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Pseudorandom sequences, with a variety of statistical properties (such as high linear span, 
low autocorrelation and pairwise cross-correlation values, and high pairwise hamming distance) 
are important in many areas of communications and computing (such as cryptography, spread 
spectrum communications, error correcting codes, and Monte Carlo integration). Binary se- 
quences~ such as m-sequences, more general nonlinear feedback shift register sequences, and 
summation combiner sequences, have been widely studied by many researchers. Linear feedback 
shift register hardware can be used to relate certain of these sequences (such as m-sequences) 
to error correcting codes (such as first order Reed-Muller codes). 

In this paper a new type of feedback register, feedback with carry shift registers (or FCSRs), 
will be presented. These relatively simple devices can be used to relate summation combiner 
sequences, arithmetic codes, and 1/q sequences. We describe an algebraic framework, based on 
algebra over the 2-adic numbers, in which the sequences generated by FCSRs can be analyzed, 
in much the same way that algebra over finite fields can be used to analyze LFSR sequences. As 
a consequence of this analysis, we present a method for cracking the summation combiner [9] 
which has been suggested for generating cryptographicaily secure binary sequences. In general, 
one must consider this "2-adic span" as a measure of security along with ordinary linear span. 
At the same time, FCSRs are a new, general, and therefore exciting, mechanism for generating 
sequences with enough structure for analysis. Many of the methods of nonlinearization that 
have been applied to linear feed back shift registers (LFSRs) can be applied to FCSRs, and 
some of these possibilities are be described here. Hopefully, they will result in sequences with 
greater cryptologic security. 

The many threads that are brought together by our analysis have analogues in the theory 
of LFSRs. In an LFSR, certain register cells are "tapped", their contents are added modulo 
2 (using exclusive OR gates) and the sum is returned to the first cell of the shift register. 
Any periodic binary sequence may be realized as the output sequence from some LFSlZ with 
appropriate taps. Recall some of the well known concepts and consequences which are derived 
from this point of view. 

1. The size of the smallest LFSR which generates a given periodicbinary sequence is an 
important measure of the cryptographic security of the sequence. It is called the linear 
span of the binary sequence. The Berlekamp-Massey algorithm gives an efficient procedure 
for the construction of this smallest equivalent LFSR. 

2. If two periodic binary pseudorandom sequences are combined by adding their terms modulo 
2 (using exclusive OR gates) then the linear span of the resulting sequence is no more than 
the sum of the linear spans of the original two sequences. 

3. The r taps ql, q2,. �9 �9 q~ on the cells of an r-stage LFSR correspond to a connection poly- 
nomial q(X)  = q , X  ~ + q~- lX ~-1 + . . .  + q lX  - 1 with coefficients q~ in Z/(2). The period 
(and many other properties) of the output sequence can be analyzed using Galois the- 
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ory which interprets the roots of this polynomial as elements of the Galois field GF(2*). 
Moreover, every LFSR sequence a with irreducible connectin polynomial can be written 
al = Trace~(ATi), where A, 7 E GF(2"). 

4. An m-sequence is a LFSR sequence of maximum possible period T = 2 r - 1 (where the 
shift register has r stages). M-sequences have important distribution and correlation 
properties. It is a well known (but amazing) fact that the m-sequences are exactly those 
sequences generated by LFSRs whose taps correspond to primitive connection polynomials. 
Moreover, a LFSR sequence is an m-sequence if and only if the element 7 in point (3) is 
a primitive element of GF(2 n). 

5. The 2 = - 1 cyclic permutations of a single period of an m-sequence form the nonzero 
codewords of a ("punctured") first order cyclic Reed-Muller code. These codes are of fun- 
damental importance in coding theory and are prototypes of the general "finite geometry" 
codes. 

6. Shift register analysis may be applied to nonbinary pseudorandom sequences. For example, 
linearly recurrent sequences a = a0, a l , . .  �9 with entries al E Z/(p) (where p is a large prime 
number) are used in the generation of pseudorandom numbers for Monte Carlo integration. 

Feedback-with-carry shift registers (FCSRs) can be thought of as LFSRs with ordinary ad- 
dition in place of addition modulo 2, and auxiliary memory for storing the carry. The contents 
(0 or 1) of the tapped ceils of the shift register are added as integers to the current contents of 
the memory to form a sum, E. The parity bit (g (mod 2)) of E is fed back into the first cell, 
and the higher order bits ([Z/2]) are retained for the new value of the memory. See Figure t. 

Any periodic binary sequence may be generated by such a FCSR, and hence one may mimic 
the developments (1) through (7) above using FCSRs instead of LFSRs. 

Figure 1: Feedback with Carry Shift Register 

1'. Def in i t ion  The size of the smallest FCSR which generates the periodic part of an even- 
tually periodic sequence a is called the 2-adic span of the sequence a. 

There is an analog (due to Mandelbaum [7]) of the Berlekamp-Massey algorithm. For 
any periodic binary sequence, this algorithm may be used to construct the smallest FCSR 
which generates the sequence. 

2'. If two periodic binary sequences are added with carry operation then the 2-adic span of the 
resulting sequence is no more than the sum of the 2-adic spans of the original sequences. 
This fact and (1') above can be used to provide a cryptographic attack on the "summation 
combiners" described in [9]. 
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3'. The taps ql, q2, . . . ,  q~ on the cells of a FCSR correspond to an integer q = q~2 T + q~_12 ~-1 + 
--. + q12 - t which is called the connection integer. The period and other properties 
of the binary sequence are determined from number theoretic properties of this integer. 
Moreover, any FCSR sequence a can be written ai = (ATi(mod q))mod 2, where A E Z 
and 7 = 2-t(  m~ q). 

4'. An g-sequence is a FCSR sequence with maximum possible period T = q - 1 (where q is 
the connection integer of the FCSR). Such a sequence is the cyclic shift of the sequence 
formed by reversing the period of the binary expansion of the fraction 1/q and have been 
studied since the time of Gauss ([2, 3, 5]). These g-sequences have remarkable distribution 
and correlation properties and are generated by connection integers q for which 2 is a 
primitive root modulo q, or, equivalently, if the number 7 = 2-1 in point (3') is a primitive 
root modulo q. 

5'. The q - 1 cyclic permutations of a singleperiod of a given ~ sequence form the nonzero 
eodewords of a Barrows-Mandelbaum [1, 6] cyclic arithmetic code. 

6'. Two special cases of FCSR sequences with entries in Z/(p) (where p is a large prime 
number) have recently been proposed [8] for use in Monte Carlo problems. 

Although they are not new, points (1'), (4'), (5') and (6') are diverse ideas that come together 
from the parallel study of LFSR sequences and FCSR sequences. The result is an interesting 
mathematical framework in which the analysis of sequences generated by a FCSR may be carried 
out. Suppose that a = {no, al, a2,. . .} is an infinite periodic binary sequence. It is customary 
to associate to such a sequence the generating function (or Z-transform), 

oo  

A(X)  = ~ niX' 
i=O 

which is considered as an element of the ring Z/(2)[[X]] of formal power series with coefficients 
in the integers modulo 2. As the following well known theorem [4] shows, this ring is the natural 
algebraic structure for the analysis of linear feedback shift registers: 

Fact  1 I f  the sequence a is periodic, then its generating function is equal to a quotient of two 
polynomials, A (X)  = r (X ) /q (X)  e Z/(2)[[X]] and the denominator q(X) is the connection 
polynomial for a linear feedback shift register which generates the sequence a. (The numerator 
r (X)  determines the initial loading of the shift register). 

Many operations on pseudorandom sequences are conveniently described using operations 
in the ring Z/(2)[[X]]. For example~ suppose that b -- {bo, bl ,b2, . . .}  is another eventually 
periodic binary sequence, with generating function B ( X )  = ~=o  b'Xi = s ( X ) / t ( X ) .  Then the 
bit-wise exclusive-or sum of these two sequences, c = {no + bo (mod 2), a~ + b~ (rood 2) , . . .}  has 
generating function 

C(X)  = A(X)  + B ( X )  = r ( X ) t ( X )  + q ( X ) s ( Z )  
q ( X ) t ( x )  

Now suppose instead that the sequence c ~ is obtained by adding the sequences a and b with 
carry operation, in other words, 

eL = (no + b0) (mod 2), / 7 / 1  = (a0 + b0) + 2 
c~ = ( a t + b t + m l )  (rood2), rn 2 = ( a 1 4 - b l + m l ) - - 2  (1) 

and so on. (Here, mj is the bit carried from stage j - 1 to stage j ,  and + denotes integer 
division, i.e. with remainder neglected.) 



177 

We model this addition with carry operation by associating to the infinite binary sequence a 
the formal power series a = a0 + a12 + a222 + . . . .  ~ 0  at21, and by associating to the infinite 
binary sequence b the formal power series fl = ~ 0  bi 2~. 

Such a power series does not converge in the usual sense hut it can nevertheless be interpreted 
as defining an element in the ring Z2 of 2-adic integers. This ring consists of all formal power 
series ~ 0  s~ 2i with sl E {0, 1), and has been studied extensively by mathematicians for many 

years. The main difference between the two rings Z/(2)[[x]] and Z2 is that addition in Z2 is 
performed by "carrying" overflow bits to higher order terms, so that 2 ~ + 2 i = 2 I+1. It follows 
that the formal power series 7 = do + all2 + c~ 22 + ' "  associated to the sum-with-carry sequence 
c ~ is given by addition, 7 = a + fl E Z2 in the ring of 2-adic integers. Furthermore, the 2-adic 
integers are well suited to the study of feedback shift registers with carry, as the following result 
shows: 

Fac t  2 I f  the sequence a is periodic then the associated 2-adic integer is a quotient of two 
ordinary integers, 

o o  

= E a,2' = - ~  e Z~ (2) 
i=0 q 

with 0 <_ p < q. The denominator q will be odd. Furthermore, q is the connection integer for a 
FCSR which generates the sequence a. 

This result is the "with carry" analog of Fact 1 above and it explains exactly how to generate 
any periodic binary sequence using a FCSR: express the corresponding 2-adie number as a 
fraction p/q (which may involve computations in the ring Z2) then write q = - 1  + qt2 + q222 + 
�9 .- + q~2L The bits ql, q2, . . . ,  q~ specify which taps to incorporate in the FCSR. (The numerator 
p determines the initial loading of the shift register.) The 2-adic span of the sequence a is 
therefore one less than the number of bits in the binary expansion of q, that is, [log2( q + 1)]. 
(Actually an additional log2(wt(q + 1)) bits of memory are also needed in the construction of 
the FCSR, where wt(q + 1) is the number of nonzero taps in the shift register.) The period of 
the periodic tail of the sequence is given by T = ordq(2), the smallest integer T such that 2 r - t 
is divisible by q. 

A specific consequence of this is that the sequences produced by summation combiners are 
vulnerable to attack. If a and b are two m-sequences, the summation combiner adds them exactly 
as if  they were the sequences of coefficients of 2-adic numbers to produce c. If a represents p/q, 
and b represents p'/q', then their sum using the summation combiner represents (p'q+pq')/(qq'). 
This sequence can thus be output by a FCSR of size at most [log(qq' + 1)] ~ [log(q + 1)] + 
[log(q' + 1)]. In other words, the 2-adic span of c is at most the sum of the 2-adic spans of a 
and b, which is at most the sum of the periods of a and b. In contrast, the linear span of c 
is approximately the product of the periods of a and c (cf. [9]). This means that c is far more 
vulnerable to Mandelbaum's variant of the Berlekamp-Massey algorithm than it is to the usual 
Berlekamp-Massey algorithm. Moreover, the more sequences are added, the worse things get. 

There are many remaining questions concerning FCSRs. Virtually all questions of LFSRs 
that have been asked can be asked of FCSRs. These include questions concerning 2-adic span 
profile, how sequences can be generated with large 2-adic span (as well as large linear span), and 
the distributional properties of FCSR sequences. Various generalizations of FCSRs are possible. 
For example, the 2-adic numbers can be replaced by a totally ramified extension of the 2-adics 
(this corresponds to an addition with a carry that jumps several positions), giving rise to another 
type of binary sequence generator�9 The 2-adics can also be replaced by an unrarnified extension 
of the 2-adics, giving rise to sequences over finite fields of characteristic two. It may be possible 
to apply nonlinear operations to such sequences to produce binary sequences with large 2-adic 
span. 



178 

R e f e r e n c e s  

[1] J. T. BARROWS, JR., A new method for constructing multiple error correcting linear 
residue codes, Rep. R-277, Coordinated Sei. Lab., Univ. of Illinois, Urbana, 1966. 

[2] L. BLUM, M. BLUM, AND .~. SNUB, A simple unpredictablepseudo-random number 
generator, Siam J. Comput. vol. 15, 1986 pp. 364-383. 

[3] C. F. GAUSS, Disquisitiones Arithmeticae, 1801; reprinted in English translation by YaJe 
Univ. Press, New Haven, CT. 1966. 

[4] S. GOLOMB Shift Register Sequences. Aegean Park Press, Lagun~ Hills CA, 1982. 

[5] D. KNUTH, The Art of Computer Proyramming, Vol 2. Scminumerical Algorithms. 
Addison-Wesley, Reading MA, ]981. 

[6] D. MANDELBAUM, Arithmetic codes with large distance. IEEE Trans. Info. Theory~ 
vo]. IT-13, 1967 pp. 237-242. 

[7] D. ~/IANDELBAUM, An approach to an arithmetic analog of Berlekamp's algorithm. IEEE 
Trans. Info. Theory, vol. IT-30, 1984 pp. 758-762. 

[8] G. MARSAGLIA AND A. ZAMAN, A new class of random number generators, Annals of 
Applied Probability. vol. 1, 1991 pp. 462-480. 

[9] R. RUEPPEL Analysis and Design of Stream Ciphers. Springer Verlag, New York, 1986. 


