 1 (mod N) and |r| < N/2. Thus

|Z(a)| =

∣∣∣∣∣
q−1∑
u=1

ζ−ru

∣∣∣∣∣ .
We have

|Z(a)| =

∣∣∣∣∣
q−1∑
u=1

ζ−ru

∣∣∣∣∣
=
∣∣∣∣ (ζ−r)q − ζ−rζ−r − 1

∣∣∣∣
=
∣∣∣∣ζ−1 − ζ−r

ζ−r − 1

∣∣∣∣
=
∣∣∣∣ζ(r−1)/2 − ζ−(r−1)/2

ζr/2 − ζ−r/2

∣∣∣∣
=
∣∣∣∣ sin(π(r − 1)/N)

sin(πr/N)

∣∣∣∣ . (3)

We have

−πN + 1
2N

≤ π r − 1
N

< π
r

N
≤ πN − 1

2N
<
π

2
.
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The sine function is increasing on the interval [−π/2, π/2], so the expression in
equation (3) is less than 1 if −π/2 ≤ π(r− 1)/N . The only other possibility is that
π(r − 1)/N = −π(N + 1)/(2N). In this case πr/N = −π(N − 1)/(2N) and the
expression in equation (3) equals 1.

Now suppose that q is a power of a prime, q = pt. We are led to the same sum,
but we must subtract off the terms for which t divides f . A similar argument shows
that the sum of these terms is at most one, so the imbalance is at most 2.

If q ≡ 1 (mod N), then r = 1 and so the expression in equation (3) is zero. The
statements for prime powers are proved similarly. If N = 2, then q ≡ 1 (mod N).
The last statement was also proved previously [2].

We can apply this result to estimate the autocorrelations of `-sequences.

Theorem 10. Let a be an N -ary `-sequence with period T based on a prime con-
nection integer q. Let τ be an integer that is not a multiple of T . Then |AAa (τ)| ≤ 1.
If q ≡ 1 (mod N), then AAa (τ) = 0. This last statement holds when N = 2.

Proof. The N -adic number associated with a is a fraction −f/q as above. By an
argument similar to the one in Section 5, the arithmetic autocorrelation of a with
shift τ is the imbalance of the rational number

(NT−τ − 1)f (mod q)
q

,

where the reduction modulo q is taken in the range [−(q − 1), 0]. Since q is prime,
this is again the rational number corresponding to an `-sequence. The theorem then
follows from Theorem 9.

Note that this argument does not apply to `-sequences with prime power con-
nection integer since the numerator (NT−τ − 1)f may not be relatively prime to
q.

5. Expected Arithmetic Correlation of a Fixed Shift

In this section we investigate the expected values of the arithmetic autocorrela-
tions and cross-correlations and the second moments and variances of the cross-
correlations for a fixed shift.

We need some initial analysis for general N -ary sequences. Fix a period T . As
we have seen, the N -ary sequences of period T are the coefficient sequences a of
rational numbers of the form

a =
−f

NT − 1

with 0 ≤ f ≤ NT − 1.

Lemma 11. If a and b are distinct N -adic numbers whose coefficient sequences are
periodic with period T , and a− b ∈ Z, then {a, b} = {0,−1}.
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Proof. First note that the N -adic expansion of an integer is strictly periodic if and
only if the integer is 0 or −1. Let a = −f/(NT − 1) and b = −g/(NT − 1) with
0 ≤ f, g ≤ NT − 1. Assume that f > g. Then a− b = −(f − g)/(NT − 1) is strictly
periodic and nonzero, so −1 = a− b = −(f − g)/(N t − 1). Thus f = g + (NT − 1).
The only possibility is that f = NT − 1 and g = 0. That is, a = −1 and b = 0. The
case when g > f is similar.

Next fix a shift τ . Then the τ shift of a corresponds to a rational number

a(τ) = cf,τ +
−NT−τf

NT − 1
,

where 0 ≤ cf,τ < NT−τ is an integer.
Now let b be another periodic N -ary sequence corresponding to the rational

number

b =
−g

NT − 1
.

Then the arithmetic cross-correlation between a and b with shift τ is

CAa,b(τ) = Z

(
−f

NT − 1
−
(
cg,τ +

−NT−τg

NT − 1

))
= Z

(
NT−τg − f
NT − 1

− cg,τ
)
. (4)

Theorem 12. For any τ , the expected arithmetic autocorrelation, averaged over all
sequences a of period T , is

Ea[AAa (τ)] =
T

NT−gcd(τ,T )
.

The expected cross-correlation, averaged over all pairs of sequences a and b is

Ea,b[CAa,b(τ)] =
T

NT
.

Proof. If the τ shift of b equals a, then CAa,b(τ) = T . Otherwise a and b(τ) are
distinct periodic sequences. In particular, by Lemma 11 a− b(τ) is an integer only
if {a, b(τ)} = {0,−1}.

First we consider the autocorrelation. Let

S =
NT−1∑
f=0

Z

(
(NT−τ − 1)f
NT − 1

− cf,τ
)
.

It follows from equation (4) that the expected arithmetic autocorrelation is
Ea[AAa (τ)] = S/NT .

By the first paragraph of this proof a− a(τ) is an integer only if a(τ) = a. When
it is not an integer, the periodic part of

(NT−τ − 1)f
NT − 1

− cf,τ
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is the same as the periodic part of

(NT−τ − 1)f (mod NT − 1)
NT − 1

,

where we take the reduction modulo NT − 1 in the set of residues {−(NT −
2),−(NT − 3), · · · ,−1, 0}. In particular, this latter rational number has a strictly
periodic N -adic expansion, so we can compute its contribution to S by considering
the first T coefficients.

Let d = gcd(T, T − τ) = gcd(T, τ). Thus T = md for some integer m.
Then gcd(NT − 1, NT−τ − 1) = Nd − 1. The set of elements of the form
(NT−τ − 1)f (mod NT − 1) is the same as the set of elements of the form
(Nd − 1)f (mod NT − 1). Thus

S =
NT−1∑
f=0

Z

(
(Nd − 1)f (mod NT − 1)

NT − 1

)
.

Now consider the contribution to S from the ith term in the expansion in each
element in the sum, say corresponding to an integer f . If we multiply f by NT−i

modulo NT−1, this corresponds to cyclically permuting the corresponding sequence
to the right by T−i places. This is equivalent to permuting to the left by i positions,
so the elements in the ith place become the elements in the 0th place. Moreover,
multiplying by NT−i is a permutation modulo NT −1, so the distribution of values
contributing to S from the ith terms is identical to the distribution of values from
the 0th term.

To count the contribution from the 0th position, let

D =
NT − 1
Nd − 1

and f = u + vD with 0 < u < D and 0 ≤ v < Nd − 1. Then (Nd −
1)f (mod NT − 1) = (Nd − 1)u (mod NT − 1) = (Nd − 1)u− (NT − 1). Thus

(Nd − 1)f (mod NT − 1)
NT − 1

=
(Nd − 1)u
NT − 1

− 1. (5)

In particular, the contribution to S from the 0th position depends only on u. Thus
we can count the contributions over all g with 0 < u < D, and then multiply
by Nd − 1. The contribution from the 0th position for a particular u is given by
reducing the right hand side of equation (5) modulo N . We have

(Nd − 1)u
NT − 1

− 1 = (1 +NT +N2T + · · ·)(Nd − 1)u− 1

≡ −u− 1 (mod N).

Since −(1+Nd+N2d+· · ·+NT−d) ≤ −u−1 ≤ −2, as u varies its reduction modulo
N takes each value in {0, 1, · · · , N−1} exactly Nd−1 +N2d−1 + · · ·+NT−d−1 times.

It follows that the contribution to S from the sequences that are not equal to
their τ shifts is a multiple of 1 + ζ + · · ·+ ζN−1 = 0.
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Thus we need to count the number of sequences that are equal to their τ shifts.
These are the sequences whose minimal periods are divisors of τ . Of course the
minimal periods of such sequences are also divisors of T , so it is equivalent to count
the sequences whose minimal period divides d. The number of such sequences is
exactly Nd. Thus the expected autocorrelation is

Ea[AAa (τ)] =
NdT

NT
.

Now consider the expected cross-correlation. The set of τ shifts of all T -periodic
sequences is just the set of all T -periodic sequences, so we can take τ = 0. Thus
cg,τ = 0. Let

R =
NT−1∑
f,g=0

Z

(
g − f
NT − 1

)
=
NT−1∑
f,g=0

Z

(
(g − f) (mod NT − 1)

NT − 1

)
.

Here when we reduce modulo NT − 1 we must take (g− f) (mod NT − 1) = g− f
if g ≤ f and (g − f) (mod NT − 1) = g − f − (NT − 1) if f < g. Thus

R = TNT +
∑

0≤g<f≤NT−1

Z

(
g − f
NT − 1

)
+

∑
0≤f<g≤NT−1

Z

(
g − f −NT + 1

NT − 1

)
, (6)

where the first term on the right hand side accounts for the cases when f = g.
By similar arguments to those in the derivation of the expected autocorrelations,
we can reduce the calculation of the remaining two terms on the right hand side
of equation (6) to counting the contributions from the 0th positions. The rational
numbers have periodic expansions, so the reductions of these numbers modulo N are
the coefficients of N0 in the expansions of the numerators. That is, if f = f0 +Nf ′

and g = g0 +Ng′ with 0 ≤ f0, g0 < N , then

R = TNT + T ·
∑

0≤g<f≤NT−1

ζg0−f0 + T ·
∑

0≤f<g≤NT−1

ζg0−f0−1.

We have g < f if and only if either g′ < f ′ or g′ = f ′ and g0 < f0. If we fix an f and
consider all g < f with g′ < f ′, then the g0 is free to vary over {0, 1, · · · , N − 1}.
Thus the contribution to R from such terms is zero. Similarly, if f ′ < g′ then the
contribution is zero. Thus we only need to consider the cases when f ′ = g′. Since
there are NT−1 choices of f ′, we have

R = TNT + TNT−1
N−1∑
f0=0

f0−1∑
g0=0

ζg0−f0 + TNT−1
N−1∑
f0=0

N−1∑
g0=f0+1

ζg0−f0−1

= TNT + TNT−1
N−1∑
f0=0

f0−1∑
g0=0

ζg0−f0 + TNT−1
N−1∑
f0=0

N−2∑
g0=f0

ζg0−f0

= TNT + TNT−1
N−1∑
f0=0

N−2∑
g0=0

ζg0−f0
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= TNT + TNT−1 ζ
−N − 1
ζ − 1

· ζ
N−1 − 1
ζ − 1

= TNT .

Thus

Ea,b[CAa,b(τ)] =
R

N2T
=

T

NT
.

This proves the theorem.

Theorem 13. Let τ ∈ Z, d = gcd(T, τ), and D = (NT − 1)/(Nd − 1). The second
moment of the arithmetic autocorrelation with shift τ , averaged over all sequences
a of period T is

Ea[AAa (τ)2] =


(Nd − 1)T (D + T − 1) + T 2

NT
= T +

T 2 − T
NT−d if N 6= 2

(Nd − 1)T (D + T −Nd(T/d− 1)− 1) + T 2

NT
if N = 2.

Proof. As in the computation of the expectation, we have

Ea[AAa (τ)2] =
1
NT

NT−1∑
f=0

∣∣∣∣Z ( (Nd − 1)f (mod NT − 1)
NT − 1

)∣∣∣∣2 =
S

NT
.

If T |τ (so that d = T ), then each term of the sum is |Z(0)|2 = T 2, so the second
moment is T 2. Assume from here on that T does not divide τ . Thus d is a proper
divisor of T . We have

S = (Nd−1)
D−1∑
f=0

∣∣∣∣Z (−(Nd − 1)f
NT − 1

)∣∣∣∣2+|Z(0)|2 = (Nd−1)
D−1∑
f=0

∣∣∣∣Z (−(Nd − 1)f
NT − 1

)∣∣∣∣2+T 2.

We write it this way because −(Nd− 1)f/(NT − 1) = −f/D has a strictly periodic
N -adic expansion if 0 ≤ f < D. Thus if −(Nd − 1)f/(NT − 1) =

∑∞
i=0 giN

i, then

|Z(f/D)|2 =
∑

0≤i,j<T

ζgi−gj .

For any g with 0 ≤ g < NT − 1, the first T coefficients in the N -adic expansion
of −g/(NT − 1) are the coefficients in the N -ary expansion of g. By arguments
similar to the ones in the case of the expectation, we can take i = 0 and introduce
a multiplicative factor of T . Thus

S = (Nd − 1)
∑

0≤g<NT−1
g a multiple of Nd−1

∑
0≤i,j<T

ζgi−gj + T 2

= (Nd − 1)
∑

0≤i,j<T

∑
0≤g<NT−1

g a multiple of Nd−1

ζgi−gj + T 2
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= (Nd − 1)T
T−1∑
j=0

∑
0≤g<NT−1

g a multiple of Nd−1

ζg0−gj + T 2,

where g =
∑T−1
i=0 giN

i with 0 ≤ gi < N . Now fix j. Let

Uj =
∑

0≤g<NT−1
g a multiple of Nd−1

ζg0−gj .

We compute all the Ujs.
First suppose j = 0. Then we have ζg0−gj = 1, and there are D such terms (one

for each multiple g of Nd − 1), so U0 = D.
Now suppose j > 0. Suppose that j = ed+k with 1 ≤ k ≤ d. Let g′ be obtained

from g by interchanging gj and gk. Then

g′ = g + (gk − gj)(Ned+k −Nk) = (gk − gj)Nk(Ned − 1) ≡ g (mod Nd − 1).

Thus the distribution of pairs (g0, gj) is the same as the distribution of pairs (g0, gk).
It follows that

S = (Nd−1)T
T−1∑
j=0

Uj+T 2 = (Nd−1)T

D + (T/d− 1)Ud + T/d

d−1∑
j=1

Uj

+T 2.(7)

Suppose that 1 ≤ j ≤ d − 1. For given g0 and gj we want to know the number
of choices of the remaining gks that make g a multiple of Nd − 1. For a given g let
x = g0 + g1N + · · ·+ gd−1N

d−1 and y = gd + gd+1N + · · ·+ gT−1N
T−1−d, so that

g = x+Ndy. Thus 0 ≤ y < NT−d. Let

Vx = {y : Nd − 1|x+Ndy and 0 ≤ y < NT−d}.

and let E = (NT−d−1)/(Nd−1). Fix x. Then |{y : 0 ≤ y < NT−d}| = E(Nd−1)+1,
so |Vx| = E + 1 if 0 ∈ Vx, and |Vx| = E otherwise. Since 0 ≤ x < Nd, 0 ∈ Vx if and
only if Nd−1 divides x, and this holds if and only if x = 0 or x = Nd−1. For fixed
g0 and gj , the remaining coefficients of x are arbitrary, unless g0 = gj = N − 1, in
which case we cannot have all gi = N −1. Thus if (g0, gj) 6= (0, 0), then the number
of g with Nd−1|g is Nd−2E. If (g0, gj) = (0, 0), then the number of g with Nd−1|g
is Nd−2E + 1. It follows that Uj = 1.

Now let j = d and recall that T = md. First suppose that m ≥ 3. For a given g

let x = g0 + g1N + · · ·+ g2d−1N
2d−1 and y = g2d + g2d+1N + · · ·+ gT−1N

t−1−2d,
so that g = x+N2dy. Thus 0 ≤ y < NT−2d. Let

Wx = {y : Nd − 1|x+N2dy and 0 ≤ y < NT−2d}.

and let F = (NT−2d − 1)/(Nd − 1). Fix x. Then |{y : 0 ≤ y < NT−2d}| =
F (Nd − 1) + 1, so |Vx| = F + 1 if 0 ∈ Wx, and |Wx| = F otherwise. Since 0 ≤ x <

N2d, 0 ∈ Wx if and only if Nd − 1 divides x. We next see when this occurs. Let
x′ = (g0+gd)+(g1+gd+1)N+· · ·+(gd−1+g2d−1)Nd−1. Then Nd−1|x if and only if
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Nd−1|x′. However 0 ≤ x′ ≤ 2(Nd−1), so ifNd−1|x′ then x′ ∈ {0, Nd−1, 2(Nd−1)}.
If x = 0, then g0 = gd = 0 and there is only one choice of the remaining gi, i < 2d
with Nd−1|x. If x = 2(Nd−1), then g0 = gd = N−1. We would need all gi = N−1,
i = 0, · · · , 2d− 1, to have Nd − 1|x. As before, we cannot have all gi = N − 1 since
g < NT − 1. If x = Nd − 1, then g0 + gd = N − 1 and we can choose the remaining
gi, i < 2d in any way with gi + gi+d = N − 1. There are Nd−1 such choices for each
g0 and gd = N − 1− g0. Thus in we have

Ud = 1 +Nd−1
N−1∑
g0=0

ζg0−(N−1−g0)

= 1 +Nd−1ζ

N−1∑
g0=0

ζ2g0

=
{

1−Nd if N = 2
1 otherwise,

since ζ2 is a nontrivial root of 1 unless N = 2.
Finally, let m = 2. Let x = (g0 + gd) + g1N + · · · + gd−1N

d−1 and y = gd+1 +
gd+2N+· · ·+g2d−1N

d−2. Thus 0 ≤ y < Nd−1. As above, Nd−1 divides g if and only
if it divides x+Ny. The bounds on y imply that for each fixed x there is at most one
y with Nd−1 dividing x+Ny. We want to know for which x there is one such y. That
is, for which x there is a y ∈ {0, 1, · · · , Nd−1−1} with x ≡ −Ny (mod Nd − 1). We
have y ∈ {0, 1, · · · , Nd−1 − 1} if and only if Ny ∈ {0, N, · · · , Nd −N} if and only if
−Ny (mod Nd − 1) ∈ {0, Nd−1−N, · · · , N−1}. We also have 0 ≤ x ≤ Nd+N−2.
If 0 ≤ x ≤ Nd − 2, then we must have x ∈ {0, Nd − 1 − N, · · · , N − 1}. The first
possibility is x = 0, whence g0 = g1 = · · · = gd = 0. Each of the remaining elements
of this set are congruent to N − 1 modulo N , so each has g0 + gd = N − 1. So for
each choice of g0 there are Nd−1 − 1 values of x < Nd − 1 with gd = N − 1− g0 for
which there is a y with Nd− 1 dividing x+Ny. If Nd− 1 ≤ x ≤ Nd +N − 2, Then
we must have x− (Nd − 1) ∈ {0, Nd − 1−N, · · · , N − 1}. That is, x = Nd − 1 or
x ∈ {2(Nd−1)−N, · · · , Nd+N −2}. In the latter case this means x = Nd+N −2.
If x = Nd − 1, then g0 + gd = N − 1 and g1 = · · · = gd−1 = N − 1, so we get one
additional g with g0 + gd = N − 1. If x = Nd +N − 2, then g0 = · · · = gd = N − 1,
but as before this makes g too large. It follows that Ud takes the same values as
when m ≥ 3.

Combining all this we see that

S =
{

(Nd − 1)T (D + T − 1) + T 2 = NTT +Nd(T 2 − T ) if N 6= 2
(Nd − 1)T (D + T −Nd(T/d− 1)− 1) + T 2 if N = 2.

The theorem follows.

Corollary 14. Let τ ∈ Z, d = gcd(T, τ), and D = (NT−1)/(Nd−1). The variance
of the arithmetic autocorrelation with shift τ , averaged over all sequences a of period
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T is

V [AAa (τ)2] =


T +

T 2 − T
NT−d −

T 2

N2(T−d) if N 6= 2

T +
T 2 − T − (Nd − 1)(T/d− 1)

NT−d − T 2

N2(T−d) if N = 2.

Theorem 15. For any shift τ , the second moment of the arithmetic cross-
correlation, averaged over all pairs of sequences a and b is

Ea,b[CAa,b(τ)2] = T
NT + 1− T

NT
.

The variance is

Va,b[CAa,b(τ)] = T
(NT + 1)(NT − T )

N2T
.

Proof. As in the computation of the expectation, we can reduce to the case when
τ = 0. We let

P =
NT−1∑
f,g=0

∣∣∣∣Z ( (g − f) (mod NT − 1)
NT − 1

)∣∣∣∣2 ,
so that the second moment is P/N2T . We proceed by determining the number of
pairs f, g with

g − f ≡ −h (mod NT − 1) and 0 ≤ f, g ≤ NT − 1 (8)

for each h with 0 ≤ h ≤ NT − 1. As we have seen, if h = NT − 1, then equation (8)
only holds for g = 0 and f = NT − 1. Let h < NT − 1. For every f < NT − 1 there
is exactly one g < NT − 1 satisfying equation (8), namely f − h (mod NT − 1).
For g = NT − 1 there is one f < NT − 1 satisfying equation (8), namely f = h.
For f = NT − 1 there is one g with 1 ≤ g ≤ NT − 1 satisfying equation (8),
namely g = NT − 1 − h. This accounts for all choices of f and g, and we see that
for 0 ≤ h < NT − 1 there are NT + 1 pairs f, g satisfying equation (8), and for
h = NT − 1 there is one such pair.

Let us first compute as if all h occurred equally often. We switch to thinking
about N -ary T -tuples h = (h0, h1, · · · , hT−1) representing single periods. If each h

occurred NT + 1 times, then each h would occur NT + 1 times as single periods of
−h/(N t − 1)s. This would give a total contribution to P of

(NT + 1)
∑
h

∣∣∣∣∣
T−1∑
i=0

ζhi

∣∣∣∣∣
2

= (NT + 1)
∑
h

T−1∑
i=0

T−1∑
j=0

ζhi−hj

= (NT + 1)
T−1∑
i=0

∑
h

ζhi−hi + (NT + 1)
∑
i 6=j

∑
h

ζhi−hj

= TNT (NT + 1) + (NT + 1)
∑
i 6=j

NT−2
∑
hi,hj

ζhi−hj
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= TNT (NT + 1).

But we have over counted since the T -tuple h = (N − 1, N − 1, · · · , N − 1), corre-
sponding to the N -adic number −1 and the numerator h = NT − 1, only occurs
once. For this value of h we have |Z(−1)|2 = T 2, so in fact

P = TNT (NT + 1)− T 2NT = TNT (NT + 1− T ).

It follows that

Ea,b[CAa,b(τ)2] =
P

N2T
= T

NT + 1− T
NT

as claimed. The claimed value of the variance follows.

6. Expected Arithmetic Autocorrelation of a Fixed Binary
Sequence

In this section we fix a binary sequence and find the expected arithmetic autocor-
relation, averaged over all shifts. This time the answer is very different from that
in the classical case. We let a be a periodic N -ary sequence with period T and
associated N -adic number −f/(NT − 1).

As in Section 5 if we let

S =
T−1∑
τ=0

Z

(
(NT−τ − 1)f
NT − 1

− cf,τ
)
.

then from equation (4) the expected arithmetic autocorrelation is Eτ [AAa (τ)] = S/T .

Theorem 16. Suppose that the minimum period of a is T and τ 6≡ 0 (mod T ).
Then

Z

(
(Nτ − 1)f
NT − 1

− cf,T−τ
)

= −Z
(

(NT−τ − 1)f
NT − 1

− cf,τ
)
.

Proof. Note that if w is a rational but is not an integer, then for any integer c the
eventual periodic part of w is the same as the eventual periodic part of w+ c and is
the same as the eventual periodic part of Nw. Also, it is the bit-wise complement
of the eventual periodic part of −w.

Let d = gcd(T, τ) = gcd(T, T − τ) < T . We claim that (NT−τ −1)f/(NT −1) is
not an integer. Suppose to the contrary that it is an integer. Then (NT−1)/(Nd−1)
divides f , say

f =
NT − 1
Nd − 1

g,

with g ∈ Z. It follows that

−f
NT − 1

=
−g

Nd − 1
,
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from which it follows that a has period dividing d < T , a contradiction. Similarly,
(Nτ − 1)f/(NT − 1) is not an integer.

From this we see that

Z

(
(NT−τ − 1)f
NT − 1

− cf,τ
)

= Z

(
(NT−τ − 1)f
NT − 1

)
= Z

(
NT−τ (1−Nτ )f

NT − 1

)
= Z

(
− (Nτ − 1)f

NT − 1

)
= −Z

(
(Nτ − 1)f
NT − 1

)
= −Z

(
(Nτ − 1)f
NT − 1

− cf,T−τ
)
,

as we claimed.

It follows that in his case for any τ 6≡ 0, T/2 (mod T ), the contribution to
S from the τth term plus the contribution from the (T − τ)th term equals zero.
The contribution from the (T/2)th term equals its own negative, so is zero. The
contribution from the 0th term is the period T , so S = T . More generally, we have
the following.

Theorem 17. Let a be a sequence with minimal period T ′ dividing T . then
Eτ [AAa (τ)] = T/T ′.

Proof. Let us denote the S obtained by thinking of a as a period T sequence by
ST and the S obtained by thinking of it as a period T ′ sequence as ST ′ . By the
discussion above, ST ′ = T ′.

When we treat a as a sequence of period T , it consists of T/T ′ copies of its
minimal period. Thus for any shift τ modulo T , the arithmetic autocorrelation with
shift τ of a as a period T sequence is T/T ′ times the autocorrelation as a period
T ′ sequence with shift τ modulo T ′. Moreover, each shift modulo T ′ corresponds to
T/T ′ shifts modulo T . Thus

ST =
(
T

T ′

)2

ST ′ =
T 2

T ′
.

It follows that Eτ [AAa (τ)] = T/T ′ as claimed.

7. Conclusions

We have analyzed the autocorrelations of `-sequences, where we saw that all the
shifted autocorrelations are small. We have analyzed the expected arithmetic auto-
and cross-corellations for fixed shifts which we saw are similar to the expectations in
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the classical (no carry) case – the expected values are close to zero, and the second
moments are close to the period.

We have also considered the expected correlations for a fixed sequence or pair
of sequences. We have described the expected arithmetic autocorrelations only for
binary sequences. Here we find that the arithmetic case is very different from the
classical case. We leave as an open problem the determination of the expected
arithmetic cross-correlation of fixed sequences and the expected arithmetic auto-
correlation of a fixed non-binary sequence.
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