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and 
L 

CY( y , 2 k  + 2,  L ) = CY( y @ e,,  2k + 1, L )  (AS) 

where e, E Z,“ has all components equal to zero except the ith 
component, which equals 1. 

For the purposes of computation, it will be found to be more 
convenient to rewrite this in terms of weight distribution vectors. 
For example, in the binary case, the weight distribution of a 
binary vector (Y is completely determined by its Hamming weight 
w, and we will therefore simply write 

, = I  

F , ( w , I , L ) = F , ( a , l , L )  (A9) 
for all 1 = 1,2,3, . . . . In terms of this notation, the recursion in 
the binary case simplifies to 
F 2 ( w , / , L )  = ( L  - w ) F 2 ( w  + 1,1 - l , L ) +  wF2(w - 1 , I -1 ,L)  

(A101 

with F2(0,0, L )  = 1 serving to initialize the recursion. It is useful 
as a check on computation to note that 

F2( w ,  I ,  L )  = 0 ( A l l )  
whenever any of the following conditions is not satisfied 

w 2 0 ,  w s l ,  and w=1(2) .  

This recursion relation in (10) can be used to show that the 
coefficients F,(O, 2 k ,  L),  k = 1,2, .  . . , are polynomials in L of 
degree k .  The first six polynomials so obtained are listed in 
Table I. The binary coefficients F , ( w , k , L )  have been studied 
extensively in connection with error-correction codes and other 
recursion relations may be found in the literature (see for 
example, Ch. 5 of [12] and Ch. 16 of [16]). 

Fig. 1 provides a graphic description of the recursion in (10). 
From this graph, using induction, one can prove the following. 

Lemma I :  

whenever all four coefficients are nonzero, and w > w ’ .  
As a result, one obtains the following. 
Corollary I :  

F,(w,/ ,L) F,(O,I, L )  
> (‘413) F,  ( w , I  - 2. L )  F2 (0, I - 2, L )  

whenever w > 0 and all four coefficients are nonzero. 
Using Corollary 1 and Fig. 1, one can also prove the following. 
Lemma 2: 

F2(0,2k + 2 , L )  F 2 ( 0 , 2 k , L )  
> (A14) F,(0,2k,L)  F2(0 ,2k  - 2 , L )  

whenever all four coefficients are nonzero. 
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On the Linear Complexity of Feedback Registers 
AGNES HUI CHAN, MARK GORESKY, 

AND ANDREW KLAPPER 

Abstract --Sequences generated by arbitrary feedback registers (not 
necessarily feedback shift registers) with arbitrary feedfonvard functions 
are studied. We generalize the definition of linear complexity of a 
sequence to the notions of strong and weak linear complexity of feedback 
registers. A technique for finding upper hounds for the strong linear 
complexities of such registers is developed. This technique is applied to 
several classes of registers. A feedhack shift register in which the 
feedback function is of the form x I  + h ( x 2 ;  . ., x,,) can generate long 
periodic sequences with high linear complexities only if its linear and 
quadratic terms have certain forms is proven. 

I. INTRODUCTION 

Periodic sequences generated by feedback shift registers have 
many applications in modern communications systems because 
of their dcsirable properties such as long period and balanced 
statistics. One measure of the strength (usefulness) of such a 
sequence is its linear complexity, as studied by various authors 
[l], [2] ,  [4], [7], [SI. The linear complexity of a sequence is 
defined as the length of the shortest linear feedback shift 
register that generates it. If a sequence has small linear com- 
plexity, then the synthesis of a linear equivalent of the sequence 
generator (such as by the Berlekemp-Massey algorithm [6]) 
bccomes computationally feasible. In this correspondence, we 
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consider pscudorandom sequences gencratcd by general fccd- 
back registers (not necessarily shift registers) with arbitrary 
feedforward functions and develop a new tcchniquc for finding 
upper bounds for the linear complexity of these sequences. We 
apply this technique to several classes of fccdback registers. We 
prove that if the feedback function of a feedback shift register of 
length n and maximal linear complexity has the form x ,  + 
h(x,;. .,x,,) and its feedfonvard function is x ,  (recall [3] that 
binary feedback functions that arc not of this form cannot 
generate maximal period sequences), then h ( x , ;  . . , x , , )  must 
either have linear terms or at least (n - 1)/2 quadratic terms. A 
more general result is stated in Theorem 2. We also generalize a 
well-known result of Key [4] bounding the linear complexity of 
linear feedback shift registers with nonlinear feedforward func- 
tions. 

In this section, we cxtcnd the definition of linear complexity 
of a sequence to the notion of linear complexity of a feedback 
register. The technique of establishing upper bounds is devel- 
oped in Section 11, and Section I11 generalizes the results to an 
arbitrary finite field GF(q), whcrc q is a power of a prime. 

Let GF(2) dcnotc the finite field with two elements. A feed- 
back register (or simply register) of length n is a pair ( F , g ) ,  
where F = ( F , ;  . f ,  el)  is a function from GF(2)” to GF(2)” (the 
state transition function), and g is a function from GF(2)” to 
GF(2) (the output or feedforward function; see Fig. 1). 

Fig. 1 .  Feedback register with state transition function F and feedforward 
function g. 

The functions F, and g can always be written as polynomials 
in n variables xl;. .,x,, over GF(2), such that each variable has 
degree of, at most, one. We will write F(‘ )  for the composition 
of F with itself i times. An initial loading of a register .F= ( F ,  g )  
is an element a E GF(2)”. F, with initial loading a ,  generates 
the sequence .F(a)  = ( g ( a ) , g . F ( a ) ,  g .F( ’ ) (a ) ,  . . . ). Several 
special eases are of interest. The standard fccdforward function 
is g(x,; . ., x,,) = x l .  A register ( F ,  g )  is a feedback shift register 
with feedforward function g if 

for some function f from GF(2)” to GF(2), which is called the 
feedback function. Such a register is simply called a feedback 
shift register if it has the standard feedforward function. This 
case is specified by F (or even f). A register is linear (resp., 
affine) if g and each F, are linear polynomials (resp., affine 
polynomials, i.e., polynomials that have a degree of, at most, 
one). In case .F is linear, it may be more convenient to think of 
F as a matrix and of g as a vector, acting by matrix multiplica- 
tion and dot product, respectively. In this case, F“’ corresponds 
to the ith power of the matrix F.  

We need to distinguish two notions of linear complexity. One, 
the traditional notion of linear complexity, concerns bit se- 

quences and, by extension, feedback registcrs with fixcd initial 
loadings. The other, introduced hcrc, concerns feedback regis- 
ters with no specific initial loadings. The latter notion thus 
bounds the linear complexities of all sequences generated by a 
registcr. 

Definition I :  The linear complexity of an ultimately periodic 
sequence p of elements of GF(2) is the length of the shortest 
linear feedback shift register Y,  which has an initial loading a 
with .F(a)  = p .  The weak linear complexity of a register F is 
the maximum over-all initial loadings a of the linear complexi- 
ties of the sequences F ( a ) .  

Definition 2: The strong linear complexity of a register .F= 
( F ,  g )  is the length of the smallest linear feedback shift register 
F ’ s u c h  that for every initial loading a of F, there is an initial 
loading a‘ of 9’ with .F(a)= F ( a ’ ) .  

In order to study the strong linear complexity of a register <F, 
we will consider the sequence of polynomials g, g . F ,  g . F .  F ,  . . . . 
The output sequence generated by 9 with an initial loading a 
is found by evaluating this sequence of polynomials at a.  

The strong linear complexity of a register is greater than or 
equal to its weak linear complexity, and equality holds for: 

a) registers of length n whose output sequences are of maxi- 
mal period 2“ (i.e., de Bruijn sequences [2]); 

b) registers of length n whose state change and feedforward 
functions do not contain constant terms and whose output 
sequences are of period 2 “ - 1  (i.e., modified de Bruijn 
sequences); 

c) linear feedback shift registers; and 
d) linear feedback registers with linear feedfonvard functions 

(as will be seen by the remarks following Theorem 1 of 
Section 11). 

In general, however, these notions do not coincide. For exam- 
ple, the nonlinear feedback shift register .F of length two with 
feedback function f (x l ,x , )  = x lxz  generates the sequences 
1111 . . . , 0000. . . , 1000. . . , and 01000. . . . These sequences 
have linear complexities 1, 0, 1, and 2, respectively; therefore, 
the weak linear complexity of 9- is two. The strong linear 
complexity of 9-, however, is three since each of these se- 
quences is generated by the linear feedback shift register of 
length three with feedback function x3 and not by any shorter 
linear feedback shift register. 

We also note that the strong linear complexity of a register 9- 
is equal to the degree of the least common multiple of the 
connection polynomials of the sequences generated by 9. 

11. UPPER BOUNDS 

In this section, we derive a technique for computing bounds 
on the strong linear complexity of (linear and nonlinear) regis- 
ters with arbitrary feedforward functions. The idea is to embed 
the given register into a linear register (of exponentially greater 
length N ). For such a register, the state transition function is 
considered to be a linear transformation on a vector space of 
dimension N .  We then bound the strong linear complexity of 
this large linear register. Our first theorem gives a characteriza- 
tion of the strong linear complexity of a register. 

Theorem I :  Let F= ( F ,  g )  be a feedback register of length n. 
The strong linear complexity of .Y is the dimension of the span 
of (g .F“’:  i > O ) ,  that is, the largest k such that {g.F”’: i =  
0,. . . , k - 1) are linearly independent. 
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Proofi If k is as in the statement of the theorem, then 
g.F‘l” can be written as a linear combination of {g .F“) :  i =  
0;. ., k - 1). Thus, there are elements {a , :  i = 0;. ., k - 1)  of 
GF(2) such that 

e ( x , , .  . . , x , ~ )  = ( g ( x , , .  . .,x,,),. . . , g . P - I )  ( X I  3 .  . . 1 X I l  1) 
Consider the linear feedback shift register F’ of length k with 
feedback function f’ and standard feedforward function. For 
any initial loading a E GF(2)” of F and any i 2 0, g .F(”(a )  = 

g‘.F‘’(’)(O(a)),  that is, .F(a)= S‘(O(a)). Thus, O(a) is an initial 
loading of F’ giving the same output sequence as F with initial 
loading a. It follows that the strong linear complexity of 9- is, 
at most, k .  

To show equality, let .F’ = ( F ‘ ,  g ‘ )  be any linear feedback shift 
register of length r (g ’  is therefore the standard feedfonvard 
function) that produces all output sequences that F produces, 
and suppose r is the strong linear complexity of F. Then, there 
is a function 0: GF(2)” + GF(2)‘ such that for every a E GF(2)”, 
F ( a )  = 9-’(0(a)). F’ is a linear feedback shift register; there- 
fore, there exist elements {a l :  i = 0; . ., r - 1) of GF(2) such that 

r - l  

a,g’.F’(‘) (1) F f ( r )  = 

i = 0 

(the coefficients of the feedback function define a linear recur- 
rence for the output sequence). For any a E GF(2)”, Y ( a ) =  
F’(O(a)); hence, for every i, g . F ( ’ ) ( a )  = g’.F’(’)(O(a)). Compos- 
ing (1) with 0,  we see that 

r - l  

g .  F(‘) = a , g . F ( ‘ ) .  

By hypothesis, ( g .  F(‘):  i = 0,. . . , k - 1) are linearly independent; 
therefore, k is, at most, r .  It follows that k equals the strong 

It is a direct consequence of Theorem 1 that the strong linear 
complexity of a linear register is, at most, its length (the dimen- 
sion of the space of linear functions on n variables is n) ,  
whereas the strong linear complexity of an affine register is at 
most one greater than its length (the dimension of the space of 
affine functions on n variables is n + 1). Next, we show that for 
an arbitrary feedback register S= ( F ,  g )  of length n ,  an affine 
register F’= ( F ‘ ,  8’) of length 2” - 1 can be constructed such 
that F’ generates every output sequence generated by Y. The 
register F’ will be linear if both F and g have no constant 
terms. We will then be able to use Theorem 1 to bound the 
linear complexity of F‘, and hence of .F. 

i = 0 

linear complexity of F. 0 

A. The Cori.stniction 

Let S be the set of nonempty subsets of (1;. . ,n ) .  For every I 
in S, we construct a new variable x, and identify it with the 
monomial H,  ,x,. Recall that every element a in GF(2) satis- 
fies U’ = a;  therefore, all high-degree terms such as x,k, k 2 1 
appear as x,. S has cardinality 2 ” - 1  and is used as the index 
set for the 2” - 1 variables in F‘. For each I in S ,  let 
F , ( x , ;  . . , x , ~ )  = n, ,F,(xI; . .,x,,), and let F , ’ ( X { ~ ) ;  . . , x { ~  ;..,, ?)) 

be the affine function derived from F, by replacing each mono- 
mial H,, J x ,  by the variable xJ, where J is in S .  Thcn, F’= 
(5;); . ., 6;. ...,,,, ) defines an affine function from GF(2)2”-’ to 
GF(2)”’- I .  The feedforward function g’ can be defined similarly 
as a linear combination of the monomials x, and the constant 
function 1, giving an affine function from GF(2)2”-’ to GF(2). 
9-‘ = ( F ’ ,  g ‘ )  defines an affine feedback register of length 2“ - 1. 
F‘ is linear if neither F nor g has constant terms. 

To show that F‘ generates all the output sequences of 9-, we 
consider the embedding 0: GF(2)” + GF(2)*”-’, where the I th  
coordinateof O(x, ; . . ,x , , ) isn, , ,x i .  Weclaim that O . F = F ’ . O  
and g = g“0. In other words, the diagram in Fig. 2 commutes. 

GF(2)” 
I 

Fig. 2. Linearizing feedback register. 

To see this, note first that 

( 0 . F ) , ( x l , .  . ‘ ,  x,,) = nl t IFl( x i r ’  . ‘ ,  x,,) = F j ( x l  9 .  . 
On the other hand, ( F ‘ . O ) , ( x , ;  . ., x , ~ )  = F ; ( .  . . ,H, J x I , .  . ‘1, 
i.e., ( F ’ . 0 ) ,  is derived from F,’ by replacing xJ by H,, J x I .  
However, F,‘ was derived from F, by doing the opposite; there- 
fore, ( F ’ . 0 ) ,  = F, = ( 0 . F ) , ,  and F . 0  = 0 . F .  The second claim 
is proved similarly. 

It follows that for any a E GF(2)” and any k, g . F ( k ) ( a )  = g ’ .  
F’(k ) (O(a) ) .  Thus, the initial loading 0 ( a )  of 9-’ gives the same 
output sequence as the initial loading a of 97 

Example: Let F= ( F ,  g )  be a feedback shift register of length 
4 with g(x , ,x2 ,x3 ,x4 )  = x I  and feedback function 

f ( X I , X 2 , X 3 r X 4 )  = + x 2 x 4  + x 2 x 3 x 4 .  

Then 

F’(x1, x21 X 3 r X 4 r  X I , 2 3  x1.3, x1.4, x2.3, x2,4, x3.4, 

~ l , ? , ~ ~ x l , 2 , 4 ~ ~ 1 . ~ , 4 7 ~ 2 , 3 , 4 ~ x 1 , 2 , 3 , 4 )  

- - (‘2, ‘ 3 ,  ‘4, ‘1 + ‘2.4 + ‘2.3.4, ‘ 2 . 3 ,  ‘2.4, 

‘ I , ?  + ‘2.4 + x 2 , 3 , 4 ~ x 3 , 4 ~ x l . 3 ~ x I . 4  + x 2 , 4  + x 2 . 3 , 4 , x 2 , 3 , 4 3  

x l , 2 , 3 ~ x 2 , 4 +  x I . 2 . 4 +  X 2 . 3 . 4 , X l , 3 , 4 ~ X l , 2 , 3 , 4 ) ’  

The output sequence obtained from 9- with the initial loading 
(1, 1,0, 1) is obtained from S’ with the initial loading 

From this construction, we observe that if the set of polynomi- 
als (g’.F’(’): i 2 0) contains only terms in ( ~ ~ 1 1  E Q)  for some 
Q c S ,  then we need only those monomials in F’ indexed by 
elements of Q. Hence, an affine feedback register of length IQ1 
(linear if neither F nor g has constant terms) can be constructed 
that generates the same sequences as F. This shows that the 
strong linear complexity of S is bounded above by IQ[+ 1 (by 

(1,1,0,1,1,0,1,0,1,0,0,1,0,0,0). 
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IQ1 if neither F nor g has constant terms). The determination of 
such a Q is given by the following corollary. 

Corollary I: Let F ( x , ; .  . ,xf I )  be the state change function of 
a register of length n with feedforward function g ( x , ;  . ., x,~). 
Let T = ( I  E S :  n, / x ,  has a nonzero coefficient in g), and let 
Q be the smallest subset of S containing T such that if I E Q 
and the coefficient of x J  in F,' is nonzero, then J E Q. 

1) If F or g has constant terms, then the strong linear 
complexity of ( F , g )  is bounded above by lQl+ 1. 

2) If neither F nor g has constant terms, then the strong 
linear complexity of (F,g) is bounded above by IQ\. 

Proof: In the first case, the space spanned by {x]: I E Q}U 
(1)  contains the space W spanned by ( g . F ( ' ) ) .  In the second 
case, W is spanned by ( x I :  I E Q). The corollary follows from 
Theorem 1. 0 

In the case where F is a shift register, the determination of 
Q is given by shifting the corresponding indices, as is given by 
the next corollary. 

Corollary 2: Let ( F ,  g )  be a feedback shift register with feed- 
back function f .  Let T = ( I  E S: nIrlx,  has a nonzero coeffi- 
cient in g), R = ( I  E S :  n, , x ,  has a nonzero coefficient in f ) .  
Let Q be the smallest subset of S containing T such that 

1) If I E Q and n E I ,  then for each J E R ,  J U ( i  + 15 n: 

2) If I E Q and n E I ,  then (i + 1: i E I )  E Q. 
i E I ) E Q .  

Then, the strong linear complexity of ( F ,  g )  is bounded by 

1) lQl+ 1 if f or g has constant terms; 
2) IQ1 if neither f nor g has constant terms. 

We now treat the special case of a feedback shift register 
F= ( F , g )  of length n with feedback function f ( x , ; .  ., x,) = 

x,  + h(x,; . ., x,) and standard feedforward function. Let T ,  R ,  
and Q be as in Corollary 2; therefore, T = ((l)), (1) E R,  and no 
other element of R contains 1. Since (1) E T c Q, we may apply 
condition 2 repeatedly to obtain ( i ) ~  Q for all i .  In particular, 
(n}  E Q. If J is the index set of a monomial that has a nonzero 
coefficient in h ( x , ;  . ., x,), then we can apply condition 1 with 
I = (n); therefore, J E Q. Let I ,  be any element of Q. Then, 
applying either condition 1 with J = (1) or condition 2 (only one 
condition is applicable to a given index set) n - 1 times, we get a 
sequence of elements of Q: I , ;  . .,I,. One more such applica- 
tion would give us I ,  back again. Actually, we may return to I ,  
after a smaller number of applications of the conditions, but this 
number must divide n. If r is the cardinality of I , ,  then r is the 
cardinality of each I , ,  and we call the set ( I , ;  . ., I,} an r cycle, 
or simply a cycle, if the cardinality is clear. Thus, an r cycle is a 
set I ,  c(1; . ., n )  together with those sets obtained from I ,  by 
cyclic permutation of the indices (1; . ., n).  For example, with 
n = 4, starting with I ,  =(2,3), we get the two-cycle (2,3), 
{3,41,(1,4),{1,2), whereas starting with I ,  =(2,4), we get the 
two-cycle {2,4), (1, 3). These cycles are independent of 
h ( x , ; .  . ,x ,~) .  The set S of all index sets decomposes into a 
disjoint union of such cycles with each cycle having cardinality 
dividing n.  If any one element of a cycle is in Q, then every 
element of that cycle must be in Q. 

Remark: There is an interesting relationship between this 
cycle decomposition and the decomposition of the finite field 
GF(2") into cyclotomic cosets (the orbits under the action of the 
Galois group over GF(2) [5]) .  Let a be a primitive element of 
GF(2'9, I = (i,;. . , i h }  be an index set, and r = Zf=,2'/ .  Then, 

we can identify I with the element a' of GF(2"). Under this 
identification, the cycle containing I corresponds to the cyclo- 
tomic coset containing a'. 

Recall again that each monomial in x,; . ., x,, corresponds to 
an index set; therefore, 9- can have high linear complexity only 
if Q contains many index sets. As seen by the following theo- 
rem, this means that the feedback function must have many 
nonzero coefficients. 

Theorem 2: Let F = ( F , g )  be a feedback shift register of 
length n with feedback function f ( x , ; .  . , x , , ) =  xI + h(x , ;  . ., 
x,,) and standard feedforward function. Let r be the smallest 
integer such that h ( x , ; . . , ~ , ~ )  has a term of degree r with a 
nonzero coefficient. For any collection of r cycles C,;  . .,C,, 
each of whose corresponding monomials has a zero coefficient 
in h ( x , ;  . ., x,,) ,  the strong linear complexity of F is, at most 

r - l  

2'7-1- ( y j -  
i = 2  i = l  

if h has a constant term and, at most 
r - I  

if h has no constant term. 

Proof Let P = ( I :  111 = l )u( I :  V i :  I E C,, 111 = r ) u ( I :  r + 1 
- < 111 5 II - 1). We will show that P satisfies the conditions of 
Corollary 2 and thus contains the set Q of that corollary. P 
contains the set T and satisfies condition 2 by the observations 
preceding this theorem. We claim that P satisfies condition 1 as 
well. Let R be as in Corollary 2. Then R C ((l)}U ( I :  Vi: I E C,, 
~ I ~ = r ) U ( I :  r + l < ~ I ~ < n - l ) ~ P .  We have two types of ele- 
ments of P to which condition 1 applies. 

1) (n )  E P. Condition 1 is satisfied because R c P.  
2) Let n E I E P and 111 2 r. Then, all other elements of the 

cycle containing I are in P .  Let .I E R,  and let K = J U {i + 1 I n: 
i E I } .  We must show that K E P .  If J = (l}, then K is in the 
cycle determined by I ;  therefore, suppose J#(l}. If K has 
cardinality r ,  then K = J E P ,  since J has cardinality at least r. 
If K has cardinality greater than r ,  and K #(1; .,U}, then 
K E P by definition. Suppose K = (1; . .,n). We cannot have 
1 E (i + 1 I n: i E I ) ;  therefore, 1 E J. It follows that J = (l}, and 
hence that (2,. . . , n} = (i + 1 I n: i E I ) .  Thereforc, K = I ,  but 
(1,. . . , n )  E P ,  so this is impossible. 

P thus contains the set Q of Corollary 2 and has cardinality 

proving the theorem. U 

This theorem makes precise the belief that shift registers with 
only high-degree terms are not good. In the example following 
the construction, we have r = 2; therefore, the corollary shows 
that the strong linear complexity of the given register can be, at 
most, 10. 

If the output sequence ( zO,z I ,  . . . )  from a feedback shift 
register with standard feedforward function 9- of length n has 
maximal period 2", then any set of 2" consecutive bits contains 

ones and 2'I-l zeros. Therefore, the sequence satisfies the 2ff-I 
relation z ,  + z,+ , + . . . + z,+,,,- I = 0 for every i. The linear 
complexity is thus, at most, 2" - 1, and there are registers of 
length n with linear complexity 2" - 1 [l]. For registers with no 
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constant terms, the maximum possible lincar complexity is 2" - 2. 
Note that in these cases, the strong and weak linear complexitics 
of the register and the linear complexity of the output sequence 
all coincide. 

In particular, if 9- and r are as in the previous theorem, then 
9- cannot generate a maximal period, maximal linear complexity 
sequence unless at least one of the following conditions holds: 

1 )  h has quadratic terms, and for every two-cycle C, there is 
an I in C whose corresponding monomial in h(x1; . ., x,,) has 
nonzero coefficient. 

2) h ( x , ;  . ., x, , )  has linear terms. 

Corollaiy 3: Let 9-= (F ,g )  be a feedback shift register of 
length n ,  with feedback function x1 + h ( x 2 ; . . , x , , )  and stan- 
dard feedforward function. If .Y generatcs a maximal period, 
maximal linear complexity sequence, then either h contains 
some linear terms, or it has at least [ (n  - 11/21 quadratic terms. 

By a similar application of Corollary 2, wc can prove a 
generalization of a theorem of Key [4]. 

Proposition 1 (Key [4]): If 9- is a feedback register with affine 
(resp. linear) state change function, every term of whose feed- 
forward function has degree at most k (resp. at most k and at 
least 11, then its strong linear complexity is bounded above 
E;=~)(:) (resp., E:=~(:)). 

Pro$ Let P = {{i1;. .,ic): 1 I 1 s k and i ,  < . . . < ic). 
Then, P satisfies conditions 1 and 2 of Corollary 2 and hence 

0 contains the set Q. The cardinality of P is E:= y ). 
The remaining propositions are proved similarly. 

Proposition 2: If every term of the feedback function and 
feedforward function of a feedback shift register with feedfor- 
ward function has a degree greater than or equal to k ,  then the 
strong linear complexity of the register is bounded above by 

Proposition 3: If every term of the feedback function of a 
feedback shift register with feedforward function has degree 
2 k and the feedforward function has the form b,,+lx,,,+, 
+ . . .  +h, ,x , ,  (resp., ~ + b , , + ~ x , , + ~ +  . . .  +b,x, , ) ,  then the 
strong linear complexity of the register is bounded above by 
n - m +E;=~(  :) (resp., 1 + n - m +E;=~(  ;)I. 

Proposition 3 says that if the feedback function of a feedback 
register contains only high-degree terms, then the linear com- 
plexity is low. 

x ; = k (  y ) .  

111. GENERALIZATION TO ARBITRARY FINITE FIELDS 
The results of the previous section can be generalized to 

GF(q), which is the finite field of q elements, where q is a 
power of an arbitrary prime. The definitions of feedback regis- 
ters and their various special cases are the same, with 2 replaced 
by q. The only change is that now every element a of GF(q) 
satisfies a y  = a so that when we consider functions as polynomi- 
als, we must include monomials in which each variable has a 
degree up to q - 1. The remaining definitions (output sequence, 
weak and strong linear complexity, etc.) carry over verbatim, and 
Theorem 1 still holds. 

Recall that a multiset is a set I such that every member U has 
associated with it a nonnegative integer mult,(a), which is called 
the multiplicity of a in I .  If I and J are multisets and k is a 
nonnegative integer, we then define the multisets 1', I k ,  I U J, 
and r e d ( [ )  by 

3) mult,,,(i)= mult,(i)+mult,,(i). 
4) mult , ,(i) 

if mult,(i) = 0 
otherwise 

=(". 
mult,( i) - 1 (mod q - 1) + 1, 

In other words, if mult,(i) is nonzero, then mult,,(,,(i) is its 
residue mod q - 1 in the set (1,. . . , q - 1). 

Let S bc the sct of multisets contained in {l; . ., n )  such that 
each element has multiplicity at most q - 1,  and some element 
has positive multiplicity. For I E S, we construct a new variable 
x ,  and identify it with the monomial n, ,x~" l t / ( ' ) .  S has cardi- 
nality 4"-1. Every function from GF(q)" to GF(q) can be 
written as a linear combination of the x ,  and the constant 
function 1. For I E S, we define 

F,(x1; . . , x , , )  = n,, ,F,(X)~""'( '),  
reduced using the identities xi! = x J ,  j = 1; . ., n. Thus, each 
variable appears with a degree at most q - 1. We then define 
the affine function F; by replacing each monomial n, E ,x~" l t l ( ' )  
in F, by the corresponding variable x , .  We similarly define the 
affine function g' from g and combine these functions into an 
affine feedback register of length q" - 1 over GF(q) that gener- 
ates all the output sequences of the original register as before. 

With these definitions, Corollary 1 holds verbatim. Corollary 2 
holds with conditions 1 and 2 replaced by the following: If Z E Q 
and J E R,  then red(J"'""~(") U 1') E Q. Theorem 2 holds with 
the upper bound 

q ~ ~ - r f ( ; ) ( q - l ) ~ -  i ~ c , ~ ( q - l ) r - ( q - l ) "  

q " - l  - c (;)GI - 1 ) J  - i IC,l(q - 1 M q  - 1)" 

j = 2  i =  I 

in the first case, and 
, - - I  

j = 2  i = l  

in the second. 
Let # ( n , i )  be the number of monomials of degree i in n 

variables in which each variable has degree at most q - 1. 
Proposition 1 then holds with ( y )  replaced by #(n ,  i ) .  In Propo- 
sition 2, we must require that each term of the feedback and 
feedforward functions contain at least k variables, and replace 
(',!) by #(n,i) in the conclusion. Similarly, in Proposition 3, we 
must require that each term of the feedback function contain at 
least k variables and replace (:) by # ( n ,  i )  in the conclusion. 
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