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ABSTRACT 

In this paper, we study sequences generated by arbitrary feedback regis- 
ters (not necessarily feedback shift registers) with arbitrary feedforward 
functions. We generalize the definition of linear complexity of a sequence 
to the notions of strong and weak linear complexity of feedback registers. 

A technique for finding upper bounds for the strong linear complexities 

of such registers is developed. This technique is applied to several classes 

of registers. We prove that a feedback shift register whose feedback func- 
tion is of the form z1 + h(z2, . . . , 5,) can generate long periodic sequences 
with high linear complesites only if its linear and quadratic terms have 
certain forms. 

I INTRODUCTION 

Periodic sequences generated by feedback shift registers have many ap- 
plications in modern communications systems because of their desirable 
properties, such as long period and balanced statistics. One measure of 
the strength [usefulness) of such a sequence is its linear complexity, as 
studied by various authors [1,2,4,6,7]. Th e I inear complexity of a sequence 

. is defined as the length of the shortest linear feedback shift register that 
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In general, however, these notions do not coincide. For example, the 
nonlinear feedback shift register F of length two with feedback function 
f (XI, 2 2 )  = ~ 1 x 2  generates the sequences 1111.. ., 0000.. ., 1000.. ., and 
01000.. . These sequences have linear complexities 1, 0, 2, and 2, re- 
spectively, so the weak linear complexity of 3 is two. The strong linear 
complexity of 3, however, is three since each of these sequences is gen- 
erated by the linear feedback shift register of length three with feedback 
function x3 and not by any shorter linear feedback shift register. 

We also note that the strong linear complexity of a register .F is equal 
to the degree of the least common multiple of the connection polynomials 
of the sequences generated by F. 

I1 UPPER BOUNDS 

We derive a technique for computing bounds on the strong linear com- 
plexity of (linear and nonlinear) registers with arbitrary feedforward func- 
tions. The idea is to embed the given register into a linear register (of 
exponentially greater length, N). For such a register, the state transition 
function is considered to be a linear transformation on a vector space of 
dimension N .  We then look for a supporting subspace of minimal dimen- 
sion. The dimension of this subspace is an upper bound on the strong 
linear complexity of the original register. 

Definit ion 1 L e t  3 = ( F , g )  be a linear register of length n,  a n d  let VV 
be a subspace of GF(2)" .  W supports F or is F-suppor t ing  i f  there i s  a 
subspace U in GF(2)",  compl imentary  to V V ,  such that  

I .  GF(2)" = TV + U ,  
2. F(U) 5 U, and 

3. If  w E W and u E L-,  then g(w + u) = ~ ( z c ) .  

Let w be in TV and u be in U .  For every i, F(2) is linear. By it- 

g(F( ' ) (w)  + F( ' ) (u) )  = gOF(')(w). Thus the output from .F can be com- 
pletely determined from its action on W .  

erating condition 2, P(i)(u)  is in U. It follows that goFii)(w + u > =  
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L e m m a  1 Suppose  GF(2)" conta ins  a 3-suppor t ing  subspace W .  T h e n  
the strong l inear complex i ty  of 3 is less t h a n  or  equal t o  the d i m e n s i o n  
of w. 

The strong linear complexity of a register is bounded from above by 
the length of any linear feedback register which can produce all the output 
sequences of the original register. For an arbitrary feedback register 3 = 
( F ' , g , )  of length n, such a linear register 3' = (F' ,g ' )  of length 2" - 1 
can be constructed as follows. 

T h e  Cons t ruc t ion  Let S be the set of nonempty subsets of (1,. . . , n}. 
For every 1 in S, we construct a new variable XI and identify it with the 
monomial niErxi. Recall that every element a in GF(2)  satisfies u2 = a ,  
so all high degree terms such as xf, k 2 1 appear as xi. S has cardinality 
2" - 1, and is used as the index set for the 2" - 1 variables in 3'. For each 
I in S, let FI(zI,. - - , x n )  = IIicI Fj(z1,. . . , zn), a d  let F i (~i , .  . . , ~ { i  ,..., "1) 
be the linear function derived from FI by replacing each monomial n,, J xj 

by the variable ZJ, where J is in S. Then F' = (Fill,. . . , F{l ,,_,, "1) defines 
a linear function from V = GF(2)2n-' to V. The feedforward function 
g' can be defined similarly as a linear combination of the monomials 21, 

giving a linear function from V to GF(2). 3' = (F' ,g')  defines a linear 
feedback register of length 2" - 1 with linear feedforward function. 

To show that -3' generates all the output sequences of 3, we con- 
sider the embedding 0 : GF(2)" + V where the I- th  coordinate of 
*O(xl,. . . , xn) is l-IiEl xi. We claim that 6.F = F'o6 and g = 9/06. In 
other words, the diagram in figure 1 commutes. To see this, note first 
that (OoF)I(z:,, . . . ,xn) = niEIE(xl,.  . . , x n )  = FI(x1,. . . ,xn). On the 
other hand, (F '@)I (x l , .  . . , xn) = F;(. . . , n j E ~  xj, . . .), i.e., is derived from 
Fi by replacing X J  by n jE~ .  But Ff was derived from FI by doing the 
opposite, so ( F ' ~ ) I  = FI = (8oF)I ,  so F'd  = 8.F. Thc sccond claim is 
proved similarly. 

It follows that for any cu E GF(2)" and any k, gOF(')(a) = g'*F'(')(a). 
Thus the initial loading ~ ( c Y )  of 3' gives the same output sequence as the 
initial loading CY of F. 
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Figure 1: Linearizing a feedback register 

Example Let F = ( F , g )  be a feedback shift register of length 4 with 
g ( z I , x 2 , 2 3 , 2 4 )  = x1 and feedback function 

Then 

= (x2, x 3 7  2 4 )  2 1  f x 2 , 4  + z 2 , 3 , 4 ,  x 2 , 3 ,  x 2 , 4 ,  x 1 , 2  + 2 2 , 4  + x 2 , 3 , 4 ,  x3 ,4)  IC1,3, 

x 1 , 4  + x 2 , 4  -k x 2 , 3 , 4 ,  x 2 , 3 , 4 ,  x 1 , 2 , 3 ,  x 2 , 4  -k x1,2,4 -k 22,3,4)  x 1 , 3 , 4 ,  x 1 , 2 , 3 , 4 ) .  

The output sequence obtained from 3 with the initial loading (1 , l )  0,1) is 
obtained from 3' with initial loading (1,1,0,1,1,0,1,0,1,0,0~1,0,0,0). 

From the construction above we observe that, if the sequence of poly- 
nomials g'(Z), g'oF'(z), g'oF'OF'(z), . . . contains only terms in {x,lI E Q} 
for some Q E 5': then we need only those monomials in F' indexed by 
elements of Q. Hence a linear feedback register of length IQl can be 
constructed that generates the same sequences as F. This shows that 
the strong linear complexity of F can be bounded above by I&/. The 
determination of Q is given by the following theorem. 

Theorem 1 Let F(x1 , .  . . , xn) be the stute change function of a register of 
length n with feedforward funct ion g(x1,. . . , a,&). Let T = { I  E S : I7i,cI xi 
has a non-zero coeficient in g )  and let Q be the smallest subset of  S 
containing T such that i f  I E Q and the coefficient of X J  in Fr' i s  nonzero, 
then J E Q .  Then the strong linear complexity of ( F , g )  i s  bounded above 
b y  the cardinality of Q .  
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Corollary 1 Let ( F , g )  be a feedback shift register with feedback func t ion  
f. Let T = { I  E S : njE1 xi has  a non-zero coefficient in g } ,  R = { I  E 
S : ni,Ixi has a non-zero coeficient in f}. Let Q be the smallest subset 
of S containing T such that 

1. I f I  E Q and n E I ,  t h e n f o r  each J E R, J U { i + l  5 n : i E I >  E Q .  
2. I f I E Q  a n d n g I ,  t h e n { i + l : i E I } E Q .  

Then the strong linear complexity of ( F , g )  is bounded b y  the cardinality 
of Q .  

We now treat the special case of a feedback shift register 3 = ( F , g )  
of length n with feedback function f (x l , .  . . r,,) = XI+ h(s2, . . . , 5,)  and 
standard feedforward function. Let T ,  R, and Q be as in corollary 1. 
Then (1) E T c Q, so, by applying condition 2 repeatedly, { i }  E Q for 
all i. In particular {n}  E Q. If J is the index set of a monomial that 
has a non-zero coefficient in h ( x 2 ,  . . . , x,,), then we can apply condition 1 
with I = {n} ,  so J E Q. Let I be any element of Q.  Then applying either 
condition 1 with J = (1) or condition 2 (only one condition is applicable 
to a given index set) n - 1 times, we get a sequence of elements of Q ,  
I = 11, . . . , I,. One more such application would give us I back again. 
Actually, we may return to I after a smaller number of applications of the 
conditions, but this number must divide n. If r is the cardinality of I ,  then 
r is the cardinality of each I; and we call the set { I l ,  . . . , I,l} a r-cycle, or 
simply a cycle if the cardinality is clear. For example, with n = 4, starting 
with I = {2,3} we get the 2-cycle {2,3},  {3,4}, {1,4}, {1,2}, whereas 
starting with I = {2,4}, we get the 2-cycle {2,4},{1,3}. These cycles 
are independent of h ( ~ ,  . . . , x,,). The set S of all index sets decomposes 
into a disjoint union of such cycles, each cycle having cardinality dividing 
n (in fact, there is a relationship between this cycle decomposition and 
the decomposition of a finite field into cyclotomic cosets). If any one 
element of a cycle is in Q, then every element of that cycle must be in Q. 

Recall again that each monomial in x l , .  . . , 2, corresponds to an index 
set, SO .F can have high linear complexity only if Q contains many index 
sets. AS seen by the following theorem, this means that the feedback 
function must have many non-zero coefficients. 
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Theorem 2 Let 3 = (F ,g )  be a feedback shift register of length n with 
feedback funct ion f (XI,. . . , xn) = x1 + h(x2 , .  . . xn) and standard feedfor- 
ward function. Let r be the smallest integer such that h(x2,.  . . , xn) has a 
term of degree r with a non-zero coeficient. For any collection of r-cycles 
c1,. . . , Ck, each of whose corresponding monomials has a zero coefficient 
in h(x1,. . . , x,,), the strong linear complexity of .F is at most 

r- 1 

i= 2 i= 1 

This theorem makes precise the follilore belief that shift registers with 
only high degree terms are not good. 

If the output sequence ( 2 0 ,  zl,. . .) from a register .F of length n has 
maximal period 2" - 1, then any set of 2" - 1 consecutive bits contains 
2"-' ones and 2"-' - 1 zeros. Therefore the sequence satisfies the relation 
zi + zi+l+ - * + zi+p-Z = 0 for every i. The linear complexity is thus a t  
most 2" - 2 ,  and there are registers of length n with linear complexity 
2" - 2 (for example, the sequence consisting of 2"-' - 1 zeros followed by 
2"-' ones can be generated by such a register.) Note that in the case of 
a register that outputs a maximal period sequence, the strong and weak 
linear complexities of the register and the linear complexity of the output 
sequence all coincide. 

In particular, if 3 and r are as in the previous theorem, then 3 can- 
not generate a maximal period, maximal linear complexity sequence un- 
less h has quadratic terms and for every 2-cycle C thcre is an I in C 
whose corresponding monomial in lz(xl, . . . , x , ~ )  has non-zero coefficient, 
or h(z1,. . . , xn) has linear terms. 

Corollary 2 Let 3 = ( F , g )  be a feedback shift register of l eng th  n,  with 
feedback func t ion  x1 + h(x2, . . . , x,,), and standard feedforward funct ion.  
I f  .F generates a maximal  period, maximal linear complexity sequence, 
then either h contains some linear terms or it has at least [(n - 1)/21 
quadratic terms. 

By a similar application of corollary 1, we generalize a theorem due to 
Key. 
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Proposit ion 1 ( K e y  /4]) If every t e r m  of the feedback f u n c t i o n  of a, feed- 
back shift register with feedforward func t ion  has degree 1 (resp. 5 l), and  
every t e r m  of t h e  feedforward func t ion  has degree 5 k, t h e n  t h e  strong 
linear complexity of t h e  register i s  bounded by xi"=, (:) (resp. Ef=o (I)). 

We also prove several similar results. 

Proposit ion 2 If every  t e r m  of the feedback and feedforward f u n c t i o n s  of 
a feedback shift register with feedforward func t ion  has  degree greater than 
OT equal to k, t h e n  the  strong linear complexity of the  register is  bounded 
above by Cy=, ( y ) .  

Proposit ion 3 If every  term of the feedback func t ion  of a feedback shif t  
register with feedforward f u n c t i o n  has degree 2 k ,  and  the  feedforward 
func t ion  i s  of t h e  form bm+lxm+l + . . . + bnzn (resp. a + b,+lx,,+l + * - . + 
bnxn), t h e n  the  strong linear complexity of the regist.er is bounded above 
by n - m + C:='=, ( y )  (resp. 1 + n - rn + CYzk ( : ) I .  

Proposition 3 says that if the feedback function of a feedback register 
contains only high degree terms, then the linear complexity is low. 

I11 GENERALIZATION T O  ARBITRARY FINITE FIELDS 

The results of the previous section can be generalized to GF(q) ,  the finite 
field of q elements, where q is a power of an arbitrary prime. The defi- 
nitions of feedback registers and their various spccial cases are the same, 
with 2 replaced by q. The only change is that now every element a of 
GF(q)  satisfies aq = a ,  so that, when we consider functions as polynomi- 
als, we must include monomials in which each variable has degree up to 
q - 1. The remaining definitions (output sequence, weal; and strong lin- 
ear complexity, etc.) carry over verbatim. The counting techniques can 
then be generalized using multi-sets, and the main results are modified 
as follows: Theorem 2 holds with the upper bound 
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in the first case, and 
k 

Qn - 1 - 2 ( ; ) ( q  - l ) j  - c ICil(4 - 1)‘ - ( 4  - 1)” 
j = 2  i= 1 

in the second. 
Let #(n,i)  be the number of monomials of degree i in n variables 

in which each variable has degree at most q - 1. Proposition 1 then 
holds with (I) replaced by #(n, i ) .  In Proposition 2, we must require 
that each term of the feedback and feedforward functions contain at least 
k variables, and replace (:) by #(n,i) in the conclusion. Similarly, in 
Proposition 3, we must require that each term of the feedback function 
contain at  least k variables and replace ( y )  by #(n , i )  in the conclusion. 
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