GRAPHICS HARDWARE

HIGH-RESOLUTION
PRINTER
GRAPHICS

BY MARK BRIDGER AND MARK GORESKY

You can address the individual dots used to generate

ONE OF THE GREATEST frustrations
in doing graphics on a microcomputer
is the rather low resolution of the
usual microcomputer monitor. The
standard IBM Personal Computer
color-graphics adapter and monitor
display a maximum screen size of 640
by 200 pixels (picture elements); other
computers and configurations do
somewhat better, perhaps as much as
720 by 350 pixels. It is difficult to draw
horizontal lines fast enough to keep
the image from flickering. And there
are limits to the amount of screen
memory available on standard graph-
ics boards.

Many dot-matrix printers are cap-
able of printing individual dots at a
much higher resolution than the
typical CRT (cathode-ray tube) screen
can display them. The Epson FX-80
and the IBM graphics printer are cap-
able, for example, of printing 240 dots
per inch horizontally (1920 dots per
line) and 216 dots per inch vertically—
the latter by printing a line of graph-
ics, advancing the paper one-third of
a dot, printing another “interlaced”
line of graphics, etc. Other printers
can perform similar feats. To use this

dot-matrix characters

capability you need to figure out how
to “fire the pins’ and you need
enough extra memory to record
where all the dots are to go. This arti-
cle will show you how to draw some
lines and curves on your printer with
a resolution of up to 1600 by 640
dots.

SETTING UP THE "PRINTER
SCREEN”
The first problem is memory. If you
think of a dot as being either on or
off, to use an analogy with the screen
display, then encoding 1600 by 640
dots, or 1,024,000 points, requires
that many bits -of information. If you
divide by 8 to convert bits to bytes,
then the process requires 128,000
bytes, or nearly 128K bytes of mem-
ory. Somehow, you must set aside that
much memory to record this image.
Unfortunately, this is not easily done
in BASIC, so we must look elsewhere.
The most widely used microcom-
puter language that allows fencing off
this much memory is Pascal, and
because Turbo Pascal lets you point
to nearly all available memory with-
out having to give explicit addresses,

it is the easiest language to use.
Let’s set up two 64K-byte memory
areas that represent the even lines
and the odd lines of a picture. Each
of these areas is represented by the
following Pascal data type:

Type data__type = array[0..1599,

0..39] of char;

This type of variable is a doubly
indexed 1600 by 40 array of charac-
ters; since one byte represents each
character, this multiplies to about 64K
bytes.

Now let's declare the variables that
are to reserve this space:

Var Evenmap, Oddmap:
~data__type;

(continued)
Mark Bridger and Mark Goresky are
associate professors of mathematics at North-
eastern University. Mark Bridger has a Ph.D.
from Brandeis University; Mark Goresky
holds a Ph.D. from Brown University. Mark
Bridger can be reached at Bridge Software,
31 Champa St., Newton Upper Falls, MA
02164. Mark Goresky can be reached at the
Mathematics Dept., Northeastern University,
360 Huntington Ave., Boston, MA 02115.

NOVEMBER 1985 * BYTE 219

HI-RES PRINTER GRAPHICS

The *~" defines a pointer. When you
actually create these variables during
program execution, using the com-
mand New, the computer sets aside
two blocks of free memory and auto-
matically reserves them for your use.
Each of the variables Evenmap and
Oddmap “points” to the beginning of
one of these blocks, and you need
never concern yourself with exactly
where in memory these blocks reside.

How A DOT-MATRIX PRINTER
DRAWS DOTS

The print head of a dot-matrix printer
normally has seven or more wires, ar-
ranged vertically; the most common

number is nine. (Eight are used to
draw most of the characters, while the
ninth is used to draw the bottoms of
the g and y characters and to under-
line.) When typing letters, the printer
receives the ASCII code of the char-
acter—a number between 0 and 255.
As the print head moves across the
page. it extends certain wires, de-
pending on the pattern stored in the
printer's memory for that character,
and the head strikes them against the
paper. Usually from 9 to 12 such col-
umns of dots are needed to make a
character.

You want to be able to tell the
printer directly which wires to fire; in

©CoONOOOHAWN-—=-O
[eNeoNoNeoNeoNoNoNeoNoNeNoNoNeoNoNeRH
[eNeoNoNeoNoNoNoNoNoNoNoNoNo Nl o]
[eNeoNoNeoNoNeoNoNoNoNoNoNoNo oo
[eNeoNoNeoNoNoNoNoNoNoNoNol o lNoNo]
O+ 00000000000 O0O0O

Table 1: This table shows the dot positions on the page. The ls represent dots
that you actually want to draw; the Os, dot positions you want to skip over.

OO —-000000O—~+~0000O0O0O

OO0 —-0000—+-00000O0OO
OO0 O0O—+~00 000000 O0O0O
OO0 O0O0O -+ —-200000000O0O

between even and odd rows.

Even: 01000000000 Odd:
20010000000

40000100000

100000000001
120000000100

140000010000

Table 2: This table shows the distribution of the various print dot positions

10100000000

30001000000

50000010000

70000000100

90000000001

110000000010

130000001000

150000100000

220 BYTE * NOVEMBER 1985

other words, you want to bypass that
part of the printer's memory that
stores the patterns for the printing of
usual characters (letters, numbers,
etc.)—you want to do bit-mapped graph-
ics. Most printers support this; it is
usually called graphics mode. Let's try
to address a particular dot on the
page.

First, since the wires on the print
head are not that close together, you
can make use of tiny partial linefeeds
to double the number of vertical dots.
Table 1 contains a diagram of how it
works. The characters represent dot
positions on the page; the 1s repre-
sent the dots that you actually want
to draw and the Os represent the dot
positions you want to skip. To get
maximum resolution, you want the
dots to be as close to each other as
possible, both horizontally and ver-
tically. Getting them close horizontally
is accomplished by means of a sim-
ple printer command. To get them
close vertically, you must divide the
picture into the even rows (0, 2, 4, etc.)
and the odd rows (I, 3, 5, etc), as
shown in table 2.

When the printer is in graphics
mode, the printer prints, for each byte
you send it, any pattern of eight ver-
tical dots you specify. The strategy in
table 2 is to do the following:

1. Send the printer the 10 bytes that
specify the 10 columns represented
by the even rows.

2. Instruct the printer to do a carriage
return plus a linefeed of one-half a
vertical dot.

3. Send the printer the 10 bytes that
specify the 10 columns represented
by the odd rows.

4. Instruct the printer to do a carriage
return plus a linefeed of 7' vertical
dots, preparing it to draw more sets
of even and odd rows if there are any.

In more ambitious applications you
can have as many as 1600 columns
across instead of just these 10. The ar-
ray pointers Evenmap and Oddmap
store this information for the printer.
Each represents 1600 columns; each
column is 40 bytes or 320 dots high.
Looked at another way, there are 320

(continued)

HI-RES PRINTER GRAPHICS

even rows and 320 odd rows. Each
row is 1600 dots wide, and the printer
will print eight even or eight odd rows
in each pass. Note that these rows
form a natural unit totaling 16 rows;
let's call such a unit a printer line.

How 1O LOCATE A DOT

ON THE PAGE

Let's write a procedure—Pset(x.y,
color)—that draws a point of coor-
dinates x and y in the proper place
in one of the two arrays. The coor-
dinates x and y denote the point’s col-
umn and row (measured from the up-
per left-hand corner), respectively.
The variable color can be equal to
either 0 or 1: 0 means erase any point
existing at that location; 1 means in-
sert a point there. [Editor's note: All pro-
grams shown here are available for down-
loading on BYTEnet Listings. Before
November 1 call (617) 861-9774. After-
wards, call (617) 861-9764.]

See listing 1 for the procedure Pset.
Start at the line that reads color : =
color mod 2. First the procedure en-
sures that color is in the correct range
by applying a mod 2 to it. (When K
and N are whole numbers, K mod N
finds the remainder you get when you
divide K by N. When you divide by
2, you can get a remainder of only O
or 1, depending on whether K is even
or odd, respectively) Next, you deter-
mine which printer line you're in by
dividing the row number by 16 (y div
16). When you know this line number,
you can determine which vertical dot
within that line you're in; this is height.
Finally, y mod 2 tells you whether
your dot is in an even or an odd row.

For example, suppose you want to
print a dot in column 1173, row 554.
Then x equals 1173 and y equals 554.
554 div 16 equals 34, so you are in
the 34th printer line. 554 mod 16 is
10 and 10 div 2 is 5, so the height of
the dot within the printer line is 5;
since 554 is even, you are in the ar-
ray pointed to by Evenmap. The pro-
gram now calls on the procedure
Change to insert this point into the
correct position in memory.

The problem now, and the reason

Change is so complicated, is that
(continued)

222 BYTE * NOVEMBER 1985

Listing 1: Epson FX-80 procedures in disk file Printpak.pas.

const
across = 1599;
down = 39;
type

(** replace with 1249 for Prowriter **)

data__type = array[0..across, 0..down] of char;

mask__array = array[0..7] of byte;

var
Evenmap, Oddmap: ~data__type;
M, R: mask__array;

procedure Init__mem;
var |,J: integer;
begin
new(Evenmap); new(Oddmap);
for J := 0 to down do
for | := 0 to across do
begin
oddmap~ [I,J] := chr(0);
evenmap~ [I,J] := chr(0)
end
end; {Init_mem}

procedure Printout;
var n__lo, n__hi:byte;
i,j i integer;
begin {Printout}
n__hi:= (across + 1) div 256;
n_lo:= (across+ 1) mod 256;
for J := 0to 39 do
begin

{sets aside space in memory for arrays}

{initializes both arrays}
{all bytes = 0}

{Output to EPSON FX-type printer.}
{See listing 2 for Prowriter Printout.}

{Part of number of graphics bytes coming}
{Rest of number of graphics bytes coming}

write (Lst,chr(27),'Z',chr(n_lo),chr(n_hi));

{Enter graphics mode; give # bytes coming}

for | := 0 to across do write(Lst, evenmap~ [I,J]); {print even row}

write(Lst,chr(13));
write(Lst, chr(27),’3’,chr(1));
write(Lst, chr(10));

write (Lst, chr(27),'Z’,chr(n_lo),chr(n__hi));

for | := 0 to across do
write (Lst, oddmap~ [I,J]);
write(Lst, chr(13)); -
write(Lst,chr(27),'3’,chr(22));
write(Lst, chr(10));
end
end; {Printout}

procedure PixelMasks;

{carriage return}

{set linefeed for ¥3 dot down}
{do linefeed}

{graphics mode again}

{print odd row}

{carriage return}

{start next line 7¥s dots down}
{linefeed}

var |: integer;
begin
M[7]:= 1;
for I: = 6 downto 0 do M[l]:= 2+«M[l +1];

for l:= 0to 7 do R[l]): = 255 — M[l]

end; {Pixelmasks}

procedure Change (var Char__byte: char; color, height:integer);
{changes given byte from present value to given value = color}

var old: integer;
begin
Old : = ord(Char_byte);
case color of
1: old: = old OR M[height];
0: old: = old AND Ri[height]

{insert set bit in correct place}
{using appropriate pixel masks}

(continued)

Inquiry 8 —»

HI-RES PRINTER GRAPHICS

(t'w'ﬁwkkuwaﬁ'ﬁﬁﬂﬁﬁﬁ"ﬁttttttttt’taﬂtwﬂtt'!twaﬂt&ﬁw't'tﬂ
For the Prowriter these last two lines should be replaced by

1: old:= old OR M[7 - height];
2: old:= old AND R[7 - height] {See text for details.}
B B P P PP PR PP
end;
Char__byte: = chr(old)

end; {Change}

procedure Pset (x,y,color : integer);

{Writes the dot at position (x,y) into memory arrays}

var |,line,height : integer;

begin {Pset}
Plot(x = 2 div 5, y = 5 div 16, white); {draw dot on screen}

{ LR R

This multiplies x by the ratio of screen width to printer width,
multiplies y by the ratio of screen height to printer height.

For the Prowriter this last line should be replaced by:
Plot(x div 2, y * 5 div 16, white);

B R }

color : = color mod 2;
Line := Y div 16;
height : = (Y mod 16) div 2;

{vertical position of pixel consists of a line}

{between 0 and 15, divided into}
{even-odd groups}
if y mod 2 = 0 then change(evenmap~ [x,line],color,height)
else change (oddmap~ [x,line],color,height)
end; {Pset}

{number between 0 and down; and a height }

Listing 2: Printout procedure for Prowriter.

procedure Printout;
var wrd : packed array [1..4] of char;
a,b,i,j,k : integer;

{for Prowriter}

begin {Printout}

writeln (Ipt1,’); {clear printer buffer}
writeln (Ipt1,’), {= 50 bytes}
writeln (Ipt1); { + carriage return}
a:=across + 1;1:= 4; {a = number of graphics bytes}
repeat

b:=amod 10; a: = adiv 10; {get next digit (= b)}

wrd [I] := chr(b + ord('0); {insert as a character in string: wrd}

l:=1-1
until | = 0;
writeln (Ipt1, chr(27),"P’);

{wrd = digits of across}

{set pitch for proportional spacing —
the highest horizontal density}

for J := 0 to down do

begin
write (Ipt1, chr(27),’S’,wrd); {enter graphics mode}
for | := 0 to across do

write (Ipt1, evenmap ~[l,J]);
writeln (Ipt1, chr(27),'T’,'01");
write (Ipt1, chr(27),’S’,wrd);
for | := 0 to across do
write (Ipt1, oddmap ~[I,J]);
writeln (Ipt1,chr(27),'T’,"15");
end
end; {Printout}

{print even rows}
{start next line ¥2 dot down}
{graphics mode again}

{print odd rows}
{start next line 72 dots down}

BYTE « NOVEMBER 1985

turning on a point involves changing
a single bit within a byte. Computers
are generally not equipped to do this
easily. Remember that each byte con-
trols eight vertical dots, and you want
to change only one of them. This is
most quickly done with bit masks and
the logical operations AND and OR.
See the text box on bit manipulation,
“Bits AND/OR Pieces,” on page 225.
(Note that in the PixelMasks pro-
cedure, the leftmost bit in a byte is
called the zeroth bit, while the right-
most bit is the seventh.)

If you want to insert a 1 in the third
bit, you use the mask M[height].
where height equals 3, with the logical
OR operation. The code that inserts
this 1 into the byte Old is simply:

Old: = Old OR Miheight]

M[height] is a byte made up of all
zeros except for a 1 in bit height. If
Old is 01000010 and height is 3, then
Old becomes the byte (01000010 OR
00010000) = 01010010.

If you want to insert a O into this
same byte, you use the mask
R[height] together with the logical
AND operation:

Old: = Old AND Riheight]

Here, R[height] is a byte made up of
Is except for a O in bit height. If Old
is 01111101 and height is 7, then Old
becomes the byte (01111101 AND
11111110) = O1111100.

Note that you write to printers using
Pascal's Write and Writeln procedures,
and these procedures expect to be
given a character. This is why you
should set up your arrays as character
arrays and why the last command in
the Change procedure converts the
byte into a character.

SOME PRINTER DIFFERENCES

The eight vertically arranged print
pins on most printers correspond to
the eight bits in a byte. On the Epson
FX-80 and many other printers, the
high-order bits—those in the left half
of the byte—correspond to the upper
pins; the low-order, or rightmost, bits
correspond to the lower pins. Thus,
the byte 10000010 causes the top pin
and the next-to-the-bottom pin to

HI-RES PRINTER GRAPHICS

make dots on the paper. On the other
hand, for the Prowriter and several
other printers, the exact opposite is
true—the leftmost bit causes the bottom
pin to fire. Thus, if you want to insert
a 1 in the third bit for a Prowriter, you
OR with M[7-height] where height
equals 3. To avoid confusion we have
indicated the corrections necessary to
handle the Prowriter properly (see
listing 2). If you have a different
printer, you should check your
manual for the correct pin assign-
ments. (The Prism printer, for exam-
ple, uses only seven pins.)

Another important difference be-
tween printers is in how close you are
allowed to print the dots horizontally
and vertically. In the Epson quad-
ruple-density graphics mode, avail-
able only on the FX, RX. and IBM
models, the printer prints 240 dots
per inch or 1920 dots across an 8-inch
page. Because of restrictions on the
size of arrays (64K-byte maximum),
the examples in this article draw only
1600 dots. (We can draw more, but at
the expense of some vertical rows.)
The older Epson MX prints only 960
dots across the page. For the Pro-
writer, the highest density possible is
in proportional mode, where you can
get 160 dots per inch or 1280 per
line—we use 1250 in our examples.

Each dot on a dot-matrix printer is
approximately 1/72 inch in diameter.
The Epson FX-80 permits linefeeds of
¥4 dot, which results in a theoretical
vertical density of 216 dots per inch.
The Prowriter allows Ys-dot linefeeds,
or a vertical density of 144 dots per
inch. In the examples in this article, we
use the Epson !4-dot linefeeds as if
they were Y2-dot; this works fine, un-
doubtedly due to the inherent inac-
curacy of paper advance.

Once again, you must consult your
printer manual if you have a different
printer. The Prism does not seem to
support fractional linefeeds at all,
while the Mannesmann Tally achieves
them by raising or lowering the actuai
print head ¥ dot.

ECHOING ON THE SCREEN
We now have the complete setup for
drawing a dot in “printer” memory.

Returning to listing 1, note the call to
the procedure Plot. Plot is a Turbo
Pascal procedure that draws a dot on
the actual screen for each point you
draw in memory. However, the scale
for the printer is different from the
scale for the screen: 1600 by 640 dots
for the printer (1250 by 640 dots for
the Prowriter) versus 640 by 200 dots
(pixels) for the screen. For the Epson

FX-80 you rescale by multiplying the
column and row, respectively, by
640/1600 (2/5) and 200/640 (5/16). For
the Prowriter you multiply by 640/
1250 (approximately %4) and 200/640
(5/16). Since real-number multipli-
cation is time-consuming (unless you
have‘an 8087 chip) and since Plot re-
quires integer parameters anyway, you

(continued)

s uppose you have two bytes, each
represented as eight binary bits:
Bytel = 10111010 and Byte2 =
00110011. To make calculation simpler
later on, let’s call the first bit on the left
of each byte the zeroth bit; the next is
the first, then the second, etc. Thus, the
zeroth bit of Bytel is 1, the first is 0, and
the seventh, or rightmost, bit is 0. When
you OR Bytel and Byte2 together, you
produce a new byte, Byte3. If either of
the corresponding bits, for example the
zeroth bits of Bytel and Byte2, is a I,
then you make the corresponding bit
of Byte3 a I; otherwise, it is a 0. Thus,
the zeroth bit of Byte3 is a 1 since
Bytel has a 1 in the zeroth position.
The first bit of Byte3 is a 0 since neither
Bytel nor Byte2 has a 1 in that
position.

Bytet = 10111010
Byt2 = 00110011
Byte3 = 10111011
Byte3 = Byte1l OR Byte2 =
10111011.

If you perform an AND on the two
bytes, the process is similar, except that
you put a 1 in Byte3 only if both corre-
sponding bits are 1. Let's let Byte4 =
Bytel AND Byte2.

Byte1 = 10111010
Byte2 = 00110011
Byte4 = 00110010
Byte4 = Byte1l AND Byte2 =
00110010

Suppose now that you have a byte
B = 10011001 and you want to change
the second bit from a 0 to a 1. If you
have a byte M2 that is all Os except for
a | in this second position (i.e.. third
place from the left), then you can
execute

Bits AND/OR PIECES

B OR M2 = 10011001 OR 00100000
= 10111001

This accomplishes your purpose. You
need eight different masks of this type
to handle each possible bit position.
Note that M2 = 00100000 (binary) =
20 (hexadecimal) = 32 (decimal); also,
32 = 22 _A]] other such masks are
powers of 2 also. This explains how M,
the array of eight different pixel masks,
is constructed in the procedure Pixel-
Masks (see listing 1).

To turn off the fourth bit of B (ie.
change it from a 1 to a 0). you can AND
it with a byte R4 that is all 1s except
for a 0 in the fourth position (the
reverse type of mask from M2):

B AND R4 = 10011001 AND 11110111
= 10010001

In this case R4 = 11110111 (binary) =
F7 (hexadecimal) = 247 (decimal). The
procedure PixelMasks also constructs
the array R of eight different reverse
masks. The relation between the masks
of the two types is easy to see. For ex-
ample, consider M[3] = 00010000 =

16, and R[3] = 11101111 = 239. Then
R[3] = 11101111 = 11111111 = M(3]
= 255 — M[3]

Thus, you get the reverse pixel masks
from the normal pixel masks by sub-
tracting the normal ones from 255.

One great advantage of pixel masks
is that they are fast. Once created, you
can use them over and over without
any time-consuming computation. You
can use pixel masks in regular screen
graphics also; if you use color, you will
need several other sets of masks that
do two bits at a time, since a choice
of one out of four colors requires two
bits.

NOVEMBER 1985 « BYTE 225

HI-RES PRINTER GRAPHICS

can do this quite neatly using integer
multiplication and div:

Plot(x * 2 div 5, y * 5 div 16, white)
For the Prowriter:
Plot(x div 2, y * 5 div 16, white)

This is still somewhat wasteful since
it draws some dots on top of others,
but it is sufficient for this example.

How TO PRINT THE DoOTS
In theory all we have to do is send
these bytes to the printer. However,
many printers are fussy and don't like
to be in graphics mode—in fact, they’ll
only stay there for one line at a time.
Furthermore, each time you invoke
graphics mode you have to tell them
how many graphics bytes to expect
on that line; if you send them more,
they start printing regular characters.
Let's do a brief rundown on the
Epson FX-80 graphics Printout pro-
cedure (see listing 1). Lst is Turbo
Pascal's name for the printer. The
Epson FX-80 instruction to enter
quadruple-density graphics mode is
Escape (chr(27)) followed by Z (on
the MX, replace Z with L). Then the

printer needs to receive the number
of graphics bytes it should expect as
a sequence of two characters, which
are determined as follows:

Byte #1 = “n__lo"

(# of bytes mod 256)
Byte #2 = “n_hi"

(# of bytes div 256)

(This information should be easy to
obtain from your printer manual
under “Graphics Mode.")

Procedure Printout has two nested
loops; the big one controls the printer
lines, while the smaller sends out the
character bytes within each printer
line. Recall that a printer line consists
of one even and one odd group of
1600 bytes. For each of these we
must, as just mentioned, reenter
graphics mode and give the byte
count. The command write(Lst,
chr(13)) is simply a carriage return.

The only other lines of interest are
the paperfeeds. The Epson FX-80
won't do a linefeed of %4 dot but
rather works in multiples of ' dot.
Since even Epson disclaims any great
accuracy for such a tiny linefeed, we
tried various combinations such as

Program Testcurve;
{$! printpak.pas}
var ch: char;

Procedure Plotcurve;
var |, width: integer;
scaler: real;
begin {Plotcurve}
width: = across - (across mod 50);
scaler: = width/50;
for I: = 0 to width do

end; {Plotcurve}

begin {Testcurve}
Init_mem;
PixelMasks;

Plotcurve;
write(‘Continue (y/n)? *);
readin(ch);
if ch = 'y’ then Printout;
TextMode(BW80)

end. {Testcurve}

Listing 3: Program to test printing procedures. 1t draws a parabola: y = x*x.
Note the $| directive to include the routines in Printpak.pas (see listing 1).

{Include printer procedures listed above.}

Pset(l, trunc(639 — (I/scaler — 25)«(l/scaler — 25)),1)

HiRes; HiResColor(7); {draw in 640- by 200-dot mode}

226 BYTE * NOVEMBER 1985

and 7%, % and 7%, etc. The best
image seemed to result from using %
and 7% (22/3).

Now let's take a look at the Pro-
writer graphics Printout procedure
(see listing 2), since the Prowriter
works a little differently. First, you
should clear out the 50-byte printer
buffer by writing 50 blanks—we've
never seen the necessity of this, but
it is suggested as a precaution. Next,
you should report the number of
graphics bytes the printer is to expect
(= across + 1) by sending a string
whose characters are the decimal digits
of this number. These are computed
by the small loop (from a: = across
+ 1 through until | = 0;). The rest of
the code is the same as the Epson
FX-80's except for the different printer
instructions (escape sequences).

THE TESTCURVE PROGRAM

To demonstrate how these pro-
cedures work, listing 3 contains a
driver program that sketches the sim-
ple parabola y = x*x (see figure 1).
The heart of this program is the pro-
cedure Plotcurve, which illustrates the
scaling and coordinate manipulation
necessary to draw ‘computer pic-
tures!” Since the origin is in the upper
left-hand corner and the y-coordinate
is measured downward, you are
essentially plotting y = 639 — (x —
25)*(x — 25). x should go from 0 to
50; since the width of the screen is
across (1599 or 1249), you round across
to the nearest 50 (width: = across -
(across mod 50)) and let | go from 0
to width. The scale factor scaler is
width/50 and x equals I/scaler or
(I/width)*50. Thus, when | equals O,
x is 0; when | equals width, x is 50.
Then you use Pset to graph your
points:

Pset(l, trunc(639 - (I/scaler — 25)*
(I/scaler - 25)), 1)

Note that you must truncate (trunc)
since Pset requires integer param-
eters.

CONNECTING THE DOTS

The procedure Plotcurve draws a

curve by computing each point sepa-
(continued)

HI-RES PRINTER GRAPHICS

rately and then plotting it. Although
this sufficed for a simple demonstra-
tion, it has two major shortcomings.
First, it can skip points. For example,
suppose y equals 5 when x is 1, and
y equals 10 when x is 2. Then there
is a vertical gap of four dots between

the points (1,5) and (2.10). (This didn’t
happen on the parabola graphic
because x went from 0O to 50 in 1599
steps, so each step represented an x
change of about 0.03. Thus, even at
the steepest part of the curve y

(continued)

Procedure Pixel_|

begin
dx:= abs(x2 - x1);
dy:= abs(y2 - y1);

If dy <= dx then {Slope <= 1}
begin
x:= x1; {initialize x}
y:= y1; {initialize y}
z:= x2; {set sentinel in x-direction}
{Now set x-increment}

fx1 <= x2
then a:= 1 {x increases}
else a:= -1; {x decreases}
{Now set y-increment}
fyl <=y2
then b: = 1 {y increases}
else b:= -1, {y decreases}

deltap: = dy + dy;
d 1= deltap - dx;
deltag:= d - dx;
{Locate and plot points}
Pset(x,y,1); {First point}
while x <> z do begin
X=X + a;
ifd <O
then d:= d+ deltap
else begin
y:=Yy + b;
d:= d + deltaqg
end; {else}
Pset(x,y,1);
end {while}
end {Case: if dy <= dx}

begin
yi=yh
x:= x1;
z.=y2;
{Now set y-increment}
fyl <=y2
then a:= 1 {y increases}
elseai= -1; {y decreases}
{Now set x-increment}
Ifx1 <= x2
then b:= 1
else b:= -1;

{initialize y}
{initialize x}

{x increases}
{x decreases}

Listing 4: Bresenham's line-drawing algorithm. (The Pascal implementation is
courtesy of Professor Richard Rasala of Northeastern University.)

Line(x1,y1,x2,y2:integer);
var x, y, z, a, b, dx, dy, d, deltap, deltaq: integer;

{Initialize decision function and its deltas}

else {dx < = dy so view x as a function of y}

{set sentinel in y-direction}

{Initialize decision function and its deltas}

(continued)

Theloshiba P351

The ultima'te in
3-in-One

technology.

The perfect business printer. Engi-
neered to combine letter-quality printing,
superb graphics and reliability with high
speed. Plus along list of sophisticated
features. So you get three printers for the
price of one.

Speed: 100 characters per second—
letter quality; 288 characters per second
(12 cpi)—draft quality.

Dual Emulation: Qume Sprint lland
IBM Graphics Printer (standard).
Reliability: In-use tests show the
Toshiba 3-in-One printer can operate
without fail for up to 7.7 years of normal
workdays.

Durability: The 24-pin printhead lasts
twice as long as nearest competitors.
Compatibility: Toshibas 3-in-One
printers are compatible with major soft-
ware packages.

Interchangeability: Our parallel and
serial interfaces make the 3-in-One series
compatible with all micros. Today —and
tomorrow.

Sprint Il Is a trademark of Qume Corporation. IBM Graphics Printer is a trademark of International Business Machines.

In Touch with Tomorrow

TOSHIBA

TOSHIBA AMERICA., INC. Information Systems Division

CopyWirite

BACKS UP
IBM PC
SOFTWARE

Hundreds of the most
popular copy-protected
programs are copied readily.
CopyWrite needs no
complicated parameters.

It needs an IBM Personal
Computer, or an XT or an AT,
128k bytes of memory, and
one diskette drive.
CopyWrite will run faster
with more memory or
another drive.

CopyWrite is revised
monthly to keep up with the
latest in copy-protection.

You may get a new edition at
any time for a $15 trade

in fee.

CopyWrite makes back up
copies to protect you
against accidental loss of
your software. It is not for
producing copies for sale or
trade, or for any other use
that deprives the author of
payment for his work.

To order CopyWrite, send a
check for $50 U.S., or call us
with your credit card. We will
ship the software within

a day.

N
Quaid Software Limited

45 Charles Street East
Third Floor
Toronto, Ontario M4Y 1S2

(416) 961-8243

Ask about ZeroDisk to run copy-protected
software from a hard disk without floppies.

230 BYTE * NOVEMBER 1985

HI-RES PRINTER GRAPHICS

deltap: = dx + dx;
d .= deltap — dy;
deltag:= d - dy;
{Locate and plot points}
Pset(x,y,1); {First point}
while y <> z do begin
yi=y + a
ifd <0
then d:= d+ deltap
else begin
X=X + b;
d:= d + deltaq
end; {else}
Pset(x,y,1);
end {while}
end {else}
end; {Pixel_line}

changes only about 1.5 dots per
change in x—hardly visible at over 200
dots per inch.)

Second, this point-by-point calcula-
tion takes time. Even when the curve
is smooth or nearly straight, every
point must be calculated. For curves
from simple functions this doesn't
produce too much overhead, but for
complicated mathematical equations
or for curves produced by rotating
images, this “overcalculation” is unac-
ceptably slow.

The solution to both of these prob-
lems is to compute fewer points and
to join the points computed with sim-
ple, easy-to-calculate curves. For most
purposes these simple curves can be
taken to be straight lines. If you only
compute every fifth point and you
connect the points by lines, there is
a considerable time savings if point
computations are reasonably com-
plex and the line-drawing algorithm is
fast. Furthermore, this solves the
problem of gaps, since, in the exam-
ple above, the points (1,5) and (2,10)
would be joined by a small line seg-
ment “filling in” the missing four
points.

The problem, then, is finding a fast
line-drawing algorithm. Trying to find
the equation of the line joining two
points and then plotting it requires a
considerable amount of real-number
(decimal) arithmetic. This kind of
arithmetic, especially multiplication
and division, is quite slow in com-

parison with whole-number manipula-
tion. Furthermore, since the coor-
dinates of points on the screen (or
printer page) are always integers—
column and row numbers—you would
naturally hope for a whole-number
algorithm. Fortunately, there is one,
called the Bresenham Line Algorithm
(named for its inventor, J. E. Bresen-
ham). It not only computes the points
on the line connecting any two screen
points, using whole-number arith-
metic, but it accomplishes this feat
without using either multiplication or division!
Listing 4 contains a Pascal implemen-
tation of it. The procedure call is
Pixel__line(x1,y1,x2,y2,color) where
x1y1 and x2y2 are the endpoints of
the line. For an easy-to-read descrip-
tion of the theory behind Pixel__line,
see Fundamentals of Interactive Computer
Graphics by James D. Foley and An-
dries Van Dam (Addison-Wesley,
1982).

Sometimes, when speed is even
more important and points are very
time-consuming to compute, you
must cut down radically on the
number of points calculated. Joining
the points by straight lines will usual-
ly produce a figure that is too poly-
gonal in appearance. In figure 1, the
points are joined by curved pieces
called splines, for which there are now
very fast computational algorithms.
There is some discussion of splines in
Foley and Van Dam’'s book, but the

(continued)

HI-RES PRINTER GRAPHICS

There are clever ways

of getting even more
speed out of the line
drawing—especially
for lines of small
slope—by exploiting
block moves of bytes.

most efficient algorithms are to be
found in the current technical com-
puter science journals.

FURTHER APPLICATIONS

AND EXTENSIONS

Armed with procedures for drawing
points and lines on the screen and on
the printer, you can implement pro-
cedures for making very complex
high-resolution pictures. It is possible,
given enough memory, to set aside
more pairs of arrays to increase fur-
ther the image size you can print. This
is the reason to use dynamic vari-
ables, the ones with the "~".

It is also possible to print your pic-
ture sideways, but this requires a re-
structuring of the procedure Change
so that it addresses the points
correctly.

Finally, you can use pixel masks to
draw points on the graphics screen as
well as the printer. The point and line-
drawing procedures included in
BASIC and Turbo Pascal, for example,
are implemented by combining color
and monochrome pixel masks with
some version of Bresenham line draw-
ing. There are clever ways of getting
even more speed out of the line
drawing—especially for lines of small
slope—by exploiting block moves of
bytes.

Figure 2 shows a surface plotted by
an Epson FX-80 printer with a resolu-
tion of 1600 by 640 dots. It indicates

Figure 2: High-resolution plot of the surface z = x* — 3xy? (1600 by 640 dots the complexity of drawing possible

prepared using the Epson FX-80 printer and the Bridge Software Math Utilities). ;?']iéh.this method of printer address-

Figure 1: High-resolution plot of a parabola (y = x*x) created on an Epson FX-80
printer.

| o G O S W W W

232 BYTE ¢ NOVEMBER 1985

