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A b s t r a c t  

A new class of feedback register, based on ramified extensions of the 2-adic numbers, is described. An algebraic 

framework for the analysis of these re~ters and the sequences they output is given. TilLs framework parallels that 

of linear feedback shift resistere. As one consequence of this, a method for cracking summation ciphers is given. 

These resisters give rise to new measures of cryptoiogic security. 

1 Introduction 

P0eudorandom sequences, with a variety of statistical properties (such as h ~  h e a r  span, low autocorre- 

lztlon and palrwise cross-correlation values, and high palrwise h a m n ~  distance) are important in man)- 

areas of communications and computing (such as cryptography, spread spectrum communications, error 

correcting codes, and Monte Carlo intef~ras Binary sequences, such as m-sequences, more general 

nonlinear feedback shift register sequences, and s~mmation combiner sequences, have been widely stud- 

ied by many resea.-chers. Linear feedback shift resister hardware can be used to re l~e certain of these 

sequences (such as m-sequences) to error correcting codes (such as first order Reed.Mul/er codes). 

In this paper we describe a new type of feedback resbter,  ramified feedback with carry shift registers 

(or d-FCSRs, where d is the tam.cat ion) .  These relatively simple devices ~ n e m t e  binary sequences 

that  have an algebraic structure that parallels the algebraic strucrure of linear feedback shift registers 

[3]. This algebraic structure is based on algebra over cer~tin extensions of  the 2-adic numbers. (See, 

for example, KobUtz's book [7] for b ~ d  on 2-adic numbers). Furthermore, there is an analog 

for d-FCSIts of the Berlekzmp-Massey algorithm. The algebraic analysis of these sequences, together 

with the Berlerkamp-Massey type algorithm, leads to vulnerability of certain combiners with memory, 

including the summation combiner [9]. These facts lead to the consideration of an analog of the linear 

complexity - the f-adic span. This r-adic span is & new measure of cryptologic security that  must be 

large for any binary sequence to be secure. This work generalizes the construction in ~he nnramLfied case 

due to Klapper and Goresky [5]. 

2 Feedback Shift Registers with Carry 

In this section we give z detailed description of the opera,on of d-FCSRs. In the simplest case, d = 1, 

the contents (0 or I) of the tapped cells of the shift register are added as integers to the current contents 

of the memory to form a sum, ~. The parlty bit (.~ (rood 2)) of E is fed back into the first ceil, and the 

higher order bits ([E/2]) are retained for the new value of the memory. Any periodic binary sequence 

may be generated by such a FCSR. 
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More generally, we fix a positive integer d, and consider an addition operation in which the carry 

jumps d bits. Thus if d --- 3, then 1 + 1 = 1000. We will refer to tkls operation as addition with d-fold 

carry. It corresponds to addition in the integers with a positive real dth root ~r of 2 ad~ined (fd = 2). 

A register is obtained by replacing the integer addition in the preceding paragraph by this addition, 

and allowing plus or minus ones as coefficients on the tapped cells. Such a register is called a ramified 

[ecdback.lo~th-cer~ shift veg~ter with remific~tion d, or simply • d.FCSR. 

More precisely, let E = Z{lr] be the integers with r adjoined. We have r = 2 t/d real and positive, so 

R is a subset of the reals and the usual absolute value makes sense in R. Fix an odd integer q E R. (Here 

odd means that  q is congruent to I modulo f . )  Write q + l = q l r  + q'zlr ~ + . . .  + qrr" with q~ E {0, :t:l}. 

The shift register will use r stages plus some additional bits of memory. The feedback connections will 

be given by the coefficients {qz,q~ . . . . .  q,}. We write q0 = - 1  when convenient. 

Def in i t ion 2.1 The d-FCSR with connection integer q ~ the register is a feedback register with r bits 

of atomge plus additional memory for corrf. I f  the contents of the re~ ter  at any liven time are 

(o~_z,ar.2 . . . . .  as,ae) and the memor~ is m, then the opemt/on of the shift register/~ defined as fo/- 

lot~: 

A1. Form the integer sum a I= Y~mt qtae.-t + m. 

A2.  Shift the contents one step to the right, outputting the rightmmt bit ao. 

A3. Place a, = a (rood r )  into the leftmost cell of the shift register 

A4.  Replace the memory m with (cr - a~)/lr. 

We have the following analogs of LFSR theory. 

1. For any binaxy l~eriodic pseudorandom sequence we may consider the smallest FCSB. which generates 

that  sequence. 

Def in i t ion  4.1 The size of the ~naileJt d.FCSR which generates the per/odic part of an eventua~lll 

per/odic sequence a is the r-adic span of the sequence a. Here, r d = 2. 

2. There is an analog (due to Mandelbanm [8]) of the Berlekamp-Massey algorithm, which we discuss 

in Section 4. For any periodic binary sequence and d > I, this algorithm may be used to construct 

a d-FCSR, which generates the sequence. 

3. If two periodic binary sequences are added w/th d-fo/d carry7 operation, then the ~r.adic span of the 

resulting sequence is no more than the sum of the r-adic complexities of the original sequences. 

In w we use this fact and (2) above to provide z cryptologic attack on the certain combiners with 

memory, including "summation combiners" described in [9]. 

4. The number q, which we call the connect/on number, is anulo&ous to the connection polynomial 

of a LFSP,. The period and other properties of the binary sequence are de~rminad from number 

theoretic properties of q. 
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5. An ~-sequence is s FCSR sequence with ma.'cimum possible period T = }(R/(g))'i.  An t-sequence is 

analogous to xn m-sequence in LFSR. theory. In case d = 1, so r = 2, such �9 sequence is the cyclic 

shift of the sequence formed by ne~er~n43 the period of the binary expansion of the fraction l / q  

and have been studied since the time of Ganu ([1, 2, 6]). They have remarkable distribution and 

correlstion properties and are generated by eonnsction numbers q for which 2 is z primitive root. 

Suppose that  a = {oo, as,az . . . .  } and b = {bo, b l ,  b~, . . .}  are infinite periodic binary sequences and 

that  the sequence c is obtained by adding the sequences �9 and b with d-[o/d carry oper&tion. In other 

words, 

co --- ( a o + 6 0 ) ( m o d f ) ,  ml = ( ao -4 -60-eo) / r  (~) 
q = ( a t + b 1 + m l ) ( m o d r ) ,  ms = ( a 1 + b 1 + m z - c l ) / r  

and so on. (Here, mj is the bit carried from stage j - 1 to stake j . )  

We model this addition with carry operation by assodating to the infinite binary sequence a the 

formal power series 

a = ~ ~ r  ~ (2) 
180 

and similarly associntins ~ to b. These ~re the analoss of Kenera~inl; functions in LFSE theory, and there 

are a~logs  of well known fzcts relating ratiunality of generating functions to periodicity of sequences, and 

relating the denominator of a rational generztlng function to the connection polynomial of a LFSI~ which 

outputs the sequence. Such power series over r do not conver~e in the usual sense but cun be interpreted 

as dealing elements in the ring 2~ = Z[[r]] of ~r-adic intesers. This ring consists of all formal power series 

~,~0 sl ~rl with sl E {0,1), and can be interpretted as the completion of R with respect to the lr-adic 

valuation. It has been studied extensively by mathematicians for many years. The main difference between 

the two rings Z/(2)[[z]] and ,~ is that addition in .q is performed by "cazrying ~ overflow bits to hi~;her 

order terms, so that ~:i + ~r i = 2 r i  = r i+~. I t  follows that the formal power series ~. = co + cl ~r + c2~r 2 + . . .  

associated to the sum-with.d-fold-curry sequence c is given by addition, 7 = '* + ~ E k.  In the =-adic 

numbers, -1 is represented by - 1  = 1 + ~r 'f + ~r :~ + r ~ + -- ". A ~r.ad~c number ~ ~ i  has ~ nndtipllcative 

inverse if and only if ,o = 1. Also, any r.adic number ~ can be written 

d - I  
= ~ ~i ~i, 

smO 

If a ~ R = Z[f], then each a~ is an ordinary inte~r .  

These constructions rosy be made nsing r - , - ; sed  extensions of the p-adic numbers Z~ (for any prime 

p) and all our results remain valid essentially without chun%e. However, for the most part, we will restrict 

attention to the case p = 2 because this is probably the mos~ important case from the point of view of 

applications. 

If a == (ao, u~,a~ . . . .  ) is an eventually periodic sequence, then the associated r-adic number is a 

quotient of elements of R, a se-called R-rationaL If a is strictly periodic of period T, then the associated 

R-r'~tional number a is easily found. Set ~ = ~'~-~ a~r i. Then 

(~.~' ~r')  (3) 
a = -  ( z r - l )  " 

T h e o r e m  2.2 There/~ a one to one correspon~nce 6ehaeen ~ . m t ~ s / n u m b e r s  ~ = p /q  (where f m 1 

(mod f ) )  and e~entunli~ periodic binmT seqaencse a. l f  d ~ 1, then a is strictly periodic i[ and onlg ([ 



2 1 8  

0 <_ -p < q. ~fp and q are re/afive/y prime in ~, and q ia od~ then the euentual period oy the bit sequence 

This paxtlal/y explains how to genertte eny periodic bintry sequence using t FCSR= express the 

corresponding g-adlr number as a fraction p/q,  then write q = - 1  + q~r + q ~ :  + . . .  + q,~r v, with 

q~ ~ {0, -1-1} (every element of R which is congruent to one modulo ~r can be so written). The coefficients 

q~,q~ . . . . .  q~ specify the multipliers on the tzps of the FCSR- The numerator p determines the initial 

loading of the shift register in a, w~y that  is described l i ter  in this paper. The r .adic span of the sequence 

a is therefore one less than the number of bits in the smallest such expansion of q. (The memory requires 

at most Lu additional 2[d .  logs(t/(~r - 1))~ bits, where t is the maximum of the number of ls and the 

number o f - I s  in the expansion of q.) 

3 A n a l y s i s  o f  F C S R s  

According to the precedin K sections, there are four different ways to view en infinite, ev~ntu~y periodic 

binary sequence: (I)  As a binary sequence a; (2) As an element a of the 2-a~iic integers Z2; (3) As a 

r~tion~l number p/q; (4) As the output stream of L FCSR, We h&ve ~re~uiy identified repr~entatlons (I) 

and (2) by assoclating the binary sequence a with the coefficients in the formal power series expression 

for ~. The t r ~ l ~ t i o n  between reprmnta, tions (2) and (3) was e x p i r e d  in Theorem 2.2. In this section 

we show how to trenslate between representztions (3) and (4). 

Suppose we fix x FCSR with connection number q = - 1  + qllr + q~f2 + . . .  + q~r" and some initial 

loading of the memory and the register. The register will generate an infufite, eventually periodic sequence 

a = ao, ul,a2 . . . .  of bits. Let a be the usocizted f-a~lic number, which we call the Ir-adic value of the 

FCSB. (with its initial loaxling and initial memory). 

Let us consider the transition from one state of the shift register to the next. Suppose that ,  for some 

given state, the value of the memory is mum = ma-s and that the contents of the register is given by the 

r bits o~_l,a~_s . . . . .  an- ,  (with a,s_t the leftmost bit and a~,r  the rightmost bit, end where the register 

shifts towazds the right). The next state is determined by calculating (JAIl) cr n = n~_  1 + ~ = l  qlan-i, 

writing the new contents of the leftmost cell as a~ = ors(rood f ) ,  end writing the new memory contents 

as m,, = (cry, - a , s ) / f  (see [A3] and [A4]). (The remaining bits are shifted once to the right.) These 

equations m~y be combined into the expression ors = r ~  + aB. It follows thzt  

a. = ~ . . . ~  + (m..t - ~ r , , ~ )  (~) 

provided n 3, r. Suppme the initial loading of the register consists of memory m e n  = mv. l  end with 

register bit values av_1,av_2 . . . . .  us,no. Now substitute (4) into the expression (2) for ~ to obtain, 

a = a o + u l ~ r + . - . + a , . ~ r r - ~ + ~ a ~ r  ~ 
ham. 

, = O  ,same s u l  

This equation gives 
r~'--t -/..~,=o/.-~=o q~flaJ ~j 

= I - E,' . , ,~ ~ f ~  .... " ( 6 )  
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Thus we have proven 

T h e o r e m  3.1 The carpet, a, o~ a d-FCSR u6th connection integer q, initial memory/value m,_t ,  and 

initial loading a~-t, a,-2, . . . ,  at, no, is the bit sequence of  the ~-adir representation of a n~tional number 

(eq. (6)) o = - p / q  with denominator q. 

I n i t i a l  L o a d i n g  o f  a F C S R  

Now let us show how to construct a FCSR which gener~te~ the bit sequence for a l iven rational p/ f .  For 

this purpose we fix ~u odd connection integer q -- ~ = o q l f  ~ with qo = - I  and qi G {0, :l:l} for i > O. Fix 

p E R. An initial loading of the FCSB. is defined as follows: 

B1.  Set m - l  = p. 

B2.  For each i = 0,1 . . . . .  r - I compute the following numbers: 

i -I  

k=O 
a, = ~ (rood r) E R/(=) (S) 

ml = a ; - ~ /  (9) 
T 

P r o p o s i t i o n  3.2 ~ w e  we  the initial Ivading ( a~-l ,a , .2  . . . . .  an,so), and initial memorg far-! E R, then 

the resulting d-FCSR oetpe~ the r-adie ez~ension of p/q. 

If p is relatively prime to q, then the period of the sequence is T = ordq(2). However if p and q have 

a common factor then the period may he smaller but  at l e n t  it will divide ordq(2). 

Fact  3.3 Adding b to the initial memory changes the ~-adir val~e o~ the shift refiJter by - b f ' / q .  

Let t be the maximum of the number ofq~ equal to 1 and the number ofq~ equal to - 1 ,  i = 0 . . . . .  r. 

If m is the initial memory value, we ca~ write m -- m {t} - m (2}, where the expansion of each re(i) has ill 

nonnegative coe~icients. If for each i we have m {i} _< t / ( f  - 1), then the  u tme will be true for all ]~ter 

valuer of the memory. We wi/l therefore need at most 2~d- loga(t / ( f  - 1))] bits of memory. Moreover, 

if we iaitia~ze a FCSR with m{O > t / (g  - 1), then the memory will decrease so tha t  after at most  

d .  log2(m(O - t) step.s, m (0 will be at most t. In particu/a:, if the expansion of p/q is strictly periodic, 

then there is an initial loading of the register with each m(O < t/(Tr - 1). By Fact 3.3, there is a unique 

initial memory for a l iven p/q. Therefore, i fp /q  is periodic, the initial memory derived by (CI)  a~d (C2) 

s&tisfies this bound and the register reqekes at most 2[d .  ]og2(t/(~r - 1))] bits of-memory throughout it 

the execution of the  register. 

If d = 1, then it can be shown that  p/q is strictly periodic if and only if 0 _< - p  < q, and the 

expansion of p has all nonneg~tive coef/icients. In this case it turns out that  m (2} -- 0. The memory is 

always nonnegative and requires only ~/o92(t)] bits. 

If we let z = ~ a~f i, then the double sum occurring in equ~.tion (6) is the portion of the binary 

expansion for the product 
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r r - - I  ::E 2'Eui2i 
t :O j::O 

which is obtained by removing all terms involving powers of f "  or higher. Therefore, the numerator p is 

congruent to q .  z modulo r ~. It is possible to invert this and to give a formul~ for the initial loading in 

terms of the fraction a : p/q (whether or not p and q are rehLtively prime). 

T h e o r e m  3.4 Suppose a FCSR ~ t h  r stages and connection integer q generotes a sequence given b~ the 

xc.adic, ezpansion oi  the number o = p/q. ~ t  T = o ~ ( w )  and ~-t j -~ (~r T - l ) /q  (rood ;rr). Then the 

initial loading is the binar~ ezpen,6on o/the number z = p.  s (rood t 'r). 

Despite Fact (3.3), we do not know a ~ simple formula for determ|ni.w the initial memory value 

directly from the rational number a = p/q. 

E x p o n e n t i a l  R e p r e s e n t a t i o n  o f  F C S R  S e q u e n c e s  

One of the most powerful techniques for the amalysis of shift register sequences is its exponential repre- 

sentztion using trace functions and primitive elements of finite fields. There is ~ similar representation 

for periodic ~.quences obtained from d-FCSRs. To describe this we need �9 lemmL 

L e m m a  3.5 I~ q E R /s odd, then S = {p : p/q ham o strlctlit perlo&'c r.adic ezpon~ion) is a complete 

set oj" residues modulo q. That is, euer7 pt f R is conin'uent modtdo q to prec/.te/g one p ~ S.  

T h e o r e m  3.6 Suppose a pe1-/od/r sequence a = (no, as,a2 . . . .  ) /a generated • a FCSR ~ith connection 

integer q. Let "l = ~r-1 G Z/(q) be t he /n~ese  oj r 2 bs the c ~ / c  group of  integers modu/o q. Then Mere 

ezbt~ A E Z/(q)  such that for all i = 0,1,2 . . . .  we have, 

a~ = A'y; (rood q)(mod r )  

Here the notation (rood q)(mod 2) means that first the number A~ ,i should be reduced rood q to give 

a number in S, and then that number should be reduced rood f to give an element of R / ( f )  = {0,1}. 

(Notice that there is no homomorphism ~/(q)  - -  R/(2) if q is odd, so the notation (rood q)(mod 2) needs 

a precise definition.) 

It is desirable to generate pseudorandom sequences with large periods using simple shift register 

hardware. In the case of linear feedback shift registers, the subject of ma.~mal period sequences has been 

studied for many yem's. The simplest w~y to obtain sequences of maximal length is to use �9 primitive 

connection polynomial (and the resulting sequences are called m-sequences.) One may ask the s~ne 

question for FCSB. sequences. By Theorem 3.6, the maximum period for a FCSB. with connection integer 

q is T = [R/(q) - {0}[ (note that R/(q)  is always finite). Accordingly, we make the following definition. 

Def ini t ion 3.7 An t-sequence is a periodic sequence o/period T = ]R / (q ) -  {0}J obZained /rom a d-FCSR 

with connection integer q. 

By Theorem 3.6 am/-sequence is generated whenever q is chosen so tbe.t ordq(r) :g IR/(q) - {0}[. The 

search for primes q such that r is a primitive root, is related to z large body of contemporary number 

theory. It is believed that there are infinitely many primes q with this property [4]. 
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4 Cracking d-Fold Summation Ciphers 

As mentioned in the introduction, our analysis has important consequences for the summation cipher 

[91. In this cipher, two m-sequences a t  and a= are combined using "addition with carry". The resulting 

sequence is used as a pseudo-one-time-pad. These sequences have generated $reat interest since they 

appear to be resistant to certain types of crFptologic attack. If the constituent sequences at have period 

7~ then the resulting sequence has linear span which is c lc~ to the product TzTz, a s s u n ~ s  the constituent 

sequences were chosen appropriately. In practice, many m-sequences, a l ,  a 2 , . . . ,  ak are added with carry 

operation and the resulting linear span approar.hes the product Ts �9 Tz.- .  Tt. 

However, we observe that the addition with carry operation corresponds to adding the sequences as 

if they were 2-adic integers. This leads us to be able to synthesize a FCSR. that generates the resulting 

sequence when only a relatively small number of bits are known. To properly describe this weakness, we 

need an a~aIogue of linear span for FCSRs. 

Let a = {no, us . . . .  } be a binary, eventually period sequence. 

Definition 4.1 The ~.adir span of �9 is the number of stages r in the smallest d-FCSR whose output 

coincides with the periodic part of the sequence a. 

If o = ~ 0  al r l  = P/q is the corresponding rationM number, reduced to lowest terms, with q = 

~,'=0 q,=', then the ~r-adlc span is r.'since, by Theorem 3.1, q is the connection integer of the desired 

FCSR. 

Theorem 4.2 Suppose a and b are periodic binary sequence8 with ~-adic span r and s respectively. Let 

c denote the binary sequence obtained by addin 9 the sequences a and b with d-/aid carry (see [9] for the 

d ffi I case). Then the r -adic span of c is less than or equal to r + s. 

We return to the situation in which two m-sequences, a I and an, of period Tl and T~, respectively, are 

combined using addhion with carry. H d ffi 1, this is precicesly the situation of & summation combiner, 

but for larger d, this corresponds to a di~erent combiner with memory (requiring d bits of memory). 

The preceding theorem shows the~ the r.adic span of the resulting sequence is bounded by Tz + 2"2 

and it may be much smnl]er if the ~r-adic span of the constituent sequeBces is small. More generas if 

many m-sequences, al,a:~ . . . . .  n k, where a! has period 7~, are added with carry, the r-adic span of the 

resulting sequence is no more than the sum Ti + 7"2 + ' "  + Tk. It follows that  Mandelbaum's vaziant of 

the Berlekamp-Marsey adgorithm [8] (which we refer to as the MBM algorithm), us described in detail in 

the next subsection, can be used to synthesize a FCSR that generates the sequence when only a relatively 

few bits are known. This throws considerable doubt on the security of these stream ciphers. 

One is thus led to the rather interesting problems ofidentifying the r-adic span of an re.sequence and 

of identifying the linear span of am t.sequence. Although we do not know the answer to these questions, 

when d = 1 the following result gives & sufficient condition for an m-sequence to have mas, imnl 2.a~ic 

span. 

T h e o r e m  4.3 SuppaJe a is a period/c ~ e n c e  m/th period T = 2 N - 1. Suppose that 2 2. - 1 is prime. 

Then the 2.adic span o~ a is equal to the period T.  
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More genernily, the 2-adic span of uny periodic sequence of period T is ~'ezter than or equal to the 

smallest prime divisor of 2 r - 1. 

The Berlekamp-Massey algodtlun for synthesizing linear feedback shift registers h u  been modified by 

Mandelbaum for 0~e with binary expansions of positive real numbers less then one [8]. Essentially the 

same algorithm works in the setting of ~r.adlc numbers. If r is the ~r-adic span of a, there is ~xperimental 

evidence that the MBM algorithm converges in O(r) steps to a d-FCSR that generates a. As with 

Mandelbunm's algorithm for rational approximation to real numbers, whether "this actually holds is an 

open question. 

5 Conclusions 

Feedback-with-carry shift register sequences are entirely parallel to lineLr feedback shift register sequences. 

However, techniques of number theory rather than Galois theory appear to be needed for their unalysis. 

For d ffi 1, maximal length d-FCSR sequences have appeared in s diverse array of circumstances over the 

last twenty-five years, und it has often been observed that their behavior is similar r that of m-sequences. 

The use of the r-adic numbers provides a framework in which these similarities cffin be formalized and 

studied systematically. One consequence is that the summation cipher, when analyzed from this point 

of view, no longer appears to be secure. Perhaps the most importunt cryptogr~phic reso.~ of these 

observatious is that we have s new me~ure of security that must be considered whenever we design 

stream ciphers. The sequences we use must h&ve large lr-adic span, st  least for small values of d. 
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