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1. Introduction

1.1. Suppose D is a Hermitian symmetric domain, G is a neat arithmetic group of

automorphisms of D, and X ¼ GnD is the corresponding locally symmetric space.

The Baily–Borel Satake compactification X̂ of X is a projective algebraic variety.

The Zucker conjecture (proven by Looijenga [Lo], Saper and Stern [SS]) states

that the complex of sheaves of L2 differential forms on X̂ is canonically isomorphic

to the complex of sheaves IC�
ðX̂Þ of intersection chains on X̂. Both proofs proceed by

showing that, in some sense, these two complexes of sheaves have the same stalk

cohomology at any point x 2 X̂: These stalk cohomology groups IHi
xðX̂Þ are usually

viewed as being extremely complicated objects. In this paper (Theorem 6.3) we give

an explicit interpretation for the stalk cohomology, together with its weight filtration

which arises from mixed Hodge theory. In Theorem 7.8, we evaluate the formula of

Theorem 6.3 for the case X ¼ GðpÞnSp4ðRÞ=U2.
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The identity mapping X ! X has a unique continuous extension F : �X ! X̂ to the

‘reductive Borel–Serre compactification’ �X, which may be thought of as a (nonalge-

braic) partial resolution of singularities of X̂: The projection F is stratified by the

natural stratifications of �X and of X̂, but the singularities of �X are particularly expli-

cit and easy to understand. The fiber F�1ðxÞ over a boundary point x 2 X̂ is itself the

reductive Borel–Serre compactification �X‘ of a certain ‘linear’ locally symmetric

space (6.1.2),

X‘ ¼ G‘nQ‘=AQK‘: ð1:1:1Þ

Our formula expresses the stalk cohomology of the intersection cohomology of X̂ as

a direct sum of weighted cohomology groups of this auxiliary space F�1ðxÞ.

1.2. Weighted cohomology groups for locally symmetric spaces were introduced in

[GHM] and the present paper relies heavily on the results and notations of [GHM]

and [GM2]. Like intersection cohomology, the weighted cohomology WpH	ð �XÞ is

the hypercohomology of a complex of sheaves WpC�
ð �XÞ which is obtained by ‘trun-

cation’ of the direct image sheaf Ri	ðCÞ (where i : X ! �X denotes the inclusion).

However the weighted cohomology complex is obtained by truncating with respect

to weights of a certain torus action, rather than with respect to dimension.

A central result in [GHM] states that the pushforward F	W
nC�

ð �XÞ of the weighted

cohomology complex (with ‘middle’ weight n) on �X is canonically isomorphic to the

(‘middle’) intersection complex IC�
ðX̂Þ of X̂. It follows that the stalk intersection

cohomology at a point x 2 X̂ is isomorphic to the hypercohomology of the restriction

WnC
�
jF�1ðxÞ ð1:2:1Þ

of the weighted cohomology complex to the fiber F�1ðxÞ ffi �X‘:

1.3. The key technical achievement in this paper is the identification of the restriction

(1.2.1) as a sum of shifted weighted cohomology complexes of the reductive Borel–

Serre compactification �X‘: In Theorem 4.3 and Corollary 4.6 we show, more gener-

ally, that for any weight profile p, the restriction WC�
ð �XÞj �XQ of the weighted coho-

mology complex to the closure �XQ of any boundary stratum XQ � �X breaks into a

direct sum of weighted cohomology complexes of �XQ with shifts. (This result even

holds when we drop the assumption that D is Hermitian.)

Combining this with (1.2.1) gives a formula (6.5.1) (notation explained in Section 6)

for the local intersection cohomology at a point x in the Baily–Borel compactification,

IHi
xðX̂;EÞ ffi

M
b5�rQ

M
i

Wn&þ bHk�ið �X‘;H
iðNQ;EÞbÞ: ð1:3:1Þ

Theorem 4.3 is one of several properties which make weighted cohomology a

somewhat simpler object to study than intersection cohomology. The analogous

statements which may be formulated for the intersection cohomology of X̂ or of �X

are false. (The restriction of the intersection complex IC�
ðX̂Þ to the closure Ŷ � X̂

of a boundary stratum Y � X̂ may fail to be isomorphic to a sum of intersection

cohomology complexes of Ŷ:)
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The results of [LR] show that the weight filtration from mixed Hodge theory on

the stalk cohomology IHi
xðX̂Þ is given by the torus weights which define the trunca-

tion for weighted cohomology. This gives a precise formula (6.3.1) for the associated

graded of the weight filtration of the stalk cohomology.

In [F], J. Franke introduced an important family of invariants, the weighted L2

cohomology groups of X, which are the Lie algebra cohomology groups of a certain

space of functions on X: In [N] it was shown that Franke’s weighted L2 cohomology

groups coincide with the weighted cohomology groups. Consequently, the above for-

mula (1.3.1) for the stalk cohomology IH	
xðX̂Þ may be translated into Lie algebra

cohomology. (In the rank two case this stalk cohomology was previously described

in terms of automorphic forms [BC].)

Finally, in Section 7 we evaluate the local cohomology and intersection cohomol-

ogy Euler characteristic for the Siegel modular threefolds given by principal congru-

ence subgroups of level53:

2. Some Linear Algebra

2.1. Suppose X is a Q-vector space. Denote by X	 ¼ HomðX;QÞ the dual vector

space. Let D � X	 be a finite collection of linearly independent functionals. Define

kerðDÞ ¼
\
a2D

kerðaÞ and CðDÞ ¼
X
a2D

maa

�����ma 5 0;ma 2 Q

( )
:

The set CðDÞ is called the positive cone spanned by the elements of D: If n 2 X	

define

ðX	Þ5nðDÞ ¼ g 2 X	 g � n 2 CðDÞ
��� �

: ð2:1:1Þ

Every element g 2 ðX	Þ5nðDÞ satisfies gj kerðDÞ ¼ nj kerðDÞ:

Let W ¼ kerðDÞ and let ta a 2 Djf g � X=W be the basis of X=W which is dual to the

basis determined by D: If g 2 X	 satisfies gjW ¼ njW then g � n passes to a linear

functional on X=W: Hence,

ðX	Þ5nðDÞ ¼ g 2 X	j gjW ¼ njW and hg � n; tai5 0; 8a 2 D
� �

; ð2:1:2Þ

where h�; �i: ðX=WÞ
	

� ðX=WÞ ! Q is the canonical pairing.

Fix a subset J � D and set Y ¼ kerðJÞ and Z ¼ kerðD � JÞ: The sequence

0 ! W ! Y � Z ! X ! 0

is exact, where the maps are given by w 7! ðw;�wÞ and y � z 7! y þ z: It follows by

duality that if n 2 X	, if b 2 Y	, and if njW ¼ bjW then there is a unique element

q ¼ n&þ b 2 X	 so that qðy þ zÞ ¼ bðyÞ þ nðzÞ for all y 2 Y and z 2 Z: Moreover,

qjW ¼ njW ¼ bjW:

If a 2 D � J then ta 2 Y=W: The elements of D � J restrict to a basis of ðY=WÞ
	

whose dual basis is ta a 2 D � Jjf g: The composition Z=W � X=W ! X=Y is an

isomorphism. If a 2 J then ta 2 Z=W projects to a nonzero element �ta 2 X=Y: The

elements of J determine a basis of ðX=YÞ
	 whose dual basis is �ta a 2 Jj

� �
:
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2.2. PROPOSITION. Let X be a rational vector space, let D � X	 be a finite set of

linearly independent elements, and set W ¼ kerðDÞ: Let J � D and let Y ¼ kerðJÞ: Fix

n; g 2 X	 with njW ¼ gjW: Let b ¼ gjY 2 Y	: Then

g 2 ðX	Þ5nðDÞ () b 2 ðY	Þ5nðD�JÞ and g 2 ðX	Þ5n&þ bðJÞ

ðwhere we have also written n for its restriction to YÞ.

Proof. If a 2 D � J then ta 2 Y=W and the first condition says that hb � n; tai5 0:

But b ¼ gjY so hg � n; tai5 0 for all a 2 D � J:

If a 2 J then ta 2 Z=W: Let t̂a 2 Z � X be any lift of ta; then n&þ bðt̂aÞ ¼ nðt̂aÞ:
Therefore the second condition says

0 � hg � n&þ b; �tai ¼ hg � n&þ b; t̂ai ¼ hg � n; t̂ai ¼ hg � n; tai

for all a 2 J: The reverse implication is similar. &

3. Weighted Cohomology

3.1. LOCALLY SYMMETRIC SPACES

Algebraic groups will be designated by bold face type (G;P, etc.). If an algebraic

group is defined over the real numbers R, then its group of real points will be in

Roman (G ¼ GðRÞ). Throughout this paper we fix a connected reductive group G

which is defined over Q: Let SG be the maximal Q-split torus in the center of G

and let AG ¼ SGðRÞ
0 be the identity component of its group of real points. Let K

be a maximal compact subgroup of G; set K0 ¼ KAG and D ¼ G=K0: This is a

homogeneous space on which G acts transitively. The group K0 corresponds to a

choice of basepoint x0 2 D: We also fix a neat arithmetic subgroup G � GðQÞ and

set X ¼ GnD: By abuse of terminology we will refer to X as a locally symmetric

space.

In this paper, ~X denotes the Borel–Serre compactification of X ([BS]) and
�X denotes the reductive Borel–Serre compactification ([Z3], Section 4.2,

[GHM] Section 8). If X is Hermitian then X̂ will denote the Baily–Borel Satake

compactification.

3.2. PARABOLIC SUBGROUPS

Let P be a rationally defined parabolic subgroup of G: Then we have the following

groups:

. UP ¼ unipotent radical of P

. NP ¼ LieðUPÞ

. RdP ¼ the Q-split radical of P ([BS] Section 0.3)

. LP ¼ the Levi quotient, nP : P ! LP the projection

. SP ¼ RdP=UP

. w	
QðSPÞ ¼ w	ðSPÞ �Z Q

. wQ
	 ðSPÞ ¼ Homðw	

QðSPÞ;QÞ
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. AP ¼ SPðRÞ
0

. GP ¼ G \ P and GL ¼ nPðGPÞ

. KP ¼ KPðx0Þ ¼ K \ P and K 0
P ¼ K 0 \ P:

The torus SP may also be identified as the greatest Q-split torus in the center of LP:

It contains SG and we denote the quotient by S0
P ¼ SP=SG:

The choice of basepoint x0 2 D determines a Cartan involution y : G ! G with

fixed point set Kðx0Þ. There is a unique lift ([BS], Sections 1.6, 1.9) ix0 : LP ! P of

the Levi quotient such that the image LPðx0Þ ¼ ix0ðLPÞ is y-stable. This determines

a lift of SPðRÞ: Note that KP � LPðx0Þ:

Fix once and for all a minimal rational parabolic subgroup P0 � G. The (rational

‘relative’) root system FðSP0
;GÞ admits a linear order such that the positive roots are

those in N0 ¼ LieðUP0
Þ: Let D denote the set of simple (rational) roots. The rational

parabolic subgroups containing P0 are called standard. They form a unique set of

representatives of the GðQÞ conjugacy classes of rational parabolic subgroups of

G: They are in one to one correspondence with subsets J � D: The parabolic sub-

group PðJÞ corresponding to J is determined by the condition that SPðJÞ �

kerðaÞ for all a 2 J: The (restrictions of the) roots a 2 D � J form a basis of the

rational (quasi-) character module w	
QðS0

PðJ ÞÞ: Denote by DPðJ Þ the collection of

restrictions ajSPðJ Þ

� �
(for a 2 D � J ), which we refer to as the set of simple roots

of PðJ Þ occurring in NJ ¼ LieðUPðJ ÞÞ: These notions extend to arbitrary rational

parabolic subgroups P � G by conjugation.

3.3. TWO PARABOLIC SUBGROUPS

If P � Q � G are rational parabolic subgroups of G, then UQ � UP and RdQ � RdP:

This gives an embedding SQ ,!SP: Let nQ : Q ! LQ denote the projection to the

Levi quotient and set �P ¼ nQðPÞ ¼ P=UQ: Then U �P ¼ UP=UQ and the resulting

isomorphism

L �P ¼ �P=U �P ¼ ðP=UQÞ=ðUP=UQÞ ffi LP

induces an isomorphism SP ffi S �P: However, P is regarded as a parabolic subgroup

of G, so S0
P ¼ SP=SG; while �P is regarded as a parabolic subgroup of LQ so

S0
�P

¼ SP=SQ:

3.4. BOUNDARY STRATA

Let ~X denote the Borel–Serre compactification of X ([BS]) and let �X denote the

reductive Borel–Serre compactification of X ([Z3], Section 4.2, [GHM], Section 8).

These spaces are Whitney stratified by their boundary strata YP � ~X and XP � �X

which are in one to one correspondence with G-conjugacy classes of proper rational

parabolic subgroups of G: A choice of representative P in this G-conjugacy class

determines an identification

YP ¼ GPnP=KPAPðx0Þ ð3:4:1Þ

LOCAL INTERSECTION COHOMOLOGY OF BAILY–BOREL COMPACTIFICATIONS 247



and an identification

XP ¼ GPnP=UPKPAPðx0Þ: ð3:4:2Þ

The identity map X ! X has a unique continuous extension to a mapping

p : ~X ! �X: Then p is surjective, takes strata to strata, and its restriction to each

boundary stratum YP is the smooth proper fiber bundle pP : YP ! XP which is given

by collapsing the ‘orbits’ of UP ([GHM] Section 7.4).

3.5. WEIGHTED COHOMOLOGY

Fix a minimal rational parabolic subgroup P0 � G: A weight profile is an element of

w	
QðSP0

Þ: (This is slightly more general than the definition in [GHM], but it agrees

with the definition in [GKM] and [GM2].) For any standard rational parabolic

subgroup P � P0 the weight profile together with the set DP � w	
QðSPÞ determines

a ‘high’ subset of weights as in (2.1.1) and (2.1.2),

w	
QðSPÞ5 pðDPÞ ¼ g 2 w	

QðSPÞ
�� gjSG ¼ pjSG and hg � p; tai5 0; 8a 2 DP

� �
;

ð3:5:1Þ

where ta j a 2 DPf g is the basis of the rational co-character module wQ
	 ðS0

PÞ which

is dual to the basis of w	
QðS0

PÞ determined by DP: When there is no possibility of

confusion we will abbreviate the notation to w	
QðSPÞ5p (which agrees with the

notation of [GKM] and [GM2], and which was denoted w	
QðSPÞþ in [GHM]). If a

rational vector space V is a module over SP let Va be the subspace of weight

a 2 w	
QðSPÞ and set

V5 p ¼ V5 pðDPÞ ¼
M

a2w	
Q

ðSPÞ5 p

Va: ð3:5:2Þ

Let G ! GLðEÞ be an irreducible representation of G on some finite dimensional

complex vector space E and let E ¼ E �G D be the resulting local coefficient system

on X. Since E is irreducible, the torus SG acts by a single character lE 2 w	
QðSGÞ: Let

p be a weight profile such that pjSG ¼ lE: The construction of [GHM] defines a

weighted complex of sheaves WpC�
ð �X;EÞ on the reductive Borel–Serre compactifica-

tion �X of X: This is a (cohomologically) constructible complex of sheaves on �X which

is obtained by truncating the sheaf of smooth differential forms i	O
�
ðX;EÞ along the

boundary strata XP so as to keep only the differential forms with ‘weights’ in

w	
QðSPÞ5p: (Here, i : X ! �X denotes the inclusion of X into its reductive Borel–Serre

compactification.)

Let NP ¼ LieðUPÞ be the Lie algebra of the unipotent radical of P: The Lie

algebra cohomology HiðNP;EÞ is a module over LP and hence also over SP: The

torus SG acts on H	ðNP;EÞ via the weight lE: Then ([GHM], Section 17) the stalk

cohomology at a (singular) point x 2 XP of the weighted cohomology complex

WpC�
ð �X;EÞ is the (finite) sum,
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WpHi
x ffi HiðNP;EÞ5 p ¼

M
b2w	

Q
ðSPÞ5p

HiðNP;EÞb: ð3:5:3Þ

3.6. For some purposes it is necessary to consider weight truncations of the form

w	
QðSPÞ>p ¼ g 2 w	

QðSPÞ
�� gjSG ¼ pjSG and hg � p; tai > 0; 8a 2 DP

� �
:

Since only finitely many weights occur in H	ðNP;EÞ; for any E > 0 sufficiently small

we have M
b2w	

Q
ðSPÞ5 pþE

HiðNP;EÞb ¼
M

b2w	
Q

ðSPÞ>p

HiðNP;EÞb:

The weighted cohomology sheaf constructed with respect to this weight truncation

will be denoted WpþEC�
ð �X;EÞ:

Choose a Cartan subgroup H and a Borel subgroup B of G so that

SP0
� H � B � P0 � G:

Let Fþ ¼ FþðHðCÞ;GðCÞÞ be the resulting set of positive roots and let r ¼ 1
2Sa2Fþa:

The ‘lower middle’ weight profile is n ¼ �rjSP0
, the ‘upper middle’ weight profile is

n ¼ �rjSP0
þ E: (The modification by E corresponds exactly to the � log modification

which occurs in the weighted L2 theory.) The ‘dualizing’ weight profile is

d ¼ �2rjSP0
þ E: The weighted cohomology sheaf WdC�

ð �X;CÞ is canonically

(quasi-) isomorphic ([GHM], Section 19.4) to the dualizing complex D �X on �X:

3.7. DUALITY

A morphism E1 � E2 ! E of irreducible representations of G induces a morphism of

(complexes of) sheaves,

WpC�
ð �X;E1Þ � WqC�

ð �X;E2Þ ! WpþqC�
ð �X;EÞ:

Let E be an irreducible representation of G and let p 2 w	
QðS0Þ be a weight profile

such that pjSG coincides with the character lE by which SG acts on E: Let E	 be

the dual representation and let q ¼ d � p be the ‘dual’ weight profile. Then the result-

ing morphism

WpC�
ð �X;EÞ � WqC�

ð �X;E	Þ ! WdC�
ð �X;CÞ ¼ D �X

is a (Borel–Moore-) Verdier dual pairing. In particular, the upper and lower middle

weight profiles are dual.

3.8. One may drop the assumption that the representation E is irreducible, requiring

instead that in the SG-isotypical decomposition E ¼
L

l El; each weight l 2 w	
QðSGÞ

appears at most once and each summand El is irreducible. Sums of this form (with

shifts) appear in the restriction to the boundary (Theorem 4.3).
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3.9. The singularities of �X are relatively easy to understand and the weighted coho-

mology complex on �X is relatively simple. If X is Hermitian then the identity map-

ping X ! X has a unique continuous extension F : �X ! X̂ [Z3]. The pushforward

RF	ðWnC�
ð �X;EÞÞ of the middle weighted cohomology is canonically isomorphic to

the middle intersection complex IC�
ðX̂;EÞ which, by the Zucker conjecture ([Lo],

[SS]) is canonically isomorphic to the sheaf of L2 differential forms with coefficients

in E: So the weighted cohomology complex on �X may be thought of as a sort of

(non algebraic) partial resolution of singularities of X̂ together with its sheaf of L2

differential forms. (In fact, the relation with L2 cohomology may be described

([N]) completely in terms of �X:)

3.10. WEIGHTED L2 COHOMOLOGY

For completeness we sketch how the results in this paper may be translated into the

language of Lie algebra cohomology using Franke’s theory [F] of weighted L2 coho-

mology groups.

An element l 2 w	
QðSP0

Þ determines (via reduction theory) a certain real-valued

weight function ([N], Section 1.6) wl on GAGnG: When l ¼ 0 we have wl ¼ 1: For

any element D in the universal enveloping algebra of g ¼ LieðGÞ there is a left-invar-

iant differential operator RD which acts on the smooth functions on GnG: (For D 2 g
this is simply the derivative of the right regular representation). Let x 2 w	

QðSGÞ: Let

Sl;xðGÞ be the space of smooth C-valued functions f on GnG satisfying

(1) fðagÞ ¼ xðaÞfðgÞ for all a 2 AG and

(2) wlx
�1RDf is square-integrable on GAGnG for every D:

This space is a ðg;KÞ-module ([V]). When l ¼ 0 it is the familiar space of smooth uni-

formly L2 functions. Its ðg;KÞ-cohomology is often infinite-dimensional.

Let E 2 w	
QðSP0

Þ be any dominant weight. Let Slþlog;xðGÞ � Sl;xðGÞ be the module

of smooth functions for which

wl logðwEÞ
mx�1RDf 2 L2ðGAGnGÞ ð3:10:1Þ

for every positive integer m and for every D: This is also a ðg;KÞ-module and it

always has finite-dimensional cohomology. The main result of [N], extended to

reductive groups, gives an isomorphism

WpHið �X;EÞ ffi Hiðg;K;Slþlog;xðGÞ � EÞ ð3:10:2Þ

where l ¼ ð�r � pÞjSP0
and x ¼ �ðpjSGÞ ¼ �lE: Here r is the half-sum of positive

roots (see 4.5). In fact, there is a cohomologically constructible complex of sheaves

on �X with (hyper)cohomology equal to the right-hand side of (3.10.2). The iso-

morphism (3.10.2) is induced from an (explicit and natural) quasi-isomorphism of

this object with WpC�
ð �X;EÞ:
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4. Computations Along Boundary Strata

4.1. THE BOUNDARY STRATUM

In this section we restrict the weighted cohomology sheaf to the closure of a bound-

ary stratum in the reductive Borel–Serre compactification, and state (in Theorem 4.3)

that this restriction decomposes as a direct sum of weighted cohomology sheaves of

the closure of the boundary stratum. Throughout this section we fix a weight profile

p 2 w	
QðSP0

Þ and we fix a local system E on X which corresponds to an irreducible

complex representation of G for which SG acts through the character lE ¼ pjSG:

Fix a boundary stratum XQ (corresponding to a proper rational parabolic subgroup

Q � G). The closure �XQ coincides with the reductive Borel–Serre compactification of

XQ which we consider to be the locally symmetric space

XQ ¼ GLnLQ=KQAQ

associated to the reductive group LQ (notation as in Section 3.2). The restriction

WpC�
ð �X;EÞjXQ to the interior of the boundary stratum is quasi-isomorphic to the

sheaf of differential forms O�
ðXQ;H

	ðNQ;EÞ5pÞÞ (see [GHM], Section 14.1.2). Here,

H	ðNQ;EÞ5p is the local system on XQ associated to the LQ module H	ðNQ;EÞ5p:

4.2. WEIGHT PROFILE ON THE BOUNDARY STRATUM

The boundary stratum XQ corresponds to a rational parabolic subgroup Q � G

which we may assume to be standard (Q � P0) and which therefore corresponds

to a subset J � D of the simple roots, so that

w	
QðSGÞ ¼ kerðDÞ � w	

QðSQÞ ¼ kerðJÞ � w	
QðSP0

Þ

in the notation of Section 2. The elements of D � J restrict to a linearly independent

set DQ � w	
QðSQÞ and determine a basis of w	

QðS0
QÞ (where S0

Q ¼ SQ=SG). Let

taj a 2 DQ

� �
denote the dual basis of w	

QðS0
QÞ: Let b 2 w	

QðSQÞ5 p, that is,

bjSG ¼ pjSG and hb � p; tai5 0 for all a 2 DQ: The projection nQ : Q ! LQ deter-

mines an identification SP0
ffi S �P0

where

�P0 ¼ nPðP0Þ � LQ

is the corresponding minimal rational parabolic subgroup of LQ: The elements of

J � D may be identified with the set D �P0
of simple rational roots of S �P0

occurring

in the unipotent radical of �P0:

As in Section 2 define

p&þ b 2 w	
QðS �P0

Þ ð4:2:1Þ

to be the unique rational (quasi-) character such that ðp&þ bÞðy þ zÞ ¼ bðyÞ þ pðzÞ for

all y 2 wQ
	 ðSQÞ and all z 2 kerðD � JÞ: We may consider p&þ b to be a weight profile

for the reductive Borel–Serre compactification �XQ of the locally symmetric space cor-

responding to the reductive group LQ: It satisfies ðp&þ bÞjSQ ¼ b: The proof of the

following theorem will appear in Section 5.
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THEOREM 4.3. Let p 2 w	
QðS0Þ be a weight profile. The restriction of the weighted

cohomology complex to the closure of the boundary stratum XQ is quasi-isomorphic to

the ðfiniteÞ direct sum of weighted cohomology sheaves:

WpC�
ð �X;EÞj �XQ ffi

M
b2w	

Q
ðSQÞ5p

M
i

Wp&þ bC�
ð �XQ;H

iðNQ;EÞbÞ½�i!; ð4:3:1Þ

where ½�i! denotes a shift in degree: Ck
½�i! ¼ Ck�i:

4.4. The following remarks will be needed for the proof of Theorem 4.3. Suppose

P � Q is another standard rational parabolic subgroup. Then SG � SQ � SP �

SP0
: Let p 2 w	

QðSP0
Þ; b 2 w	

QðSQÞ; and suppose bjSG ¼ pjSG as above. We claim that

ðp&þ bÞjSP ¼ ðpjSPÞ&þ b ð4:4:1Þ

where, for the sake of notational simplicity, we confuse the restriction to SP with the

restriction to wQ
	 ðSPÞ: The right-hand side of this equation needs some explanation.

Let DP be the simple roots for P. They determine a basis of w	
QðSP=SGÞ: Let

J0 � DP be the subset corresponding to Q, that is,

wQ
	 ðSQÞ ¼ kerðJ0Þ: ð4:4:2Þ

Here, we consider the elements of J0 to be linear functionals on the vector space

X ¼ wQ
	 ðSPÞ: ð4:4:3Þ

Then we may apply the construction of Section 2 with

Y ¼ wQ
	 ðSQÞ ¼ kerðJ0Þ

Z ¼ kerðDP � J0Þ � w	
QðSPÞ

to obtain an element ðpjSPÞ&þ b 2 w	
QðSPÞ such that

ðpjSPÞ&þ bðy þ zÞ ¼ bðyÞ þ pðzÞ

for all y 2 Y and all z 2 Z: This defines the right-hand side of (4.4.1).

The proof of the claim is a straightforward matter of bookkeeping. The sets J0 �

DP may be considered as subsets of D, that is, as characters of the larger torus SP0
: Set

DP ¼ D � I so wQ
	 ðSPÞ ¼ kerðIÞ

DQ ¼ D � J so wQ
	 ðSQÞ ¼ kerðJÞ:

It follows that J ¼ J0 [ I (disjoint union) and that

Y ¼ kerðJ0Þ \ w	
QðSPÞ and Z ¼ kerðDP � J0Þ \ w	

QðSPÞ:

To verify the claim we have to check that the subspaces Y and Z used to define the

right-hand side of (4.4.1) agree with the subspaces (say, Y0 and Z0) used to define

ðp&þ bÞjSP on the left hand side. Clearly, Y ¼ Y0 ¼ wQ
	 ðSQÞ: Moreover,

Z0 ¼ kerðD � JÞ \ wQ
	 ðSPÞ ¼ kerðD � I � J0Þ \ wQ

	 ðSPÞ ¼ kerðDP � J0Þ \ wQ
	 ðSPÞ

which completes the proof of (4.4.1).
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4.5. KOSTANT’S THEOREM

Fix a Cartan subgroup and a Borel subgroup, HðCÞ � BðCÞ � LQðx0ÞðCÞ: Let

Fþ ¼ FþðHðCÞ;GðCÞÞ be the resulting system of positive roots for G and let

WQ ¼ WðHðCÞ;LQðCÞÞ be the Weyl group for LQðCÞ: For each w 2 WQ set

FþðwÞ ¼ a 2 Fþ w�1a 2 F�
��� �

:

Then jFþðwÞj ¼ ‘ðwÞ is the length of w. The set

W1
Q ¼ w 2 WQ FþðwÞ � FðH;NQðCÞÞ

��� �
ð4:5:1Þ

consists of the unique element of minimal length from each of the cosets

WQx 2 WQnW ([Sp], Section 10.2, [V], Section 3.2.1). (Here, FðH;NQðCÞÞ denotes

the set of (positive) roots which occur in the nilradial NQðCÞ:) Let L be the highest

weight of the irreducible representation G ! GLðEÞ (cf. Section 3.5) and let Vm be

the irreducible LQðCÞ module with highest weight m: Then Kostant’s theorem ([K],

Section 5.14, [V], Section 3.2.16) states that, as a representation of LQ, the Lie alge-

bra cohomology H	ðNQ;EÞ is given by

H	ðNQ;EÞ ffi
M
w2W1

Q

VwðLþrÞ�r½�‘ðwÞ!;

where r ¼ 1
2

P
a2Fþ a is one-half the sum of the positive roots ofG: (In this formula, we

view VwðLþrÞ�r as a trivial complex concentrated in degree 0, so that VwðLþrÞ�r½�‘

ðwÞ! is concentrated in degree ‘ðwÞ: We use H	 rather than H� to indicate that the

cohomology is viewed as a complex with trivial differential.)

It follows that the expression (4.3.1) may be rewritten asM
w2Wp

Q
ðEÞ

Wp&þ bðwÞC�
ð �XQ;VwðLþrÞ�rÞ½‘ðwÞ!; ð4:5:2Þ

where the symbol Va denotes the local system Va �GL
ðQ=KQAQÞ ! XQ which arises

from an irreducible representation Va of LQ with highest weight a; and where

bðwÞ ¼ ðwðL þ rÞ � rÞjSQ 2 w	
QðSQÞ; ð4:5:3Þ

W
p
QðEÞ ¼ w 2 W1

Q bðwÞ 2 w	
QðSQÞ5 p

���n o
: ð4:5:4Þ

See [GHM] Section 11.5, Section 11.7. This gives the following corollary:

4.6. COROLLARY. Suppose E is an irreducible representation of G with highest

weight L. Then the restriction of the weighted cohomology sheaf to the closure �XQ of

the boundary stratum XQ decomposes as the sum

WpC�
ð �X;EÞj �XQ ffi

M
w2W

p
Q

ðEÞ

Wp&þ bðwÞC��‘ðwÞ
ð �XQ;VwðLþrÞ�rÞ:
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5. Proof of Theorem 4.3

5.1. SPECIAL DIFFERENTIAL FORMS

Let Q � P be a rational parabolic subgroup, let eQ ¼ Q=KQAQ be the Borel–Serre

boundary component and let YQ ¼ GQneQ be the corresponding stratum in the

Borel–Serre compactification ~X of X, with t : eQ ! YQ the projection. Let

E ¼ E �GQ
eQ be the local system on YQ arising from some irreducible representation

G ! GLðEÞ: Recall ([GHM], Section 12.3) that a differential form oQ 2 Oi
ðYQ;EÞ is

‘invariant’ if its pullback t	ðoQÞ 2 Oi
ðeQ;EÞ is invariant under UQ: The invariant dif-

ferential forms give rise to a complex of sheaves O�
invðYQ;EÞ on YQ:

Recall ([GHM], Section 13) that a differential i-form o on X ¼ GnD with values in

E is called special if for each stratum YQ of the Borel–Serre compactification ~X, there

exists a neighborhood of YQ in ~X (which depends on the differential form o), such
that in this neighborhood, the following two conditions hold:

(1) the differential form o is the pull-up of a differential form oQ 2 Oi
ðYQ;EÞ from

the boundary stratum, via the geodesic retraction, and

(2) the form oQ is UQ-invariant, i.e. oQ 2 Oi
invðYQ;EÞ.

We denote by O�
sp the complex of pre-sheaves of special differential forms on X,

whose sections over an open set U � X are

GðU;O�
spÞ ¼ o 2 O�

ðU;EÞ

��� o is the restriction to U
of a special differential form

� �

Let Sh denote the sheafification functor, let j : X,! ~X be the inclusion of X into its

Borel–Serre compactification, and let p : ~X ! �X denote the projection from the

Borel–Serre compactification to the reductive Borel–Serre compactification. Then

~O�
spð ~X;EÞ ¼ Shðj	O

�
spÞ ð5:1:1Þ

is the complex of sheaves of special differential forms on ~X, and

�O�
spð �X;EÞ ¼ p	ð ~O�

spð ~X;EÞÞ ð5:1:2Þ

is the complex of sheaves of special differential forms on �X ([GHM], Section 13.8).

For any boundary stratum YQ � ~X the restriction pjYQ : YQ ! XQ is a smooth

fiber bundle with nilmanifold fiber p�1ðxÞ ffi NQ ¼ ðG \ UQÞnUQ: The complex

C�
ðNQ;EÞ of UQ-invariant differential forms along the fibers of p constitute a

complex of flat vector bundles over the stratum XQ which is associated (see

[GHM], Section 12.5) to the adjoint representation of LQ on the (Koszul) complex

C�ðNQ;EÞ ¼ HomRð
V�NQ;EÞ ¼ HomCð

V�NQðCÞ;EÞ: ð5:1:3Þ

In fact, the choice of basepoint x0 2 D determines an isomorphism ([GHM],

Section 12.13)

C�
ðNQ;EÞ ffi C�ðNQ;EÞ �GL

ðLQ=KQAQÞ: ð5:1:4Þ
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The theorem of Nomizu and van Est identifies the cohomology of this complex with

the flat vector bundle on XQ which is determined by the representation of LQ on

H	ðNQ;EÞ:

5.2. LEMMA. The restriction �O�
spð �X;EÞj �XQ of this sheaf to the closure of the

boundary stratum XQ decomposes as a direct sum

�O�
spð �X;EÞj �XQ ffi

M
qþr¼�

�Oq
spð �XQ;C

r
ðNQ;EÞÞ;

where the differential is given by the differential of the double complex.

5.3. Remark. In [GHM], Section 12.6, it is shown that the integrable connection on

the vector bundle Cq
ðNQ;EÞ determines an isomorphism

�O�
spð �X;EÞjXQ ffi

M
qþr¼�

Oq
ðXQ;C

r
ðNQ;EÞÞ

over the interior of the stratum XQ. Denote this sheaf by T�
Q: The content of

Lemma 5.2 is that this decomposition extends over the closure of the stratum XQ:

5:4: Proof of Lemma 5:2: The closure �XQ of the ‘reductive Borel–Serre stratum’

XQ may be canonically identified with the reductive Borel–Serre compactification of

XQ: Restricting (5.1.2) to �XQ we have

�O�
spð �X;EÞj �XQ ¼ p	ð ~O�

spð ~X;EÞj ~YQÞ; ð5:4:1Þ

where ~YQ is the closure in ~X of the Borel–Serre stratum YQ; it may be canonically

identified with the Borel–Serre compactification of YQ: The sheaf ~O�
spð ~X;EÞj ~YQ

may be canonically identified with the sheaf ~O�
sp;invð

~YQ;EÞ of UQ-invariant differen-

tial forms oQ on YQ (with values in E) which are ‘special’ near each boundary stra-

tum YP � ~YQ and for which the resulting differential form oP 2 O�
ðYP;EÞ is UP-

invariant. The map p : ~YQ ! �XQ (from the closure of the Borel–Serre boundary

stratum to the closure of the reductive Borel–Serre boundary stratum) factors

through the ‘hybrid’ Borel–Serre compactification ~XQ of the reductive Borel–Serre

stratum XQ as the composition,

~YQ !
a ~XQ !

b �XQ: ð5:4:2Þ

The map a is a fibration with fiber NQ and the integrable connection on ajYQ ¼

pjYQ : YQ ! XQ extends to an integrable connection on the closure, ~YQ ! ~XQ. It

may be verified that for any boundary stratum YP � ~YQ, the geodesic retraction

to YP preserves the flat connection on YQ. It follows that the isomorphism

[GHM], Section (12.6),

T�
Q ¼ p	O

�
invðYQ;EÞ ffi

M
qþr¼�

Oq
ðXQ;C

r
ðNQ;EÞÞ ð5:4:3Þ
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extends uniquely to an isomorphism

a	
~O�
sp;invð

~YQ;EÞ ffi
M
qþr¼�

~Oq
spð ~XQ;C

r
ðNQ;EÞÞ: ð5:4:4Þ

Now apply b	 to obtain an isomorphism,

�O�
spð �X;EÞj �XQ ffi b	a	ð ~O�

sp;invð
~YQ;EÞÞ

ffi
M
qþr¼�

b	
~Oq
spð ~XQ;C

r
ðNQ;EÞÞ by (5.4.4)

ffi
M
qþr¼�

�Oq
spð �XQ;C

r
ðNQ;EÞÞ by (5.1.2).

This completes the proof of Lemma 5.2. &

5.5. The flat bundle C�
ðNQ;EÞ decomposes ([GHM], Section 12.8.1) as a sum of flat

subbundles,

C�
ðNQ;EÞ ffi

M
b2w	

Q
ðSQÞ

C�
ðNQ;EÞb

according to the weights of SQ: The weight subbundle ([GHM], Section 12.9) is

defined to be

C�
ðNQ;EÞ5p ¼

M
b2w	

Q
ðSQÞ5p

C�
ðNQ;EÞb; ð5:5:2Þ

where p denotes the weight profile chosen in Theorem 4.3.

Recall ([GHM], Section 14) that the weighted cohomology sheaf is defined to be

the subsheaf of �O�
spð �X;EÞ (5.1.2) which is obtained by truncating with respect to

the weight profile p on G: In other words, it is the unique subsheaf such that for every

boundary stratum XP;

WpC�
ð �X;EÞjXP ¼ ðT�

PÞ5p ¼
M
qþr¼�

Oq
ðXP;C

r
ðNP;EÞ5pÞ; ð5:5:3Þ

the identification being determined by the choice of basepoint x0 2 D: If b 2 w	
QðSQÞ

then the weight profile p&þ b (4.2.1) is defined on LQ:

5.6. DEFINITION. Using Lemma 5.2, define the subsheaf Y�
� �O

�

spð �X;EÞj �XQ as

follows:

Y�
¼

M
b2w	

Q
ðSQÞ5 p

M
qþr¼�

Wp&þ bCq
ð �XQ;C

r
ðNQ;EÞbÞ �

M
qþr¼�

�Oq
spð �XQ;C

r
ðNQ;EÞÞ:

ð5:6:1Þ

5.7. LEMMA. For any boundary stratum XP � �XQ; the restriction

Y�
jXP � �O�

spð �X;EÞjXP
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coincides with the subsheaf

ðT�
PÞ5p ¼

M
qþr¼�

Oq
ðXP;C

r
ðNP;EÞ5pÞ:

Consequently,

Y�
¼ WpC�

ð �X;EÞj �XQ: ð5:7:1Þ

5:8: Proof. First consider the case P ¼ Q: The restriction Y�
jXQ is given by

Y�
jXQ ¼

M
b2w	

Q
ðSQÞ5 p

M
qþr¼�

Oq
ðXQ;C

r
ðNQ;EÞbÞ ð5:8:1Þ

since the weight conditions at the edge of XQ do not affect the sections of this sheaf

over the interior of XQ. But this is precisely the weight subcomplex ðT�
QÞ5p.

Now suppose that P � Q is a proper parabolic subgroup. As in Section 3.3, set
�P ¼ nQðPÞ: Consider the restriction to XP of a single weighted cohomology sheaf

Wp&þ bCq
ð �XQ;C

r
ðNQ;EÞbÞ which occurs in (5.6.1). The choice of basepoint x0 2 D

determines an isomorphism (5.5.3) between this restriction andM
aþb¼r

M
g2w	

Q
ðS �PÞ5 p&þb

Oq
ðXP;C

a
ðN �P;C

b
ðNQ;EÞbÞgÞ:

Thus we obtain an identification

Y�
jXP ffi

M
b2w	

Q
ðSQÞ5 p

M
qþr¼�

M
aþb¼r

M
g2w	

Q
ðS �PÞ5p&þb

Oq
ðXP;C

aðN �P;C
bðNQ;EÞbÞgÞ:

ð5:8:2Þ

Let us compare this with ðT�
PÞ5p: It suffices to show that the coefficient subbundles

coincide. By (5.1.4) this amounts to comparing the following two representations of

L �P:

Y ¼
M
aþb¼r

M
b2w	

Q
ðSQÞ5 p

M
g2w	

Q
ðS �PÞ5p&þb

CaðN �P;C
bðNQ;EÞbÞgÞ: ð5:8:3Þ

and

CrðNP;EÞ5p: ð5:8:4Þ

The basepoint also determines a splitting i : U �P ! UP of the sequence

1 ! UQ ! UP ! U �P ! 1

and, hence, a decomposition NP ffi N �P � NQ. Therefore, we obtain an isomorphism

C�ðNP;EÞ ¼ Homð^�NP;EÞ ffi
M
aþb¼�

Homð^aN �P;Homð^bNQ;EÞÞ ð5:8:5Þ

and hence an isomorphism

CrðNP;EÞ5 p ffi
M
aþb¼r

CaðN �P;C
bðNQ;EÞÞ5 p; ð5:8:6Þ

where ‘5p’ indicates the direct sum of those SP-isotypical components with weights

a 2 w	
QðSPÞ5 p.
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Now it is important to keep track of which simple roots are involved in the weight

truncations. The parabolic subgroup Q corresponds to a subset J � DP of the simple

roots with wQ
	 ðSQÞ ¼ kerðJÞ: The elements of DP � J restrict to a linearly independent

set DQ � w	
QðSQÞ and determine a basis of w	

QðS0
QÞ: The elements of Jmay be identified

with the set D �P of simple (rational) roots of S �P occurring in the unipotent radical of �P:

Let a 2 w	
QðSQÞ and let b ¼ ajSQ: By taking X ¼ wQ

	 ðSPÞ, Y ¼ kerðJÞ ¼ wQ
	 ðSQÞ and

Z ¼ kerðDP � JÞ, and by forming the restriction pjSP 2 w	
QðSPÞ; the construction of

Section 2 defines an element ðpjSPÞ&þ b 2 w	
QðS �PÞ such that ðpjSPÞ&þ bðy þ zÞ ¼

bðyÞ þ pðzÞ for all y 2 Y and z 2 Z: By (4.4.1), this agrees with the restriction

ðp&þ bÞjSP of the weight profile p&þ b 2 w	
QðSP0

Þ defined in Section 4.2, so we may

refer to it simply as p&þ b: Let g 2 w	
QðS �PÞ be the element corresponding to

a 2 w	
QðSPÞÞ under the canonical isomorphism SP ffi S �P: Then Proposition 2.2 says

a 2 w	
QðSPÞ5pðDPÞ iff b 2 w	

QðSQÞ5pðDQÞ and g 2 w	
QðS �PÞ5p&þ bðD �PÞ: ð5:8:7Þ

Let us regard the double complex (5.8.6) as a module over L �P and decompose it

into S �P-isotypical components. We obtain

CrðNP;EÞ5 pðDPÞ ffi
M
aþb¼r

M
b

M
g

CaðN �P;C
bðNQ;EÞbÞg

where the second sum is over those b 2 w	
QðSQÞ5 pðDQÞ and the third sum is over those

g 2 w	
QðS �PÞ5p&þ bðD �PÞ: This is exactly (5.8.3).

It is easy to see that the isomorphisms and splittings are compatible, so that the

representations (5.8.3) and (5.8.4) are actually the same subspace of CrðNP;EÞ: In

fact, as in [GHM], Section 10.4, these splittings do not depend on the choice of base-

point. This completes the proof of Lemma 5.7. &

5:9: Proof of Theorem 4:3: By [GHM], Section 12.15 the complex of local systems

C�
ðNQ;EÞb is quasi-isomorphic to its cohomology sheaves, H	ðNQ;EÞb (where we

use 	 rather than � to indicate that this is to be considered a complex of sheaves with

trivial differentials). From (5.6.1) this determines a quasi-isomorphism

Y�
ffi

M
b2w	

Q
ðSQÞ5p

M
qþr¼�

Wp&þ bCq
ð �XQ;H

rðNQ;EÞbÞ: ð5:9:1Þ

On the other hand, (5.7.1) identifies Y� with the desired weighted cohomology

complex. &

6. Local Intersection Cohomology

6.1. BAILY–BOREL COMPACTIFICATION

In this section we suppose (until Section 6.11) that G is a semi-simple Q-algebraic

group, and that D ¼ G=K is a Hermitian symmetric space (where K � G is a maximal

compact subgroup corresponding to a choice of basepoint x0 2 D). Let F : �X ! X̂ be

the projection from the reductive Borel–Serre compactification of X ¼ GnG=K to the
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Baily–Borel Satake compactification ([Z3], [GHM], Section 22). Fix a boundary stra-

tum F � X̂: Then F corresponds to a G-conjugacy class of proper maximal rational

parabolic subgroups of G, from which we choose one and denote it by Q. Let us

consider the reductive Borel–Serre stratum XQ to be a locally symmetric space asso-

ciated to the connected reductive algebraic group LQ (Section 3.2). By [AMRT], III

Section 4 (see also [LR], Section 6.1) the group LQ decomposes as an almost direct

product, LQ ¼ QhQ‘ of commuting algebraic subgroups with finite intersection. The

compact factors (if any) of LQ may be distributed among Qh and Q‘ so that both Qh

and Q‘ are defined over Q: The group Qh acts by holomorphic automorphisms of

the boundary component F: It contains no rational anisotropic subgroup of positive

dimension. The group Q‘ is reductive with split center SQ; and it acts by linear auto-

morphisms on a certain self-adjoint homogeneous symmetric cone. Set

KQ ¼ K \ Q � K‘ � LQðx0Þ; GL ¼ nQðG \ QÞ;

K‘ ¼ KQ \ Q‘; Kh ¼ mðKQÞ;

G‘ ¼ GL \ Q‘; Gh ¼ mðGLÞ;

where nQ : Q ! LQ and m : LQ ! Qh are the projections. Then the boundary stratum

F is diffeomorphic to GhnQh=Kh. For any x 2 F, a choice of q 2 Qh which projects to

x determines a stratum preserving homeomorphism ([GHM], Section 22.6),

�fq : F�1ðxÞ ! �X‘ ð6:1:1Þ

(which is smooth on each stratum) between the fiber F�1ðxÞ and the reductive Borel–

Serre compactification of the locally symmetric space

X‘ ¼ G‘nQ‘=AQK‘: ð6:1:2Þ

The restriction ðFjXQÞ : XQ ! F agrees with the projection determined by m.

6.2. WEIGHT PROFILES

A weight profile for LQ ¼ QhQ‘ determines weight profiles for Qh and Q‘: In fact, if

S0h � Qh and S0‘ � Q‘ are maximal Q-split tori then their product defines a maxi-

mal Q-split torus S0L in LQ and a canonical isomorphism w	
QðS0LÞ ffi w	

QðS0hÞ�

w	
QðS0‘Þ: So for any weight profile p for LQ we may speak of the weight profile p

which is obtained by restriction to the linear factor Q‘:

Now, fix an algebraic irreducible representation G ! GLðEÞ with highest

weight L: It determines a local system E on X and by restriction, a local system

(which we also denote by E) on X‘: An irreducible LQ-module Va of highest weight

a may be considered, by restriction, as a module over Q‘ and hence determines a

local system Va over the space X‘: The following is the second main result in this

paper.

6.3. THEOREM. Let p be a weight profile for the reductive Borel–Serre compactifi-

cation, �X of X ¼ GnG=K: Let RF	W
pC�

ð �X;EÞ denote the pushforward of the weighted
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cohomology sheaf to the Baily-Borel compactification X̂. Let F � X̂ be a boundary

component, corresponding to a maximal rational parabolic subgroup Q � G: Then the

stalk cohomology Hk
xðRF	W

pC�Þ of this sheaf at a point x 2 F � X̂ is given by

M
b2w	

Q
ðSQÞ5 p

M
i

Wp&þ bHk�ið �X‘;H
iðNQ;EÞbÞ ð6:3:1Þ

ffi
M

w2W
p
Q

ðEÞ

Wp&þ bðwÞHk�‘ðwÞð �X‘;VwðLþrÞ�rÞ ð6:3:2Þ

where w	
QðSQÞ5p is given by ð3:5:1Þ, bðwÞ is given by ð4:5:3Þ, and W

p
QðEÞ is given by

ð4:5:4Þ.

6:4: Proof. Since F : �X ! X̂ is proper, the stalk cohomology of RF	ðWpC�
Þ at a

point x 2 X̂ is canonically isomorphic to the cohomology of the fiber, H	ðF�1ðxÞ;

WpC�
ðEÞÞ. If F denotes the stratum of X̂ which contains x and if Q denotes a cor-

responding maximal rational parabolic subgroup of G, then F�1ðFÞ is a union of

strata in �XQ and the restriction F : F�1ðFÞ ! F is a fiber bundle. For any weight

profile q it follows that the homeomorphism (6.1.1) determines a (quasi-) iso-

morphism

WqC�
ð �XQ;EÞjF�1ðxÞ ffi WqC�

ð �X‘;EÞ ð4:6:4Þ

where q also denotes the restriction of the weight profile to the linear factor. (This

follows from the Poincaré lemma for F and the fact that no weight truncation occurs

relative to the Hermitian factor.) The restriction WqC�
jF�1ðxÞ may be obtained by

first restricting to �XQ then further restricting to F�1ðxÞ: So (6.3.1) follows from

(4.3.1) and (6.4.1), while (6.3.2) follows from (4.5.2) and (6.4.1). &

6.5. COROLLARY. Let p ¼ m or p ¼ n denote the upper middle or lower middle

weight profile, respectively ð3:6Þ. Let rQ ¼ rjSQ be the restriction of r: Then the

stalk cohomology of the intersection cohomology, at a point x 2 F � X̂ is given by

Theorem 6:3: In other words,

IHk
xðX̂;EÞ ffi

M
b5�rQ

M
i

Wp&þ bHk�ið �X‘;H
iðNQ;EÞbÞ: ð6:5:1Þ

The first sum may be replaced by
L

b>�rQ
:

This expression may also be evaluated as in (6.3.2) using Kostant’s theorem and it

may be translated as in Section 3.10 into Lie algebra cohomology.

6:6: Proof. The proof follows by combining Theorem 6.3 above and Theorem 23.2

of [GHM] which constructs a canonical isomorphism

RF	W
mC�

ðEÞ ffi RF	W
nC�

ðEÞ ffi IC�
ðX̂;EÞ ð6:6:1Þ
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between the pushforward of the middle weighted cohomology on �X with the intersec-

tion cohomology of X̂. &

Taking p ¼ �1 gives the following well-known result [LR], the étale version of

which is proven in [P1], [P2]:

6.7. COROLLARY. Let ı̂ : X ,! X̂ be the inclusion of the locally symmetric space into

the Baily–Borel compactification. Then the stalk cohomology of the sheaf Rı̂	ðEÞ is

given by

Hk
xðRı̂	ðEÞÞ ffi

M
w2W1

Q

Hk�‘ðwÞðG‘;VwðLþrÞ�rÞ:

Here,W1
Q is given by (4.5.1), and Va is the irreducible LQ-module with highest weight

a. It is considered as a module over G‘ by way of the inclusion G‘ � GL ¼

nQðGQÞ � LQ.

6:8: Proof. In Theorem 6.3, take p ¼ �1 to be the weight profile which involves

no truncation. Then W
p
QðEÞ ¼ W1

Q. The weighted cohomologyWpHið �X‘;VaÞ is equal

to the ordinary cohomology of X‘, (with coefficients in Va) which (since G is neat) in

turn coincides with the group cohomology HiðG‘;VaÞ. &

6:9: Remarks. The vanishing of the stalk cohomology of the intersection coho-

mology, and more generally, the purity theorem of Looijenga (i.e. that the stalk

cohomology in degree i of the intersection cohomology has weight4i) may be

translated into vanishing theorems for certain weighted cohomology groups of the

the ‘linear’ locally symmetric space X‘ using Theorem 6.3. A general framework for

such vanishing theorems has been developed in [S]. See [B2] for a related vanishing

theorem for the L2 cohomology of linear locally symmetric spaces. &

6.10. MIXED HODGE WEIGHTS

By [LR], the direct sum (6.5.1) over b 2 w	
QðSQÞ is a splitting of the weight filtration

(on the stalk cohomology) which comes from Saito’s theory of mixed Hodge

modules.

6.11. THE L2 EULER CHARACTERISTIC

When G=K is Hermitian, the Zucker conjecture ([Lo],[SS]) implies that the L2 coho-

mology Euler characteristic L2wðG;EÞ is equal to the intersection cohomology Euler

characteristic of the Baily–Borel compactification, i.e.

L2wðG;EÞ ¼ IwðX̂;EÞ ¼
X
i

ð�1Þ
i dim IHiðX̂;EÞ:
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By (6.6.1) this is equal to the Euler characteristic of the weighted cohomology com-

plex of the reductive Borel–Serre compactification,

L2wðG;EÞ ¼
X
i

ð�1Þ
i dimWmHið �X;EÞ: ð6:11:1Þ

In fact this relation holds more generally. Suppose only that G is a reductive Q-alge-

braic group such that the derived group of G possesses a compact Cartan subgroup.

Then WmH	ð �X;EÞ is isomorphic to the L2 cohomology of G by [N], and therefore

(6.11.1) holds.

As in [GM1], (6.11.1) is equal to a sum over strata of �X, with the contribution

from a single stratum XP being given by the compactly supported Euler characteris-

tic wcðXPÞ of the stratum XP times the stalk Euler characteristic of the weighted coho-

mology at any point x 2 XP. Moreover, wcðXPÞ ¼ wðXPÞ. Let P1;P2; . . . ;Pl be a

collection of representatives, one from each G-conjugacy class of proper rational

parabolic subgroups of G. For each representative Pj, let GLj
¼ nðG \ PjÞ be the pro-

jection of G \ Pj to the Levi quotient. Since G is neat, the Euler characteristic

wðXPj
Þ ¼ wðGLj

Þ is equal to the Euler characteristic of the discrete group GLj
. Let

V ðjÞ
a be the irreducible Lj-module with highest weight a. Let us suppose that E is

the local system associated to an irreducible representation of G with highest

weight L. Evaluating (3.5.3) using Kostant’s theorem gives the following formula

(which is in [GHM], Section 17.9, [S] for Hermitian X):

6.12. THEOREM. Let G be a reductive Q-algebraic group and suppose the derived

group of G has a compact Cartan subgroup. Then the Euler characteristic of the L2

cohomology of the locally symmetric space X ¼ GnG=AGK is given by

L2wðG;EÞ ¼ wðGÞ dimðEÞ þ
Xl

j¼1

wðGLj
Þ �

X
w2Wm

Pj

ð�1Þ
‘ðwÞ dimðV

ðjÞ
wðLþrÞ�rÞ:

7. Computations for Sp4

7.1. THE SYMMETRIC SPACE

Throughout this section we fix an integer N5 3 and we take G ¼ GðNÞ to be the

principal congruence subgroup of Sp4ðZÞ consisting of matrices which are congruent

to the identity modulo N. Define X ¼ GnSp4ðRÞ=U2 to be the associated (real) 6-

dimensional Hermitian locally symmetric space. The Baily–Borel compactification

X̂ has boundary strata of real dimension 2 and of real dimension 0. In this section

we will compute the intersection Euler characteristic of X̂ and also the local L2 (or

intersection) cohomology (with constant coefficients) at a most singular point (i.e.

at a 0-dimensional stratum) of X̂. Denote by F : �X ! X̂ the projection from the

reductive Borel–Serre compactification to the Baily–Borel compactification. Let h
denote the upper half plane.

262 M. GORESKY ET AL.



7.2. PARABOLIC SUBGROUPS

There are three types of rational proper parabolic subgroups P of G.

(A) P is the stabilizer of a rational one-dimensional (and hence isotropic) subspace

F1 � Q
4. Such a parabolic subgroup is maximal with Hermitian Levi factor

L ¼ Ph ffi SL2ðRÞ. The associated reductive Borel–Serre stratum XP is (real)

two-dimensional, in fact it is a modular curve.

(B) P is the stabilizer of a rational Lagrangian subspace F2 � Q
4. Such a parabolic

subgroup is maximal with linear Levi factor L ¼ P‘ ffi GL2ðRÞ. The associated

reductive Borel–Serre stratum XP is (real) two-dimensional and is diffeo-

morphic to a modular curve.

(C) P is a rational Borel subgroup: it is the stabilizer of a rational isotropic flag

F1 � F2 � Q
4. The associated reductive Borel–Serre stratum XP is a point. Such

a point is simultaneously a cusp for a single type A stratum and a single type B

stratum in the reductive Borel–Serre compactification.

The projection F takes each type A stratum XP � �X isomorphically to a (real) two

dimensional stratum YP � X̂. The projection F collapses each type B stratum XP to a

single point in X̂. The preimage F�1ðxÞ of such a point is the reductive Borel–Serre

compactification of the type B stratum XP, and it is obtained by adding type C strata

as cusps of XP.

7.3. Consider the case of the trivial local system E ¼ C. By Corollary 6.5, the L2

cohomology, or the intersection cohomology of X̂ is isomorphic to either of the mid-

dle weighted cohomology groups of �X. In fact, the upper and lower middle weight

profiles m; n give rise to the same weighted cohomology sheaf on �X since in this case,

the middle weight does not appear in the NP cohomology for any parabolic sub-

group P.

7.4. First we consider the weighted Euler characteristic. Let ni be the number of

GðNÞ-conjugacy classes of rational parabolic subgroups of type i (for i ¼ A;B;C).

Let Gi denote the projection of G into the Levi quotient L ¼ P=UP for each parabolic

subgroup P of type i ¼ A;B;C. Let

wi ¼
X
w2Wm

P

ð�1Þ
‘ðwÞdimðVwr�rÞ

be the factor which appears in Theorem (6.12) and which arises from a parabolic

subgroup P of type i ¼ A;B;C. Then the Euler characteristic of the intersection

cohomology of X̂ is given by

IwðX̂Þ ¼ wðGÞ þ nAwðGAÞwA þ nBwðGBÞwB þ nCwðGCÞwC: ð7:4:1Þ
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7.5. THEOREM. For G ¼ GðNÞ and N5 3 the intersection cohomology Euler char-

acteristic of X̂ is

IwðX̂Þ ¼ �
N10

25325
�
N7

8
þ
N6

4

� �Y
pjN

1 �
1

p2

� �
1 �

1

p4

� �
: ð7:5:1Þ

ForN ¼ 4 this gives IwðX̂Þ ¼ 208, in agreement with the computation 1 � 0 þ 118�

30 þ 118 � 0 þ 1 ¼ 208 on the final page of [HW]. If N5 5 then IwðX̂Þ is negative.

7:6: Proof. From the root system for Sp4 we find

wA ¼ �1; wB ¼ �2; wC ¼ �1: ð7:6:1Þ

The groups GA and GB both turn out to be the principal congruence subgroup of

SL2ðZÞ with level N. The modular curve GBnh has

n1ðNÞ ¼
N2

2

Y
pjN

1 �
1

p2

� �

cusps ([Sh] Lemma 1.42, [Mi] Theorem 4.2.10) and Euler characteristic

wðGAÞ ¼ wðGBÞ ¼ �
1

12
SL2ðZ=ðNÞÞ
�� �� ð7:6:2Þ

by the Gauss–Bonnet theorem [H], or by [Sh] (1.6.4) and [Mi], Section 4.2, where

SL2ðZ=ðNÞÞ
�� �� ¼ N3

Y
pjN

1 �
1

p2

� �
:

Each type C boundary component is simultaneously a cusp of a type A boundary

component and of a type B boundary component of the reductive Borel–Serre com-

pactification so nA ¼ nB and nC ¼ nAn1ðNÞ. The number of lines in Q
4 modulo

GðNÞ-equivalence is

nA ¼
N4

2

Y
pjN

1 �
1

p4

� �
ð7:6:3Þ

This gives a formula for nC, which is also the number of double cosets

BðZÞnSp4ðZÞ=GðNÞ:

nC ¼
N6

4

Y
pjN

1 �
1

p2

� �
1 �

1

p4

� �
:

(Here B denotes the standard Borel subgroup.) Finally, the Gauss–Bonnet formula

([H], p. 453) gives

wðGðNÞÞ ¼ zð�1Þzð�3Þ � Sp4ðZ=ðNÞÞ
�� ��; ð7:6:4Þ

(where z is Riemann’s zeta function) for which we use

Sp4ðZ=ðNÞÞ
�� �� ¼ N10

Y
pjN

1 �
1

p2

� �
1 �

1

p4

� �
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and zð�1Þzð�3Þ ¼ �1=25 � 32 � 5. Note that wðGðNÞÞ is an integer for N5 3. Theorem

7.5 now follows from (7.4.1), (7.6.1), (7.6.3) and (7.6.4). &

7.7. STALK COHOMOLOGY

Now consider the stalk cohomology of the intersection cohomology at a 0-dimen-

sional boundary stratum x 2 X̂. By Corollary 6.6, this is a sum of two weighted

cohomology groups of a boundary stratum of type B,

IHi
x ffi WHiðGBnh;H 0ðNPÞÞ � WHi�1ðGBnh;H1ðNPÞÞ: ð7:7:1Þ

A calculation with the root system for Sp4 shows that the weight profile for the first

factor (with coefficients in the trivial local system H0ðNPÞ) involves no cutoff at all,

while the weight profile for the second factor cuts off all the stalk cohomology in

degree 1 at each cusp point, so

IHi
x ffi HiðGBnh;CÞ � IHi�1ðGBnh;H1ðNPÞÞ: ð7:7:2Þ

Since GBnh is not compact, H2ðGBnhÞ ¼ 0 and

rankðH1ðGBnhÞÞ ¼ 1 � wðGBÞ: ð7:5:3Þ

We will use two tricks to evaluate the second factor in (7.7.2). First, the local system

H1ðNPÞ has weight w�2, where w is the canonical positive generator of the character

group of AP. In fact, it is the irreducible three-dimensional representation of SL2.

By Looijenga’s purity theorem, weight 2 classes cannot occur in the stalk of the inter-

section cohomology except in degree 2 or more. Therefore IH0ðGBnh;H1ðNPÞÞ ¼ 0.

Also, IH2ðGBnh;H1ðNPÞÞ ¼ 0 since IH3
x ¼ 0 by the usual vanishing property for

intersection cohomology. Therefore the second factor in (7.7.2) is completely deter-

mined by the intersection cohomology Euler characteristic of this (compactified)

modular curve, that is,

rankðIH1ðGBnh;H1ðNPÞÞÞ ¼ �IwðGBnh;H1ðNPÞÞ: ð7:7:4Þ

This Euler characteristic is the sum over strata of the Euler characteristic of the stra-

tum times the Euler characteristic of the stalk of the intersection cohomology sheaf

IH�ðGBnh;H1ðNPÞÞ at a point in the stratum. The stalk of this sheaf at each cusp

point is C in degree 0, and 0 in all other degrees. So each cusp contributes 1 to

the Euler characteristic, and there are n1ðNÞ cusps. The interior contributes

dimðH1ðNPÞÞ:wðGBÞ ¼ 3wðGBÞ. This gives the following theorem:

7.8. THEOREM. The Betti numbers of the stalk intersection cohomology at a 0-

dimensional stratum x 2 X̂ are given by

rankðIH0
xÞ ¼ 1;
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rankðIH1
xÞ ¼ 1 þ

N3

12

Y
pjN

1 �
1

p2

� �
;

rankðIH2
xÞ ¼

N3

4
�
N2

2

� �Y
pjN

1 �
1

p2

� �
:

7.9. For N ¼ 3 we obtain the local intersection cohomology Betti numbers Ib0 ¼ 1,

Ib1 ¼ 3, Ib2 ¼ 2. These numbers agree with the intensive computations which were

carried out by M. McConnell on the Symbolics computer at Brown University in

1986.

7.10. DISCRETE SERIES MULTIPLICITIES

The computation of the intersection Euler characteristic (7.5.1) gives some informa-

tion about multiplicities. The group Sp4ðRÞ has two discrete series representations

with nonzero ðg;KÞ-cohomology (see [T] for a list of all representations with coho-

mology and for other facts used below). Let us denote these pH (belonging to the

holomorphic discrete series) and pW (having a Whittaker model). Via the isomorph-

isms IHiðX̂Þ ffi Hi
ð2ÞðXÞ ffi Hiðg;K;L2

disðGðNÞnGÞÞ both of these contribute to IH3 (in

bidegrees ð3; 0Þ; ð0; 3Þ and ð2; 1Þ; ð1; 2Þ respectively). Here L2
dis stands for the discrete

spectrum of the L2 space. The other representations of Sp4ðRÞ with cohomology con-

tribute in degrees 0; 2; 4; 6. Using the decomposition of the discrete spectrum we

write

IwðX̂Þ ¼
X
p

mdisðp;NÞ
X
i

ð�1Þ
idim Hiðg;K;pÞ ¼

X
p

mdisðp;NÞwðpÞ;

where mdisðp;NÞ is the multiplicity of p in the discrete spectrum of GðNÞ and wðpÞ is

the ðg;KÞ-Euler characteristic. If p is not either pH or pW then wðpÞ is positive while

wðpHÞ ¼ wðpWÞ ¼ �2. It follows that 2ðmdisðpH;NÞ þ mdisðpW;NÞÞ is at least as large

as the negative of (7.5.1). Since pH and pW are tempered, an observation of Wallach

[W] implies that mdisðpH;NÞ ¼ mcuspðpH;NÞ (multiplicity in the cuspidal spectrum)

and similarly for pW. So mcuspðpH;NÞ þ mcuspðpW;NÞ is at least �½12!IwðX̂Þ which is

positive for N5 5. Hence, for N5 5, there are nonzero cusp forms with infinity type

either pW or pH. This provides examples of Siegel modular forms to which the con-

structions of Taylor [T], Laumon [La], Harder (unpublished) and Weissauer (unpub-

lished) can be applied to produce Galois representations.
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