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1 I n t r o d u c t i o n  

In several applications in modern communication systems periodic binary sequences are employed 
that must be difficult for an adversary to determine when a short subsequence is known, and must 
be easy to generate given a secret key. This is true both in stream cypher systems, in which the 
binary sequence is used as a pseudo-one-time-pad [11], and in secure spread spectrum systems, 
in which the sequence is used to spread a signal over a large range of frequencies It0]. While 
theoreticians have long argued that such security can only be achieved by sequencessatisfying 
very general statistical test such as Yao's and Blum and Micali's next bit test [12,2], practitioners 
are often satisfied to find sequences that have large linear complexities, thus ensuring resistance 
to the Berlekamp-Massey algorithm [8]. Linear feedback shift registers are devices that Can easily 
generate sequences withexponentially larger period than the size of their seeds [6], though with 
small linear complexity. Thus much effort has gone into finding ways of modifying linear feedback 
shift registers so that the sequences they generate have large linear complexities, typically by 
adding some nonlinearity. 

Chart and Games [4] have suggested using a class of sequences called geometric sequences for 
these purposes. Geometric sequences are derived from m-sequences over a finite field GF(q) by 
applying a (nonlinear) map from GF(q) to GF(2). Chan and Games showed that for q odd, 
geometric sequences have high linear complexities. For this reason, these sequences have been em- 
ployed in commercial applications, typically with enormous periods. More recently Chan, Goresky, 
and Klapper [5] derived formulas for the periodic autocorrelation function of a geometric sequence 
and, in some cases, (with q even) for the periodic cross-correlation function of a pair of geometric 
sequences with the same period. Knowledge of these correlation function values is essential for 
applications involving spread Spectrum systems. Furthermore, Brynielsson [3] derived a formula 
for the linear complexity of a geometric sequence when q is even, showing that such sequences can. 
be constructed with moderately large linear complexities. 

The purpose of this paper is to show that a certain statistical attack, partial period autocorre- 
lation attack, can be used to obtain critical information about geometric sequences fl'om knowledge 
of a relatively small subsequence when q is odd. Specifically, for a sequence of period q~ - 1, with 
q _> 5, q odd, and n _> 10, if qS bits of the sequence are known, then q can be determined with 
high probability (n must be at least f l  if q = 3). While this does not as yet allow us to determine 
the sequence, it does render their security questionable. 

Suppose a small subsequence is known. We show that if a small shift of this subsequence is 
taken, then the correlation between the original subsequence and its shift is close to q2 when q 
is odd. More specifically, we show that the expected correlation (letting the starting point of the 
shift vary and keeping the size of the subsequence fixed) is approximately q2 and that under the 
hypotheses on q and n given above, the variance is sufficiently small that the correlation is close 
to its expectation with high probability (this is a consequence of Chebyshev's inequality [1]). One 
way to view our resluts is that we have introduced a new statistical test that a sequence must 
satisfy in order to be secure - the variance of the partial period autocorrelation must be high for 



278 

small subsequences. 
Most of the difficulty in acquiring these results lies in calculating the variance. A critical part 

of this calculation involves understanding how uniformly each orbit of the action of GL2(GF(q)) 
on GF(q ~) by fractional linear transformations is distributed in GF(q~). In some cases we make 
estimates that we expect can be improved, thus decreasing the number'of bits required for success. 
It is unlikely, however that we can get by with fewer than q6 bits. 

A second application of our results on the partial period autocorrelation of geometric sequences 
is to spread spectrum CDMA systems [10]. In such systems a signal is distributed over a large 
number of channels using a pseudo-random binary sequence to determine parity. The signal is 
then recovered by computing an (unshifted) autocorrelation. To avoid phase shift interference it is 
desirable that the shifted partial period autocorrelation values be small, Partial period correlations 
are generally quite difficult to compute, so in practice families of sequences are found that have 
tow full period autocorrelations. These families are then searched for sequences with low partial 
period autocorrelation. Such searches are slow and may be unsuccessful. The expected partial 
period autocorrelation always differs from the full period autocorrelation by a factor depending 
only on the size of the subsequence used, so is low if the full period autocorrelation is low. This is 
only useful, however, if the variance is low enough to ensure the partial period autocorrelation is 
low with high probability. Our results show that this is the case for geometric sequences, making 
them strong candidates for use in spread spectrum systems. 

The proofs of all lemmas are omitted and will later appear in a full version of the paper. 

2 Geometric Sequences and Correlations 

In this section we recall the definition of the geometric sequences and some of their basic properties, 
and the definition of full and partial period correlation functions of periodic sequences. Throughout 
this paper, q wilt denote a fixed power of a fixed prime p, and GF(q) will denote the Galois field 
of q elements. See Lidl and Niederreiter's or McElieee's book [7,9] for background on finite fields. 

Definit ion 1 (Chan and Games [4]) Let n be a positive integer and let a be a primitive element 
of GF(q"). The sequence Ui = Tr~"(c~/) is a q-ary m-sequence. Let f be a (possibly nonlinear) 
function from GF(q) to GF(2). The binary sequence S whose ith term is 

s, =/(rr~"(~')). 

is called a geometric sequence. 

Geometric sequences with q odd have been used in commercial applications where easily gen- 
erated sequences with large linear complexities are needed. Recall that the m-sequence U can be 
generated by a linear feedback shift register over GF(q) of length n, so the geometric sequence S 
is easy to generate if the feedforward function f is easy to compute. Such a geometric sequence 
is a (q= - 1)-periodic binary sequence. The periodic autocorrelation function .As(r) of S is the 
function whose value at r is the correlation of the r-shift of S with itself. 

qn-1 

-~S(r) = E (-1)s'+'(-1) s' 
iml 
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The  part ia l  autocorrelat ion of a sequence is defined by l imiting the  range of values in the  sum 
to a fixed window. It is parametr ized by the  start  position k and length D of the  window, as well 
as the  shift r .  Precisely 

D+k-i 
~s(T,k,D)= E (-1)s'+'(-1) s' 

i=k 

We next  recall a result  due to Chan,  Goresky, and Klapper [5] regarding the  autocorrelat ion of 
1(~) I F x a geometric sequence. We use the  notat ion F(x)  = ( - 1 )  , ( f )  = E~aF(q)  ( ) ,  the  imbalance  1 

of f ,  and A~( f )  = E=eay(q) F ( a x ) F ( z ) ,  the short autocorrelation function 2 of f .  

T h e o r e m  1 Then the values for the periodic autocorrelation of a geometric sequence S are: 

1. -4S(~) = q~-~1(f) ~ - 1, if a" r GF(q). 

Note tha t ,  let t ing u = (q" - 1)/(q - 1), the second case of the  theorem, a ~ E GF(q), occurs 
exactly when u divides ~r. 

If p equals two, f can be chosen to be balanced ( I ( f )  = 0) and so tha t  A~( f )  = 0 for 
a :~ 1, A~(f )  = q. This  implies the shifted autocorrelation of S is - 1 ,  the min imum possible. 
Unfortunately,  in this  case the linear complexity is much smaller. If p is odd, t h e n t h e i m b a l a n c e  
is at  least 1, so the  autocorrelat ion is always large, Such sequences are used in commercial  systems 
due to their  enormous linear complexities. We will show, however, tha t  their  poor autocorrelat ions 
render such systems vulnerable.  The  idea is tha t  if we know the autocorrelat ion,  then we know 
qL o f  course we will never be able to compute the full autocorrelat ion,  since we wil l  never 
see the  full period of the  sequence. However, if the partial  period correlation is sufficiently well 
behaved for small  enough windows, then we can get similar information by seeing only a small  
par t  Of the  sequence - seeing D d- r bits of the sequence allows us to c o m p u t e  a part ial  period 
autocorrelat ion with window D and shift T. Such a short subsequence may be discovered, for 
example, by a known plaintext  a t tack on a pseudo-one-time-pad system. Unfortunately,  the  part ial  
period autocorrelat ion may vary.considerably as the s tar t  position varies. We will show tha t  the 
expected part ial  period autocorrelat ion (averaged over the s tar t ing position of the window) is 
closely related to the  full period autocorrelation. We will also show tha t  for certain window 
sizes the variance of the  part ial  period autoeorrelation (with fixed shift 7 and window size D) 
is low enough tha t  an adversary has high probabili ty of discovering q. This is a consequence 
of Chebyshev 's  inequali ty [1] which says that  a bound on the variance implies a bound on the  
probabil i ty tha t  a par t icular  part ial  period correlation is far from the expected part ial  period 
correlation. 

We begin by showing that  the expected partial period autocorrelat ion of any sequence can be 
determined from i ts  full period autocorrelation. We denote the expectat ion of a random variable 
X by (X).  All expectat ions  are taken for fixed window size D and shift v, assuming a uniform 
dis t r ibut ion on all s tar t  positions k. 

lThe imbalance of f is equal to the number of z for which f is zero minus the number of x for which f is one. 
"-If 7 is a primitive element of GF(q), and a = 7% then An(f) - 1 is the autocorrelation with shift c~ of the 

sequence whose ith term is f(~,i). 
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T h e o r e m  2 Let S be a periodic binary sequences with period N. Then the ezpectation of the 
partial period autocorrelation of S is given by 

D A {As(r ,  k,D)> = ~ s ( r ) .  

P r o o f :  Straightforward. 
Suppose S is a geometric sequence of period q" - 1 with feedforward function f : GF(q) --4 

GF(2), and tha t  S is a~ balanced as possible, i.e., I ( f )  = 1. Then for shifts 0 < r < u, the  
expected part ial  period autocorrelation of S is (As( r ,  k, D)} = D(q ~-~ - 1)/(q ~ - 1). 

Vie next  consider the  variance of the partial  period autocorrelation, Recall tha t  the  variance of 
a random variable X is defined to be ((X-= (X}) = ) = (X 2) - (X) ~, so we must  determine the  second 
moment  {As(r ,  k, D) 2) of the partial  period autocorrelation. We can reduce this de terminat ion  to 
the  de terminat ion  of the  cardinalities of certain fourfold intersections of hyperplanes (identifying 
GF(q ~) with n~dimensional affine space over GF(q)) asstated in the  following lemma. If s E GF(q), 
and A E GF(q"), then we denote by H~ the hyperplane {x :  Tr~"(dx) = s}. 

L a m i n a  1 I f  S is a geometric sequence, then 

(.as(~-, k, D?) = 
1 D-1 

E:( ~ U,..(~.t,~,~)F(s)r(t)F(~)F(.)-~) 
q'~ - 1 ~,j=o ~a,,,,,,~av(q) 

where 
N~.j..(s.t. u,v)= IH:,+. nH~, n H:.+. n H:,I. 

Thus we must  determine the values of N; j , , (s ,  t, u, v). 

3 I n t e r s e c t i o n s  o f  H y p e r p l a n e s  

There are five possible values for Ni.j.r(S,t,u,v): qn-4, qn-3 qn-2, qn-], and 0. The  following 
lamina will be useful in determining which case occurs. If {.4m} are elements of a vector space 
over GF(q), by abuse of notat ion we denote by dim{A,,} the dimension over GF(q) of the  span 
of {Am}. 

L e m m a 2  Let At,A2, Aa, A4 E GF(q ~) and ~l,s2, ss, s4 E GF(q). Then tfq~=l H~:l = q~-~ 
if and only if dim{Am} = r, and whenever {m,~} satisfy a linear equation Z~=ia,~Am = O, 
{am} E GF(q), {sin} satisfy the same relation, i.e., Z~=I a,~s,~ = O. Otherwise the intersection 
is empty, For a given set {Am} whose span has dimension r, there are qr sets {sin} for which 

4 H t m  

Let A = a/,  23 = aJ,  and C = a ~ in the sum we derived for the second moment  of the  part ial  
period correlation. We need to determine dim{A,AC, B, BC},  which can be 1, 2, 3, or 4. We 
consider 4 to be the generic case and consider when the other  four cases occur, 
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3.1 D i m e n s i o n  1: 

This occurs when every element is a GF(q) multiple of every other element. ~rhus c~', a j - / E  GF(q). 
If the window size D is in the range 0 < D < v, then this case cannot occur. 

3 . 2  D i m e n s i o n  2: 

This occurs if AC, A, BC, B satisfy two linearly independent equations, say 

a A C + b A + c B C + d B  = 0 (1) 

e A C + f A + g B C + h B  = 0, 

where a, b, c, d, e, f,  g, h E GF(q) and (a, b, c, d) and (e, f ,  g, h) are independent vectors. 
If C e GF(q), then the span of {AC, A, BC, B} equals the span of {A, B}. Dim{A, AC, B, B e }  

is two if A/B is not in GF(q), and is one otherwise. 
If C is not in GF(q~, then we can use each of these equations to write B/A as the result of 

applying to C a fractional linear transformation with coefficients in GF(q): 

B aC+b e C + f  
-A = cC + d - gC + h 

We can use the second equation to find a quadratic equation over GF(q) s~tisfied by C. This 
equation is degenerate if and only if B/A e GF(q). Thus if B/A is not in GF(q), then C is in 
GF(q ~) - GF(q). Conversely, suppose C is in GF(q 2) - GF(q). If dim{A, AC, B, BC} is less than 
four, then {AC, A, BC, B} satisfy a linear equation. The quadratic equation satisfied by C can 
then be used to produce a second, independent linear equation. Hence dim{A, AC, B, BC} is two 
(it must be at least two since C f~ GF(q)). 

3.3 Dimension Three: 

As a consequence of the preceding subsection, dim{A, AC, B, BC} can only be three if C is not a 
root of a quadratic equation over GF(q). Moreover, we must have a single equation 

aAC + bA + cBC + dB = O, 

or, equivalently, 
aC+b . 

B=c--~--~A. 

As before, (aC + b)/(cC + d) is in Gf{q) (and hence dim{A, AC, B, BC} is two) if and only if 
ad - bc = O. 

There is an action of the general linear group over GF(q) of rank two, G = GL~(GF(q)), 
on GF(q '~) which we shall make use of. Recall that this group is the multiplicative group of 
two by two matrices over GF(q) with nonzero determinate. The group acts by fractional linear 
transformations. That is, the matrix 

M = (  ac db) 
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acts on the element C 6 GF(q) by 

aC+b 
C ~ cC +-------d = M(C). 

It is straightforward to check that  if M , N  6 GL~(GF(q)), then (MN)(C) = M(N(C)). Recall 
that  when a group G acts on a set W, the G-orbit of an element z E W is the set {M(x) : M E G} = 
orbit(x). Our analysis of the conditions under which the various dimensions occur is summarized 
in the following table: 

D i m = l  D i m = 2  D i m = 3  

C E GF(q) B/A E GF(q) B/A ~ GF(q) 

C E GF(q 2) - GF(q) - B/A E GF(q)Uorbit(C) - 

CE GF(q") - GF(q 2) B/A E GF(q) B/A E orbit(C) 

In all other cases dim{A, AC, B, BC} is four. 

4 V a r i a n c e  o f  P a r t i a l  P e r i o d  C o r r e l a t i o n s  

Returning to our computation of the variance of the partial period correlation of geometric se- 
quences, we need to know, for given 0 < i,j  < D, whether a '-a 6orbit(a*). We break down our 
analysis depending upon whether a * is in GF(q), GF(q 2) - GF(q), or GF(q ~) - GF(q2). 

4 . 1  a ~ E G F ( q )  

In this case Ni,2,~(0,0,0,0) = q~-~ if a '-j r GF(q), Ni,~,~(O,O,O,O) = qn-1 if a'-~ E GF(q). We 
have a i-j 6 GF(q) if and only if v divides i - j .  Thus for a given i, 0 < i < D, the number of j ,  
0 < j < D, such that  the i , j  term contributes to the sum is the number o f j  in this range such 
that u divides i - j .  This number is 

We can bound the second moment as follows 

(Xs(~., k.D)~ ) 1 0-, 
�9 qn _ i i,j=O t,vEGF(q) 

1 D-1 
- q ~ "  1 ( ~ (  ~ q~-2F(a*t)F(t)F(a%)F(v)- 1) 

i,j=O t,vEGF(q} 

+ ~ (q"-  ~ q"-2F(a't)F(t)F(a%)F(v))) 
O<~,~.<D t,vEGF(q} 
d(i-j) 

D ~ ~(D - i 
<_ q~_i(q"-2&o.(1)2-1)+q._i u +l)(q"-q"-2Ao'(f)2) - 
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The  expecta t ion in this case is q,D--~7_l(q~-lAa,(f ) - 1). Therefore the variance is 

V(As ( ' r , k ,D) )  = (As(~:,k,D)2> - { A s ( ' r , k , D ) )  2 
D2 ~-2 ~ D . D -  1 

<_ q~.~(q  Ao.(f) _~)+q-~5_ll---V-+~)(q.=q.-~z~o.(f)~) 
D 2 

( q .  - 1)~ ( q " - ~ " ~  - 1)~ 

D _ q~162 ,,- ~ + ~)(q: - ,,o,(f)~) - q-7=7_1( q - Ao,(f))~) 
q'~D ,D - 1 

<_ q , -_ i ( - - - y -+~) .  

In part icular ,  if D < u, then the  variance is bounded above by 2q'~D/(q '~ - 1). 

4 . 2  a r e G F ( q  2) - G F ( q )  

If x E GF(q~), and M 6 G, then M(x)  6 GF(q2). If, moreover, x ~ GF(q),  {hen x is a 
generator  for GF(q 2) over GF(q), tha t  is, every element of GF(q 2) can be wri t ten  in the  form 
(ax + b)/(cx + d) for some a, b, c, d E GF(q). It follows that  Ni,j,~(0, 0, 0, 0) is q~-2 if a ~-j E GF(q2), 
i.e., if v2 = (qn - 1) /(q 2 - 1) divides i - j ,  and is q~-4 otherwise. As above, we can bound the 
second moment :  

D 2 D .D- 1 
<.As(~-, k, D) 2) < Z-U--7(q"-4I(f)4q - i  - 1) + q---~_ 1 ( - - ~ 2 _  + 1)(q - q" -4I ( f )4) .  

The  expecta t ion in this  case is q,-~(q'~-2I(f)2 - 1). Therefore the  variance is bounded  by: 

V(As( ' r , k ,m))  < q~D r , 1  + 1 ) .  
- q ~  - 1 "  u2 

In part icular ,  if D < v, then the variance is bounded above by (q + 1)q'~D/(q '~ - t ) .  

4.3 ~ e GF(q ~) - GF(q 2) 

Unfortunately,  in this case the  si tuat ion rfiore complex. In general, the G-orbit  is not  uniformly 
dis t r ibuted in GF(q~), so for a fixed i, the  number  o f j  in a window with d im{a  ~+*, a; ,  a j+~, a j ] = 3 
is not proport ional  to the  size of the window. We settle here for a cruder est imate,  based on the 
s t ructure  of the group G. We first determine the size of the G-orbit  of a *. 

L e m m a  3 l f  z E GF(q "~) - GF(q), then the G-orbit of z has cardlnality q3 _ q. 

We will next  decompose the elements of G into the composition of certain simple types of ma- 
trices with  scalar multiplication.  Since scalar multiplication by elements of GF(q) moves elements 
large distances, this will allow us to bound the number  of elements in an orbit  tha t  are in a given 
small window. 
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For matrices M and N, we write M ~ N if M and N define the same transformation (i.e., the 
matrices differ by a scalar multiple). Let 

M = (  ae db) 

be an element of G, so (5 = ad - bc # 0. First 

M ~ ( a2/~ ab/5 
ac/~ a d / 6 )  = ( 

Letting S= = {(x + b)l(c~ + bc+ 1)}, we have 
of S~. 

suppose a :# O. Then 

o7, o)(,  
1 ac/6 bc/6+1 " 

shown that  M(x) is a scalarmultiple of an element 

On the other hand, suppose a = O. Then b # 0 and e # O, so 

o)(0 ,) 
1 d / c  = 0 1 1 d / c  " 

Let T~ = {1/(x + d)}. Then in this case M(z) is a scalar multiple of some element of T=. We have 
shown that  an arbitrary element of the  orbit of x is a scalar multiple of some element of Sz U Tz. 

Consider a window of size v. If y is any element of GF(q~), then there is a unique a E GF(q) 
such that  ay is in the given window. Therefore, for each element y of S= U T=, there is a unique 
scalar multiple of y, i.e., a unique element of the orbit of x, in the given window. Thus we have 

P r o p o s i t i o n  1 I f  x E GF(q '~) -GF(q2) ,  then the intersection of the orbit o fx  with a window of 
size at most v has cardinality at most iS= U T=[ = q2 + q. 

It follows that  if D _< v, then the number of i , j  such that 0 < i , j  < D and N~j, ,(s , t ,u,v)  = 
q~-3 or 0 is at  most D(q 2 + q) (or D ~ if D < (q2 + q)). The number of s , t , u , v  for which we get 
qn-3 iS q3. Moreover, N{,i,.(s,s,u,u) = q. -2  and N~,i,.(s,t,u,v) = 0 i f s  # t or u -~ v. In all other 
cases Nij,.(s, t, u, v) = q.-4. Thus if D < u, as above we can bound the second moment: 

D 2 D(q 2 + q + 1)(q. 
(.As( % k, D) 2) < q-~_ l (q"-4I(f) 4 - 1) + q.-4i(f)4). qn 1 

The expectation in this case is q.D--_l(q"-:l(f)~ -- 1). Therefore the variance is bounded by: 

qn(q: + q + 1)D 
V(As(T, k,D)) <_ 

q ~ -  1 

T h e o r e m  3 For any r, if  D <_ v, then the variance of the partial period autocorrelation of a 
geometric sequence with shift "r and window D is bounded above by (q2 + q + 1)q~D/(q~ _ 1). 
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5 Cracking Cryptosystems 
In this  section we describe how the results of the previous sections can be used to obtain critical 
information on pseudorandom sequences used in s t ream cyphers. Specifically, using a known 
plaintext  at tack,  we are able determine q with high probability. We will m a k e u s e  of Chebyshev's  
inequali ty [1]. 

P r o p o s i t i o n  2 ( C h e b y s h e v ' s  I n e q u a l i t y )  I f  X is a random variable with expectation r and 
variance a 2, then for  any k, 

Prob{ IX-  ~t > k} < o~tk ~. 

First  suppose q is odd. Suppose f is a balanced feedforward function ( tha t  is, I ( f )  = 1). 
Geometric sequences are generally taken with I ( f )  = 1 so they are statistically random. For small 
enough windows (D < v) the  expected part ial  period autocorrelat ion is D(q ~-~ - 1)/(q" - 1), or 
approximately D/q 2. Thus we can hope to determine q. As we determine bits of the sequence, we 
can take a small shift and compute a partial  period autocorrelation.  We must  have the value of 
the part ial  period autocorrelat ion close enough to its expectat ion to unambiguously recover q. 

A difficulty is tha t  we must  recover q without  knowing n. For each q there will be an interval 
Iq = (%, %-1)  such tha t  if the computed value of the partial  period correlation is in Iv, then we 
ass;ame that  q is being used by the generator of the  sequence. In order to have a high probabil i ty 
of success, we must  chose I V so tha t  there is a large k such tha t  for each n, the interval of radius k 
around the  expected part ia l  period autocorrelation lies entirely within I V. To simplify things, we 
assume n >__ 4. As it turns  out, the statistics prevent us from successfully determining q if n _< 3, 
so this restrict ion is of no importance.  

For a given q, the  sequence dq., = D(q ~-~ - 1)/(q ~ - 1) is an increasing sequence with limit 
D/q 2. Let cq be the  center  of the smallest interval containing all these points (n > 4). Tha t  is 

= 1  d 

We then let aq be the  point  midway between cq+l and %, tha t  is aq = (cq+l + %)/2,  and-Iq = 
(%,%-1)  (note tha t  cq+l < cq), 

L e m m a  4 Let 
k = D(q - 1) 

q~(q + 1)~ 
I f n  >__ 4, then dq,, e (aq + k,aq_, - k). Hence (dq., - k, dq., + k) C Iq. 

The algr i thm for determining q is then:  compute the  part ial  period correlation. If the result is 
in I~, then ~ssume that  q = r. Applying Chebyshev's  inequality~ we have 

T h e o r e m  4 I f n  > 3, and S is a geometric sequence of  periodq n -  1, then a partial autocorrelation 
attack with a window D < u = (q~ - 1)/(q - 1) will fail to determine q with probability at most 

qn+4(q2 _}. q ..}. 1)(q + 1) 4 

D(q '~ - 1)(q - 1) 2 
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I f  n is small, this probability will be larger than one: so Chebyshev's  inequality does not  tell 
us whether  the atack has a positive probability of determining q. However, we have 

C o r o l l a r y  1 If u is large enough that 

q"+~(q: + q + 1)(q + 1) ~ q" - 1 

(q~ - 1)(q - 1): q - 1 

then using a window of size 
q~+4(q~ + q + 1)(q + 1) 4 ~ qs 

(q~ - 1)(q - 1): 

gives a positive probability of determining q. 

The conditions of the corollary are satisfied if n > 10, and q >_ 5; or n _> l l ,  and q _> 3; or 
n > 1 4 ,  a n d q > _ 2 .  

6 C o n c l u s i o n s  

We have shown that  geometric sequences based on m-sequences over a finite field GF(q) of odd 
characteristic exhibit vulnerability to a partial period correlation attack when enough bits are 
known. Specifically, for sequences of period q~ - 1, if between about qS and (qn - 1)/(q - 1) 
bits ar e known, then q can be determined with high probability. If n _< 9, then this condition is 
vacuous. However for q small  t he  sequence would have small period. We conclude that  q must  be 
lal:ge. Even for large q, our results cut down on the number of usable bits of a geometric sequence. 
Forexample ,  if we chose q = 17 and n = 16, so that  the sequence has period greater than 10 TM, 
then we must see approximately 7 times 109 bi ts .  If we received bits at 9600 baud, then it takes 
about 8 days to have positive probability of determining q. 

There are two points where we have used estimates that  might be improved. First ,  in evaluating 
the  summation expression for the second moment,  we make a worst case est imate of the smaller 
sum that each term contributes a plus one. It is possible that  this can be improved by recognizing 

�9 this sum as a higher order autocorretation of a shorter sequence (of period q - 1). 
Second, based on computer experiments, we belive that  smaller estimates can be made of the 

number of points in the intersection of an orbit of the action of GL:(GF(q)) with a window of size 
D < (q~ - 1)/(q - 1). In particular, we conjectnre that  there is a small constant c (e.g. two or 
three) such that  in a window of size less than q~-3, there are at most cq elements of an orbit. Such 
a restilt would imply that  only cq s bits are required to have positive probability of determining q. 

Of course our results only allow the determination of q, not the entire sequence, or even qL 
It remains to be seen whether this information is enough to compromise sytems using geometric 
sequences, but it should make users wary. 

Finally, the moral of this paper is that  it is dangerous to rely on linear complexity as a measure 
of cryptographic security. There are many other statistical tests a sequence must pass - in this 
case, we have shown that  the variance of the partial period autocorrelation must be high. 
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