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Abstract

In this paper we introduce an arithmetic Walsh transform. It is a with-carry
analog, based on modular arithmetic, of the usual Walsh transform of Boolean
functions. We first develop some tools for analyzing arithmetic Walsh transforms.
We then prove that the mapping from a Boolean function to its arithmetic Walsh
transform is injective. We then compute the average arithmetic Walsh transforms
and the arithmetic Walsh transforms of affine functions.
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1 Definitions

A Boolean function is a function

f : Vn = Fn
2 → F2

for some positive integer n. Here F2 = {0, 1} is the field with 2 elements. We define
addition on the set of Boolean functions termwise, (f + g)(a) = f(a) + g(a). The
imbalance of a Boolean function is the real number Z(a) defined by

Z(f) =
∑

a∈Vn

(−1)f(a).
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If a ∈ Vn, then the shift of f by a is the real valued function fa : Vn → R defined by

fa(b) = f(a + b).

The cross-correlation of two Boolean functions f and g is the real valued function Cf,g :
Vn → R defined by

Cf,g(b) = Z(f + gb).

The autocorrelation of f is Af (b) = Cf,f(b). Let a · b denote the inner product of a and
b. For any a ∈ Vn, let Ta(b) = a · b, a, b ∈ Vn, so that Ta is a linear function. The Walsh

Transform of f is the real valued function f̂ : Vn → R defined by

f̂(a) = Z(f + Ta) = Cf,Ta
.

The Walsh transform plays a central role in the study of the nonlinearity of functions, a
study which is central to understanding the cryptographic security of block and stream
cipher.

We define an arithmetic analog of the Walsh transform by replacing the termwise
sum (which is the same as the difference) of functions by the with carry difference. This
takes some work since the carries naturally take us outside the domain of the Boolean
function. Let N = {0, 1, 2, · · · } denote the natural numbers. We extend the Boolean
function f to f : Nn → F2 by setting

f(a1, · · · , an) = f(a1 (mod 2), · · · , an (mod 2)).

The set Pn of such extensions of Boolean functions is a subset of the set Rn of Boolean
valued functions on Nn. It is exactly the set of elements of Rn that are periodic with
period 2 in all directions. That is, for every a, b ∈ Vn we have f(a + 2b) = f(a).

In general in this paper we denote Boolean functions by lower case letters and elements
of Rn by boldface lowercase letters. The extension of a Boolean function to Rn is denoted
by the boldface version of the letter denoting the Boolean function. Vectors in Nn are
denoted by lowercase letters from the beginning of the alphabet. We denote the inner
product of two integer vectors a and b by a · b. We denote the reduction of an integer x
modulo 2 by [x]2. Thus the F2-inner product of two binary vectors a and b is [a · b]2

We now define an unusual algebraic structure on the set Rn. To understand this
definition it is helpful to recall the definition of the 2-adic numbers (in fact R1 is exactly
the 2-adic numbers). A 2-adic number is a formal expression

f =

∞∑

i=0

fi2
i,
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where fi ∈ F2. We can identify this 2-adic number with the function on N that maps
i to fi. We denote the set of 2-adic numbers by Z2. There is a well defined algebraic
structure on the set of 2-adic numbers that makes it a ring. It is based on doing addition
and multiplication with carry. Specifically, we say that

∞∑

i=0

fi2
i +

∞∑

i=0

gi2
i =

∞∑

i=0

hi2
i

if there are integers d0, d1, d2, · · · so that d0 = 0 and for all i ≥ 0 we have fi + gi + di =
hi + 2di+1. Similarly, we say that

∞∑

i=0

fi2
i ·

∞∑

i=0

gi2
i =

∞∑

i=0

hi2
i

if there are integers d0, d1, d2, · · · so that d0 = 0 and for all i ≥ 1 we have fig0 + fi−1g1 +
· · ·+ h0gi + di = hi + 2di+1. The dis are the carries. The algebra of 2-adic numbers has
been studied for more than 100 years [1, 4] and recently the authors and others have
used this algebra extensively in the study of fast generation of pseudorandom sequences
[2, 3].

We can identify R1 with the set of 2-adic numbers: a function f ∈ R1 is identified
with the 2-adic number

∞∑

a=0

f(a)2a.

To generalize this notion to multiple variables, we want a multiple term analog of the
2-adic number in much the same way that we generalize power series in one variable to
power series in several variables. Our new structure will have several “2s”. To distinguish
them from the ordinary integer 2, we denote them by t1, · · · , t2. Then a multi-2-adic
number is a formal expression

∑

a=(a1,··· ,an)∈Nn

fat
a1

1 · · · tan

n ,

with fa ∈ {0, 1}. For convenience we use the following standard notation: if a =
(a1, · · · , an) ∈ Nn then ta = ta1

1 · · · tan

n , and if b = (b1, · · · , bn) ∈ Nn then a > b means
that ai > bi for all i (1 ≤ i ≤ n). Write 1̄ = (1, · · · , 1) and similarly for 0̄, etc.

We can identify a Boolean function f ∈ Rn with a multi-2-adic number by setting fa =
f(a). To think of this geometrically, each lattice point (a1, a2, · · · , an) ∈ Nn corresponds
to a monomial ta1

1 ta2

2 · · · tan

n and the multi-2-adic number
∑

a∈Nn fat
a can be identified

with the collection of lattice points a ∈ Nn such that fa = 1 as in Figure 1 for n = 2.
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Figure 1: t21t
2
2(1 + t2 + t22)

∑∞

n=0(t1t2)
n

When we do arithmetic, we want a coefficient equal to 2 to induce a carry to “the
next place in each variable”. That is,

2ta1

1 ta2

2 · · · tan

n = ta1+1
1 ta2+1

2 · · · tan+1
n .

Accordingly we define an addition operation by saying that
∑

a∈Nn

fat
a +

∑

a∈Nn

gat
a =

∑

a∈Nn

hat
a (1)

if there exist integers {da : a ∈ Nn} so that da = 0 if any component of a is zero, and for
all a ∈ Nn, we have

fa + ga + da = ha + 2da+1̄.

In other words, addition is just 2-adic addition along the diagonals Da = {a+c(1, 1, · · · , 1) :
c ∈ N}, where a ∈ N.

Define a multiplication operation by saying that
∑

a∈Nn

fat
a ·
∑

a∈Nn

gat
a =

∑

a∈Nn

hat
a (2)

if there exist integers {da : a ∈ Nn} so that da = 0 if any component of a is zero, and for
all a ∑

b+c=a

fbgc + da = ha + 2da+1̄.

(This is not simply multiplication along the diagonals.) With respect to this structure,
the number −1 = −1t0 is represented by the multi-power-series

−1 = t0 + t1 + t2 + · · ·
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as may be seen by adding 1 to both sides of this equation. So the multi 2-adic number
represented in Figure 1 is −t21t

2
2(1 + t2 + t22).

Theorem 1.1 If Z[[t1, · · · , tn]] is the power series ring in n variables over the integers,
then Rn is isomorphic to the quotient ring

Sn = Z[[t1, · · · , tn]]/(t1t2 · · · tn − 2).

Proof: As described above, to each lattice point a = (a1, · · · , an) ∈ Nn we associate
the monomial ta = ta1

1 ta2

2 · · · tan

n so that an integer valued function f : Nn → Z becomes
identified with the multi power series

∑

a∈Nn

f(a)ta =
∑

(a1,··· ,an)∈Nn

f(a1, · · · , an)ta1

1 · · · tan

n ∈ Z[[t1, · · · , tn]].

Then Rn is the set of multi power series with coefficients in {0, 1}. Let us check that
the resulting mapping φ : Rn → Sn = Z[[t1, · · · , tn]]/(t1 · · · tn − 2) is a homomorphism.
From equation (1) we have:

∑

a≥0

fat
a +

∑

a≥0

gat
a −

∑

a≥0

hat
a =

∑

a≥0

2da+1̄t
a −

∑

a≥1̄

dat
a

=
∑

a≥0

2da+1̄t
a −

∑

b≥0̄

db+1̄t
b+1̄

=
(
2 − t1̄

)∑

a≥0

da+1̄t
a

which is in the ideal
(
t1̄ − 2

)
. A similar calculation applies to the multiplication law.

The mapping φ : Rn → Z[[t1, · · · , tn]]/(t1 · · · tn − 2) is surjective, for the following
reason. First observe in Sn that

−1 =

∞∑

i=0

tī ∈ Sn,

so φ(−1) = −1. If k is a nonnegative integer, write k = k0 +k12+ · · ·+kr2
r for its binary

expansion, with ki ∈ {0, 1}. Then, in the ring Sn we have an equality

k = k0 + k1t
1 + · · · + krt

r ∈ Rn.

We conclude that Z is in the image of φ. Each monomial is also in the image of φ, and
since φ is a homomorphism it follows that it is surjective.
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Now let us prove that φ is injective. By a minimal degree nonzero term of f we mean
an element a ∈ Nn with f(a) 6= 0 and f(b) = 0 whenever b 6= a and bi ≤ ai for all i.
It suffices to prove the following: if α =

∑
f(a)ta ∈ (t1 · · · tn − 2) and if a ∈ Nn is a

minimal degree nonzero term of f then f(a) is even. For, suppose α = β.(t1̄−2) for some
β =

∑
a g(a)ta. Then

α =
∑

a

g(a)ta+1 − 2
∑

a

g(a)ta

=
∑

a

ta
(
g(a − 1) − 2g(a)

)

where we have written g(a1, · · · , an) = 0 if ai < 0 for any index i. In other words,
f(a) = g(a − 1) − 2g(a). It follows that

g(a − 1) =
1

2
g(a − 2) =

1

4
g(a − 3) = · · ·

which is zero. Therefore f(a) = −2g(a) is even, and is non-zero by assumption. 2

Corollary 1.2 The addition and multiplication operations defined above make Rn into
a commutative ring. The zero (additive identity) is the element z ∈ Rn with za = 0 for
all a, and the one (multiplicative identity) is the element e ∈ Rn with e0n = 1 and ea = 0
if a 6= 0n.

It follows from the proof of Theorem 1.1 that an element f ∈ Rn can be repre-
sented either as a function f from N to {0, 1} (i.e., as an element of Z[[t1, · · · , tn]]
with coefficients in {0, 1}), or as a function f̄ from {a = (a1, · · · , an) : a1, · · · , an ∈
N and at least one ai = 0} to Z2. These representations are connected by the formula

f̄(a) =

∞∑

i=0

f(a + i · 1n)2i. (3)

We refer to f̄(a) as the restriction of f to the diagonal Da. The same notation and
terminology will be used even if a does not have a zero component.

It is important to note that the set Pn of elements of Rn that have period 2 in all
directions is not a subring of Rn. In fact the sum and difference of elements of Pn may
not be in Pn. However, since addition is just 2-adic addition on each diagonal, and the
sum of two periodic 2-adic integers is eventually periodic (i.e., periodic beyond some
point), the sum and difference of two elements of Pn are ultimately periodic along each
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diagonal. Moreover, the set restrictions to diagonals are periodic (that is, the restriction
of an element f ∈ Pn to a diagonal Da is the same as the restriction of f to Da+2b for
any b ∈ Vn). Thus if f , g ∈ Pn, then f + g and f − g (where the sum and difference of f

and g are in the ring Rn) are eventually 2-periodic in the following sense.

Definition 1.3 The element f ∈ Rn is eventually p-periodic if there is an integer k so
that if a = (a1, · · · , an) ∈ Vn, and ai ≥ k for i = 1, · · · , n, then for every b ∈ Vn,
f(a + pb) = f(a). If a = (a1, · · · , an) ∈ Vn, and ai ≥ k for i = 1, · · · , n, then the
restriction of f to the set {a + b : b = (b1, · · · , bn), 0 ≤ bi < p, i = 1, · · · , n} is called a
complete period of f .

It is possible to be more explicit. Let f =
∑∞

i=0 fi2
i and g =

∑∞

i=0 gi2
i be a pair of

2-adic integers whose coefficient sequences have period 2. Then the coefficient sequences
of −f , f + g, and f − g are periodic from the coefficients with index 2 on. Tables 1,
2, and 3 show the first four coefficients of the negation of f and the sum and difference
f + g and f − g for all possible combinations of periodic 2-adic integers with period 2.

f −f

00 0000
01 0111
10 1111
11 1011

Table 1: Negation of a 2-periodic 2-adic integer.

f + g 00 01 10 11
00 0000 0101 1010 1111
01 0101 0010 1111 1001
10 1010 1111 0101 0010
11 1111 1001 0010 0111

Table 2: Sum of 2-periodic 2-adic integers.

The possibilities for f and g are given by the first two coefficients of each. In the
second and third tables, the various fs are listed down the left hand side and the various
gs are listed across the top.
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f − g 00 01 10 11
00 0000 0111 1111 1011
01 0101 0000 1010 1101
10 1010 1101 0000 0110
11 1111 1010 0101 0000

Table 3: Difference of 2-periodic 2-adic integers.

Let us return to the case of Rn, and suppose that f : N → {0, 1} is strictly 2-periodic.
Then in the representation in equation (3) we have

f̄(a) =

∞∑

i=0

f(a + i · 1n)2i

= f(a) + f(a + 1n)2 + f(a)22 + f(a + 1n)23 + · · ·

= −
f(a) + 2f(a + 1n)

3
. (4)

2 Arithmetic Correlations and Walsh Transforms

Now we can define the arithmetic correlations and Walsh transforms. First note that
when defining classical correlation functions and Walsh transforms, we can do just as
well to use differences of functions rather than sums of functions. The result is the
same in the Boolean case, but when these concepts are generalized to N -ary functions,
it becomes apparent that differences are needed. This is the point of view we use here.
First we extend the notion of imbalance to eventually 2-periodic elements.

Definition 2.1 Let f ∈ Rn be eventually p-periodic. Then the imbalance of f is

Z(f) =
∑

a

(−1)f(a),

where the sum is extended over one complete period of f .

Note that Z(f) is independent of the choice of complete period. Also, this definition
is consistent with the definition of the imbalance of Boolean functions in the sense that
the imbalance of a Boolean function equals its the imbalance of its periodic extension to
Nn.
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Definition 2.2 The arithmetic cross-correlation of two eventually periodic functions f

and g in Rn is the real valued function Ca
f ,g : Vn → R defined by

Ca
f ,g(a) = Z(f − ga).

If f and g are two Boolean functions on Vn, then the arithmetic cross-correlation of f
and g is the arithmetic cross-correlation of their extensions f and g,

Ca
f,g(a) = Ca

f ,g(a).

The arithmetic autocorrelation of f is

Aa
f(b) = Ca

f,g(b).

In defining ga it doesn’t matter whether we translate by a and then extend to Nn

or extend to Nn and then translate by a. A linear function is a Boolean function Ta,
a ∈ Vn, where Ta(b) = [a · b]2. Thus the extension Ta is also defined by Ta(b) = [a · b]2
for b ∈ Nn.

Definition 2.3 The arithmetic Walsh Transform of an eventually periodic f ∈ Rn is the
real valued function f̃ : Vn → R defined by

f̃(a) = Z(f − Ta).

If f is a Boolean function on Vn, then the arithmetic Walsh Transform of f is the
arithmetic Walsh Transform of the extension f of f , f̃(a) = f̃(a).

We want to use the representation in equations (3) and (4) to compute correlations.
Let

Un = {a = (a1, · · · , an) : ai ∈ {0, 1} and a1 = 0}.

The restriction of an eventually periodic function f ∈ Rn to a diagonal Da with a ∈ Un is
eventually periodic. If we select one full period from each of these diagonals, altogether
we will have one complete period of f . It follows that the imbalance of f is the sum of the
imbalances of the restrictions of f to the diagonals. The imbalance of the restriction of f

to diagonal Da in turn is the imbalance of the 2-adic number f̄(a) (defined in equation
(3)). This then is the imbalance of the 2-adic representation of the rational number in
equation (4). Thus

Z(f) =
∑

a∈Un

Z(f̄(a)). (5)
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Theorem 2.4 Let f : Vn → F2 be a Boolean function. If b · 1n = 0, then

f̃(b) =
∑

a∈Un

2(1 − f(a) − f(a + 1n) + 2f(a)f(a + 1n)[a · b]2)

= 2n − 2
∑

a∈Vn

f(a) + 4
∑

a∈Un

f(a)f(a + 1n)[a · b]2 (6)

= 2n − 2
∑

a∈Vn

f(a) + 2
∑

a∈Vn

f(a)f(a + 1n)[a · b]2 (7)

If b · 1n = 1, then

f̃(b) = 2
∑

a∈Un

(f(a + 1n) − f(a)f(a + 1n) + (f(a) − f(a + 1n))[a · b]2) (8)

=
∑

a∈Vn

(f(a + 1n) − f(a)f(a + 1n) + (f(a) − f(a + 1n))[a · b]2). (9)

Proof: If b · 1n = 1 (mod 2), then

[(a + 1n) · b]2 = [a · b]2 + 1 (mod 2) = 1 − [a · b]2.

It then follows from the discussion above that that

f̃(b) =
∑

a∈Un

Z((f̄ − T̄b)(a))

=
∑

a∈Un

Z

(
−

f(a) + 2f(a + 1n) − [a · b]2 − 2[(a + 1n) · b]2
3

)

=






∑

a∈Un

Z

(
−

f(a) + 2f(a + 1n)

3
+ [a · b]2

)
if b · 1n = 0

∑

a∈Un

Z

(
−

f(a) + 2f(a + 1n) + [a · b]2 − 2

3

)
if b · 1n = 1.

The 2-adic expansion of u/3 is eventually periodic with period 2 and each period equals
10 or 01 unless u is a multiple of 3. In these cases the imbalance is always 0. If u is a
multiple of 3, then the eventual period is 1 and each period is either 1 (if u is negative)
or 0 (if u is nonnegative). The imbalance is thus −2 if u is negative and is 2 if u is
nonnegative. Let Za = Z((f̄ − T̄b)(a)).

For b · 1n = 0, we have the following table of values:
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f(a) f(a + 1n) [a · b]2 Za

0 0 0 2
1 0 0 0
0 1 0 0
1 1 0 -2
0 0 1 2
1 0 1 0
0 1 1 0
1 1 1 2

Using Lagrange interpolation we find that

Za = 2(1 − f(a) − f(a + 1n) + 2f(a)f(a + 1n)[a · b]2).

For b · 1n = 1, we have the following table of values:

f(a) f(a + 1n) [a · b]2 Za

0 0 0 0
1 0 0 0
0 1 0 2
1 1 0 0
0 0 1 0
1 0 1 2
0 1 1 0
1 1 1 0

Using Lagrange interpolation we find that

Za = 2(f(a + 1n) − f(a)f(a + 1n) + (f(a) − f(a + 1n))[a · b]2).

This definition makes sense for a 6∈ Un as well. It can be checked that Za = Za+1n . Thus
the last equality holds. This proves the theorem. 2

Corollary 2.5 If f is a Boolean function on Vn, and b · 1n = 0, then f̃(b) is even.

Corollary 2.6 Let L : Vn → Vn be a nonsingular linear transformation such that
L(1n) = 1n. Let f be a Boolean function on Vn. Then the set of arithmetic Walsh
coefficients of f is invariant under composition with L. That is,

{f̃(b) : b ∈ Vn} = {(̃f ◦L)(b) : b ∈ Vn}.
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Proof: Note that if a ∈ Vn, then L(a + 1n) = L(a) + L(1n) = L(a) + 1n. Let M denote
the representation of L as a matrix using the standard basis of Vn. Thus L(a) = aM .
For any matrix N let N t denote the transpose of N . Then for any a, b ∈ Vn, we have

a · b = abt. We claim that for any b ∈ Vn, (̃f ◦L)(b) = f̃(b(M−1)t).
Suppose that [b · 1n]2 = 0. Then by equation (7),

(̃f ◦L)(b) = 2n − 2
∑

a∈Vn

f(L(a)) + 2
∑

a∈Vn

f(L(a))f(L(a + 1n))[a · b]2

= 2n − 2
∑

a∈Vn

f(L(a)) + 2
∑

a∈Vn

f(L(a))f(L(a) + 1n)[abt]2

= 2n − 2
∑

a∈Vn

f(L(a)) + 2
∑

a∈Vn

f(L(a))f(L(a) + 1n)[aMM−1bt]2

= 2n − 2
∑

a∈Vn

f(L(a)) + 2
∑

a∈Vn

f(L(a))f(L(a) + 1n)[L(a) · b(M−1)t]2

= 2n − 2
∑

a∈Vn

f(a) + 2
∑

a∈Vn

f(a)f(a + 1n)[a · b(M−1)t]2

= f̃(b(M−1)t),

where the penultimate line holds because L is a permutation. Moreover,

b(M−1)t · 1n = b(M−1)t(1n)t = b(1nM)t = b(1n)t = b · 1n,

so this is the correct expression for f̃(b(M−1)t). This proves the claim in this case. A
similar argument works when [b · 1n]2 = 1. 2

Let us return for a moment to the classical case of Boolean functions and Walsh
transforms. If f and g are Boolean functions, then the distance between f and g is

δ(f, g) = |{a ∈ Vn : f(a) 6= g(a)}|.

This is a true distance measure. It is well-known that Z(f − g) = 2n − δ(f, g). In
particular, Z(f − g) = 2n if and only if δ(f, g) = 0 if and only if f = g. Also, Z(f − g) =
−2n if and only if f is the complement of g. Thus f has a Walsh coefficient equal to
2n if and only if f is linear, and has a Walsh coefficient equal to −2n if and only if f is
affine and nonlinear.

Now we return to the arithmetic case. Let f and g be Boolean functions and let f

and g be their extensions. Suppose that Z(f − g) = 2n. From equation (5) it follows
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that for every a ∈ Un, Z(f̄(a) − ḡ(a)) = 2. That is,

Z

(
g(a) − f(a) + 2(g(a + 1n) − f(a + 1n))

3

)
= 2.

This holds if and only if either (1) f(a) = g(a) and f(a + 1n) = g(a + 1n) or (2)
g(a) = g(a + 1n) = 1 and f(a) = f(a + 1n) = 0. Thus g is obtained from f by choosing
some elements X ⊆ Un so that f is 0 on the diagonal determined by each a ∈ X
and changing the value on these diagonals to 1. Alternatively, f is obtained from g by
choosing some elements Y ⊆ Un so that g is 1 on the diagonal determined by each a ∈ Y
and changing the value on these diagonals to 0.

Now suppose g is a linear function, say g(a) = [a · b]2, b 6= 0n. The function g is
constant on some diagonal if and only if g(1n) = 0. In this case g is 1 on exactly 2n−2

diagonals, so there are 22n−2

− 1 nonlinear functions f so that f̃(b) = 2n.

3 Computing Arithmetic Correlations

Let f be a Boolean function. In this section we use equations (3) and (4) to compute
the arithmetic correlations of f . Surprisingly, we see that all arithmetic autocorrelations
are nonnegative.

As before, we let Un = {a = (a1, a2, · · · , an) ∈ Vn : a1 = 0}.
Suppose first that b ∈ Un. Then a + b ∈ Un if and only if a ∈ Un. If b = 0n, then

Aa
f (b) = 2n. Now assume that b 6= 0n. Using arguments similar to those in Section 2,

the arithmetic autocorrelation of f with shift a ∈ Vn is

Aa
f (b) =

∑

a∈Un

Z

(
f(a + b) − f(a) + (f(a + b + 1n) − f(a + 1n))2

3

)
. (10)

Then for any a ∈ Un, both terms in

Za = Z

(
f(a + b) − f(a) + (f(a + b + 1n) − f(a + 1n))2

3

)

+Z

(
f(a) − f(a + b) + (f(a + 1n) − f(a + b + 1n))2

3

)
(11)

appear in equation (10). The sum depends on f(a), f(a+1n), f(a+b), and f(a+b+1n),
and no other terms in equation (10) depend on these values. We want to determine Za

in terms of these four values.
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The numerators of the two terms are negatives of each other, so one numerator is
divisible by three if and only if the other is. If neither is a multiple of three, then both
imbalances are zero. If either numerator is positive, then the other is negative so the
imbalances are negatives of each other. Thus the only nonzero contribution to Aa

f (b) is
from those as for which f(a+ b)− f(a)+ (f(a+ b+1n)− f(a+1n))2 = 0. This happens
exactly when f(a) = f(a+ b) and f(a+1n)− f(a+ b+1n), and the two imbalances add
to 4. We account for each term once if we sum just over all a < a+b (say in lexicographic
order). Thus

Aa
f (b) = 4|{a ∈ Un : a < a + b, f(a) = f(a + b), and f(a + 1n) = f(a + b + 1n)}|

= 2|{a ∈ Un : f(a) = f(a + b), and f(a + 1n) = f(a + b + 1n)}|

= |{a ∈ Vn : f(a) = f(a + b), and f(a + 1n) = f(a + b + 1n)}|. (12)

This expression is also correct when b = 0n.
Now suppose that b ∈ Vn − Un. If b = 1n, then a + b = a + 1n and a + b + 1n = a.

Thus the contribution from the term corresponding to any a ∈ Un is

Z

(
f(a + 1n) − f(a) + (f(a) − f(a + 1n))2

3

)
= Z

(
f(a) − f(a + 1n)

3

)

=

{
2 if f(a) = f(a + 1n)
0 otherwise.

Thus

Aa
f(b) = 2|{a ∈ Un : f(a) = f(a + 1n)}|

= |{a ∈ Vn : f(a) = f(a + 1n)}|.

Equation (12) agrees with this value when b = 1n.
Lastly, let b ∈ Vn − Un and b 6= 1n. Then for any a ∈ Un, both terms in

Za = Z

(
f(a + b) − f(a) + (f(a + b + 1n) − f(a + 1n))2

3

)

+Z

(
f(a + 1n) − f(a + b + 1n) + (f(a) − f(a + b))2

3

)
(13)

appear in equation (10). The sum depends on f(a), f(a+1n), f(a+b), and f(a+b+1n),
and no other terms depend on these values. Let u and v denote the numerators of the
two terms. Then −2v = u + 3(f(a) − f(a + b)). Thus v is divisible by 3 if and only if u
is divisible by 3. If u and v are not divisible by 3 then both terms contribute 0 to the
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autocorrelation. Suppose u and v are divisible by 3. Not that f(a)−f(a+b) ∈ {−1, 0, 1}.
We have u = 0 if and only if f(a) = f(a + b) and f(a + 1n) = f(a + b + 1n), and this
holds if and only if v = 0. If u > 0 then u ≥ 3 and so −2v = u+3(f(a)−f(a+1n)) ≥ 0.
Thus v ≤ 0. But u > 0 implies v 6= 0, so v < 0. Conversely, if v < 0 then v ≤ −3 so 6 ≤
−2v = u+3(f(a)−f(a+b)) which implies u ≥ 3 > 0. Thus u and v have opposite signs.
It follows that the two terms cancel unless f(a) = f(a+ b) and f(a+1n) = f(a+ b+1n).
We obtain the same expression for Aa

f(b). We summarize this analysis in the following
theorem

Theorem 3.1 If f is any Boolean function on n variables and b ∈ Vn, then

Aa
f(b) = |{a ∈ Vn : f(a) = f(a + b), and f(a + 1n) = f(a + b + 1n)}|.

In particular, Aa
f(b) ≥ 0.

Now let g be a second Boolean function. By similar reasoning, the arithmetic cross-
correlation of f with shift a ∈ Vn is

Ca
f,g(b) =

∑

a∈Un

Z

(
g(a + b) − f(a) + 2(g(a + b + 1n) − f(a + 1n))

3

)
.

Then for any a ∈ Un, the term

Za = Z

(
g(a + b) − f(a) + 2(g(a + b + 1n) − f(a + 1n))

3

)
(14)

depends on f(a), f(a + 1n), g(a + b), and g(a + b + 1n), and no other terms depend on
these values. We want to determine equation (14 in terms of these four values.

The fraction in equation (14) has an eventually balanced 2-adic expansion if and only
if the numerator is not a multiple of 3. If the numerator is an odd multiple of 3, then the
expansion is eventually all 1s, so the imbalance is −2. If the numerator is 0 or a positive
multiple of 3, then the expansion is eventually all 0s, so the imbalance is 2. This gives
the following theorem.

Theorem 3.2 Let f and g be Boolean functions on n variables and let b ∈ Vn. Then

Ca
f,g(b) = |{a ∈ Vn : g(a + b) = f(a) and g(a + b + 1n) = f(a + 1n)}|

+|{a ∈ Vn : g(a + b) = g(a + b + 1n) = 1 and f(a) = f(a + 1n) = 0}|

−|{a ∈ Vn : g(a + b) = g(a + b + 1n) = 0 and f(a) = f(a + 1n) = 1}|.

(15)
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This implies that if f(a) = 0 for all a and g(a) = 1 for all a, then Ca
f,g(b) = 2n for all

b and that Ca
g,f(b) = −2n for all b.

If f is a Boolean function, let f ′ denote the complement of f . That is, f ′(a) = 1 if
and only if f(a) = 0, so f ′(a) = 1 − f(a) as integers.

Corollary 3.3 Let f and g be Boolean functions on n variables and let b ∈ Vn. Then
for every b ∈ Vn

Ca
f,g(b) = Ca

g′,f ′(b).

3.1 Arithmetic Correlations of Linear and Affine Functions

In this section we use Theorems 3.1 and 3.2 to compute the arithmetic auto- and cross-
correlations of linear and affine functions.

First consider autocorrelations. If f is constant (identically 0 or identically 1), then
Aa

f (b) = 2n for all b. If f is nonzero and linear, then f(a) = f(a + b) and f(a + 1n) =
f(a + b + 1n) if and only if f(b) = 0. Similarly, if f is affine but not linear, then
f(x) = 1 − h(x) with h linear, and these equations hold if and only if h(b) = 0. Thus in
either case

Aa
f(b) =

{
2n if f(b) = 0
0 otherwise.

We can compare this to the classical autocorrelations, where if f is affine, then

Af(b) =

{
2n if f(b) = 0
−2n otherwise.

Now let us consider the cross-correlation. Let f and g be linear or affine. Then the
sets in the last two terms of equation (15) are solutions to inhomogeneous systems of
degree 1 equations. In the two sets the homogeneous parts of the equations are the same.
It is only the constant terms that differ. It follows that the numbers of solutions is the
same for both systems, depending only on the rank of the homogeneous part. Thus for
linear and affine functions Ca

f,g(b) is the number of a ∈ Vn such that

g(a + b) = f(a) (16)

and
g(a + b + 1n) = f(a + 1n). (17)

Let f(a) = f1(a) + c (mod 2) and g(a) = g1(a) + d (mod 2), where f1 and g1 are
linear and c, d ∈ {0, 1}. Then equations (16) and (17) hold if and only equation (16) and

g1(1
n) = f1(1

n) (18)
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hold. Thus if equation (18) does not hold, then Ca
f,g(b) = 0. Otherwise Ca

f,g(b) is the
number of a ∈ Vn such that equation (16) holds.

Suppose equation (18) holds. If f1 6= g1, then equation (16) is a rank one affine
equation, so it holds for 2n−1 values of a. If f and g are the same constant, then Ca

f,g(b) =
2n. If they are different constants, then Ca

f,g(b) = 0. If f1 = g1 6= 0, then equation (16)
holds if and only if g(b) = f(0n). That is, if and only if g1(b) = c − d (mod 2). This
occurs for 2n−1 values of b.

Theorem 3.4 Let f(a) = f1(a) + c (mod 2) and g(a) = g1(a) + d (mod 2), where f1

and g1 are linear and c, d ∈ {0, 1}. If g1(1
n) 6= f1(1

n) then Ca
f,g(b) = 0 for all b. If

f1 = g1 = 0 and c = d, then Ca
f,g(b) = 2n for all b. If f1 = g1 = 0 and c 6= d, then

Ca
f,g(b) = 0. If f1 = g1 6= 0, then Ca

f,g(b) = 2n for 2n−1 values of b and is 0 for 2n−1

values of b. If f1 6= g1, then Ca
f,g(b) = 2n−1 for all b.

By contrast, the classical cross-correlation is 0 if f1 6= g1. If f1 = g1 = 0, then it is
2n for all b or −2n for all b. If f1 = g1 6= 0, then it is 2n for 2n−1 values of b and is −2n

for 2n−1 values of b.

4 Uniqueness of Arithmetic Walsh Spectra

The arithmetic Walsh spectrum of a Boolean function is the set of its arithmetic Walsh
coefficients. In this section we show that the mapping from Boolean functions to their
arithmetic Walsh spectra is one to one. That is, we show that a Boolean function is
uniquely determined by its arithmetic Walsh spectrum. We do not, however, know a
simple expression for the inverse arithmetic Walsh transform, or even an efficient way to
compute it.

It follows from equation (6) that if b 6= 0n and wt(b) is even, then

∑

a∈Un

f(a)f(a + 1n)[a · b]2 =
f̃(b) + f̃(0n)

4
. (19)

Let Mn be the (2n−1 − 1) × (2n−1 − 1) rational matrix indexed by Un − {0n} and
Wn = {b ∈ Vn : wt(b) even, b 6= 0n} whose entry with index (a, b) is [a · b]2 treated as a
rational number. Similarly, let Nn be the (2n−1−1)× (2n−1−1) rational matrix indexed
by Un − {0n} and Tn = {b ∈ Vn : wt(b) odd, b 6= 10n−1} whose entry with index (a, b) is
[a · b]2 treated as a rational number.

Let v(a) = f(a)f(a + 1n) and let v be the vector indexed by Un −{0n} whose entries

are the v(a). Let z(b) = (f̃(b) + f̃(0n))/4 and let z be the vector indexed by Wn whose
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entries are the z(b). Then equation (19) implies that vMn = z. Thus if Mn is invertible,

then the v(a) with a 6= 0n or 1n can be determined uniquely from the f̃(b).
Similarly, it follows from equation (8) that if b 6= 10n−1 and wt(b) is odd, then

∑

a∈Un

(f(a) − f(a + 1n))[a · b]2 =
f̃(b) − f̃(10n−1)

2
. (20)

Let u(a) = f(a)− f(a + 1n) and let u be the vector indexed by Un −{0n} whose entries

are the u(a). Let w(b) = (f̃(b) − f̃(10n−1))/2 and let w be the vector indexed by Tn

whose entries are the w(b). Then equation (20) implies that uNn = w. Thus if Nn is

invertible, then the u(a) with a 6= 10n−1 can be determined uniquely from the f̃(b).

Theorem 4.1 The matrices Mn and Nn have nonzero determinants.

Proof: We order the indices in both dimensions lexicographically, with most significant
position on the right. For both types of matrices, we think of the rows (the as) as being
divided into three segments:

1. The rows indexed by a = 0a′0 with a′ 6= 0n−2;

2. The row indexed by a = 0n−11; and

3. The rows indexed by a = 0a′1 with a′ 6= 0n−2.

For Mn, we think of the columns (the bs) as being divided into three segments:

1. The columns indexed by b = b′0 with wt(b′) even and b′ 6= 0n−1;

2. The column indexed by b = 10n−21; and

3. The columns indexed by b = b′1 with wt(b′) odd and b′ 6= 10n−2.

Similarly, for Nn, we think of the columns as being divided into three segments:

1. The columns indexed by b = b′0 with wt(b′) odd;

2. The column indexed by b = 0n−11; and

3. The columns indexed by b = b′1 with wt(b′) even and b′ 6= 0n−1.

Let 〈1〉n denote the 2n × 2n matrix all of whose entries are 1. Following these decom-
positions of the indices, we can decompose Mn into blocks as follows.
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1. If a = 0a′0 with a′ 6= 0n−2 and b = b′0 with b′ 6= 0n−1 and wt(b′) even, then
[0a′ · b′]2 = [a · b]2. Thus the upper left hand block of Mn equals Mn−1.

2. If a = 0a′1 with a′ 6= 0n−2 and b = b′0 with b′ 6= 0n−1 and wt(b) even, then
[0a′ · b′]2 = [a · b]2. Thus the lower left hand block of Mn equals Mn−1.

3. If a = 0a′0 with a′ 6= 0n−2 and b = b′1 with b′ 6= 10n−2 and wt(b′) odd, then
[0a′ · b′]2 = [a · b]2. Thus the upper right hand block of Mn equals Nn−1.

4. If a = 0a′1 with a′ 6= 0n−2 and b = b′1 with b′ 6= 10n−2 and wt(b′) odd, then
[0a′ · b′]2 = 1− [a · b]2. Thus the lower right hand block of Mn equals 〈1〉n−1−Nn−1.

5. If a = 0n−11, then the row indexed by a is 02n−1−112n−1

.

6. If b = 10n−21, then the column indexed by b is 02n−1−112n−1

.

We can summarize this by saying

Mn =




0

Mn−1
... Nn−1

0
0 · · · 0 1 1 · · · 1

1

Mn−1
... 〈1〉n−1 − Nn−1

1




By subtracting the first block of rows from the last block of rows, then subtracting the
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row indexed by a = 0n−11 from each of the last block of rows, we have

det(Mn) = det




0

Mn−1
... Nn−1

0
0 · · · 0 1 1 · · · 1

1

0
... 〈1〉n−1 − 2Nn−1

1




= det




0

Mn−1
... Nn−1

0
0 · · · 0 1 1 · · · 1

0

0
... −2Nn−1

0




= 22n−1−1 det(Mn−1) det(Nn−1). (21)

Similarly, we can decompose Nn into blocks as follows.

1. If a = 0a′0 with a′ 6= 0n−2 and b = b′0 with b′ 6= 0n−1 and wt(b′) odd, then
[0a′ · b′]2 = [a · b]2. Thus the upper left hand block of Nn equals Nn−1.

2. If a = 0a′1 with a′ 6= 0n−2 and b = b′0 with b′ 6= 0n−1 and wt(b) odd, then
[0a′ · b′]2 = [a · b]2. Thus the lower left hand block of Nn equals Nn−1.

3. If a = 0a′0 with a′ 6= 0n−2 and b = b′1 with b′ 6= 10n−2 and wt(b′) even, then
[0a′ · b′]2 = [a · b]2. Thus the upper right hand block of Nn equals Mn−1.

4. If a = 0a′1 with a′ 6= 0n−2 and b = b′1 with b′ 6= 10n−2 and wt(b′) even, then
[0a′ · b′]2 = 1− [a · b]2. Thus the lower right hand block of Nn equals 〈1〉n−1−Mn−1.

5. If a = 0n−11, then the row indexed by a is 02n−1−112n−1

.

6. If b = 0n−11, then the column indexed by b is 02n−1−112n−1

.

20



As for Mn, this means that

Nn =




0

Nn−1
... Mn−1

0
0 · · · 0 1 1 · · · 1

1

Nn−1
... 〈1〉n−1 − Mn−1

1




,

so that we also have

det(Nn) = 22n−1−1 det(Mn−1) det(Nn−1). (22)

Finally, we see that M2 and N2 are 1 × 1 matrices whose single entries are 1, hence
whose determinants are 1. It follows that the determinant of Mn and Nn are nonzero as
claimed. 2

In fact it follows from equations (21) and (22) that

det(Mn) = det(Nn) = 2(n−2)2n−1+1,

but we shall not use this fact.

Corollary 4.2 The values of u(a) and v(a) for a ∈ Un − {0n} are uniquely determined

by the f̃(b). This in turn uniquely determines the values of the f(a) for a 6= 0n, 1n.

Proof: The first statement follows from Theorem 4.1. Since f(a), f(a + 1n) ∈ {0, 1},
the following table gives the possible values of f(a), f(a + 1n), u(a), and v(a).

f(a) f(a + 1n) u(a) v(a)
0 0 0 0
1 0 1 0
0 1 -1 0
1 1 0 1

It follows that f(a) and f(a + 1n) are uniquely determined by any valid value of u(a)
and v(a). 2
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Having determined the f(a) with a 6= 0n, 1n, we are left with two equations in the
unknowns f(0n) and f(1n). From equation (7) with b = 0n we have

f(0n) + f(1n) = x

for some x ∈ Q, and from equation (9) with b = 10n−1 we have

f(1n) − f(0n)f(1n) = y

for some y ∈ Q. The values x and y are uniquely determined by the f̃(b).
Again, we can make a table of possible values

f(0n) f(1n) x y
0 0 0 0
1 0 1 0
0 1 1 1
1 1 2 0

It follows that f(0n) and f(1n) are uniquely determined by any valid value of x and y.
We have proved the following theorem.

Theorem 4.3 Every Boolean function on Vn is uniquely determined by its arithmetic
Walsh transform.

Embedded in this proof is a method of computing the function f from its arith-
metic Walsh transform. It is, however, more complicated than the situation for classical
Walsh transforms where one simply computes essentially the Walsh transform of the
Walsh transform. We do not know of such an idempotency law for the arithmetic Walsh
transform.

5 Statistics of the Arithmetic Walsh Transform

Recall that for a Boolean function f , the mean of the classical Walsh coefficients of f is
(−1)f(0) and the second moment is 2n (independent of f). The picture is quite different
in the arithmetic case.

Let
H(f) =

∑

a∈Vn

f(a),

22



the Hamming weight of f , and let

Q(f) =
∑

a∈Un

f(a)f(a + 1n) =
1

2

∑

a∈Vn

f(a)f(a + 1n),

the number of diagonals on which f is a constant 1.

Lemma 5.1 If f is a Boolean function on n variables, then
∑

a∈Vn

f(a)f(a + 1n)
∑

b·1n=0

[a · b]2 = 2n−1Q(f) − 2n−1f(0n)f(1n),

∑

a∈Vn

(f(a) − f(a + 1n)))
∑

b·1n=1

[a · b]2 = 2n−1(f(1n) − f(0n)),

∑

a,c∈Vn

f(a)f(a + 1n)f(c)f(c + 1n)
∑

b·1n=0

[a · b]2[c · b]2

= 2n−1Q(f)2 + 2n−1Q(f) − 2nf(0n)f(1n)Q(f)

= 2n−1Q(f)(Q(f) + 1 − 2f(0n)f(1n)).

and
∑

a,c∈Vn

(f(a) − f(a + 1n))(f(c) − f(c + 1n))
∑

b·1n=1

[a · b]2[c · b]2 = 2n−1(H(f) − 2Q(f)).

Proof: For any a ∈ Vn, let

Sa =
∑

b·1n=0

[a · b]2.

If a = 0n or a = 1n, then Sa = 0. Otherwise 1n and a are linearly independent modulo
2. Thus

∑

b·1n=0

[a · b]2 = |{b : [a · b]2 = 1 and [1n · b]2 = 0}|

= |{b : [1n · b]2 = 0}| − |{b : [a · b]2 = 0 and [1n · b]2 = 0}|

= 2n−1 − 2n−2

= 2n−2.

Thus ∑

a∈Vn

f(a)f(a + 1n)
∑

b·1n=0

[a · b]2 = 2n−1Q(f) − 2n−1f(0n)f(1n).

23



Let
Ta =

∑

b·1n=1

[a · b]2.

If a = 0n, then Ta = 0. If a = 1n, then Ta = 2n−1. Otherwise, as in the previous case,
Ta = 2n−2. Since

∑
a∈Vn

(f(a) − f(a + 1n))) = 0, we have

∑

a∈Vn

(f(a) − f(a + 1n))
∑

b·1n=0

[a · b]2 = 2n−1(f(1n) − f(0n)).

Let
Ra,c =

∑

b·1n=0

[a · b]2[c · b]2.

Then Ra,c = |{b : [b ·1n]2 = 0, [a ·b]2 = 1, and [c ·b]2 = 1}|. There are several possibilities.

1. If a or c is 0n or 1n, then Ra,c = 0.

2. If a = c and a, c 6∈ {0n, 1n}, then Ra,c = 2n−2.

3. If a = c + 1n and a, c 6∈ {0n, 1n}, then Ra,c = 2n−2.

4. Otherwise a, c, and 1n are linearly independent modulo 2, so Ra,c = 2n−3.
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Thus

∑

a,c∈Vn

f(a)f(a + 1n)f(c)f(c + 1n)
∑

b·1n=0

[a · b]2[c · b]2

= 2n−3
∑

a,c∈Vn

f(a)f(a + 1n)f(c)f(c + 1n)

+(2n−2 − 2n−3)
∑

a∈Vn

f(a)f(a + 1n)f(a + 1n)f(a)

+(2n−2 − 2n−3)
∑

a∈Vn

f(a)f(a + 1n)f(a)f(a + 1n)

+(−2n−3)
∑

a∈Vn

f(0n)f(1n)f(c)f(c + 1n)

+(−2n−3)
∑

a∈Vn

f(1n)f(0n)f(c)f(c + 1n)

+(−2n−3)
∑

a∈Vn

f(a)f(a + 1n)f(0n)f(1n)

+(−2n−3)
∑

a∈Vn

f(a)f(a + 1n)f(1n)f(0n)

= 2n−1Q(f)2 + 2n−1Q(f) − 2nf(0n)f(1n)Q(f)

= 2n−1Q(f)(Q(f) + 1 − 2f(0n)f(1n)).

Note that in the final two lines one would expect a term f(0n)f(1n) with some coefficient,
accounting for all the appearances of this term in the various sums. In fact for each of
the four choices of a, c ∈ {0n, 1n} we have [a · b]2[c · b]2 = 0. Thus the coefficient of
f(0n)f(1n) is zero. Let

Pa,c =
∑

b·1n=1

[a · b]2[c · b]2.

Then Pa,c = |{b : [b ·1n]2 = 1, [a ·b]2 = 1, and [c ·b]2 = 1}|. There are several possibilities.

1. If a or c is 0n or if a = c + 1n, then Pa,c = 0.

2. If a = c = 1n, then Pa,c = 2n−1.

3. If exactly two of a, c, 1n are equal and a, c 6= 0n, then Pa,c = 2n−2.

4. Otherwise a, c, and 1n are linearly independent, so Pa,c = 2n−3.
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Thus

∑

a,c∈Vn

(f(a) − f(a + 1n))(f(c) − f(c + 1n))
∑

b·1n=1

[a · b]2[c · b]2

= 2n−3
∑

a,c∈Vn

(f(a) − f(a + 1n))(f(c) − f(c + 1n))

+(2n−2 − 2n−3)
∑

a∈Vn

(f(a) − f(a + 1n))2

+(2n−2 − 2n−3)
∑

a∈Vn

(f(a) − f(a + 1n))(f(1n) − f(0n))

+(2n−2 − 2n−3)
∑

c∈Vn

(f(1n) − f(0n))(f(c) − f(c + 1n))

+(−2n−3)
∑

c∈Vn

(f(0n) − f(1n))(f(c) − f(c + 1n)))

+(−2n−3)
∑

a∈Vn

(f(a) − f(a + 1n))(f(0n) − f(1n))

+(−2n−3)
∑

a∈Vn

(f(a) − f(a + 1n))(f(a + 1n) − f(a))

2n−3(f(0n) − f(1n))(f(0n) − f(1n)) − 3 · 2n−3(f(1n) − f(0n))(f(1n) − f(0n))

−2n−3(f(0n) − f(1n))(f(1n) − f(0n)) − 2n−3(f(1n) − f(0n))(f(0n) − f(1n))

= 2n−2
∑

a∈Vn

(f(a) − f(a + 1n))2

= 2n−1(H(f) − 2Q(f)).

2

Theorem 5.2 Let f be a Boolean function on n variables. The mean arithmetic Walsh
transform of f is

E[f̃ ] = 2n−1 −
H(f) + f(0n) − f(1n)

2
− f(0n)f(1n).

Proof: We have

E[f̃ ] =
1

2n

∑

b∈Vn

f̃(b) =
1

2n

(
∑

b·1n=0

f̃(b) +
∑

b·1n=1

f̃(b)

)
.
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We use equations (7) and (9) and Lemma 5.1 to compute these two sums separately. For
the first sum we have

∑

b·1n=0

f̃(b) =
∑

b·1n=0

(
2n − 2

∑

a∈Vn

f(a) + 2
∑

a∈Vn

f(a)f(a + 1n)[a · b]2

)

= 22n−1 − 2nH(f) + 2
∑

a∈Vn

f(a)f(a + 1n)
∑

b·1n=0

[a · b]2

= 22n−1 − 2nH(f) + 2nQ(f) − 2nf(0n)f(1n)

by Lemma 5.1.
Similarly, for the second sum we have

∑

b·1n=1

f̃(b) =
∑

b·1n=1

∑

a∈Vn

(f(a + 1n) − f(a)f(a + 1n) + (f(a) − f(a + 1n))[a · b]2)

= 2n−1H(f) − 2nQ(f) +
∑

a∈Vn

(f(a) − f(a + 1n)))
∑

b·1n=1

[a · b]2

= 2n−1H(f) − 2nQ(f) + 2n−1(f(1n) − f(0n)),

again by Lemma 5.1. It follows that

E[f̃ ] = 2n−1 −
H(f) + f(0n) − f(1n)

2
− f(0n)f(1n),

as claimed. 2

Parseval’s identity says the the sum of the squares of the Walsh coefficients of a
Boolean function on n variables is 22n. This important fact leads, for example, to the
notion of bent functions. Again the picture is more complicated in the arithmetic case.

Theorem 5.3 Let f be a Boolean function on n variables. The second moment of the
arithmeticWalsh transform of f is

E[f̃ 2] = 22n−1 +
5

2
H(f)2 − 6H(f)Q(f) + 4Q(f)2

−(2n+1 −
1

2
+ f(0n) − f(1n) − 4f(0n)f(1n))H(f)

+(2n+1 + 1 + 2f(0n) − 2f(1n) − 4f(0n)f(1n))Q(f) − 2n+1f(0n)f(1n).
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Proof: We have

E[f̃ 2] =
1

2n

∑

b∈Vn

f̃(b)2 =
1

2n

(
∑

b·1n=0

f̃(b)2 +
∑

b·1n=1

f̃(b)2

)
.

We again use equations (7) and (9) to compute these two sums separately. For the first
sum we have

∑

b·1n=0

f̃(b)2 =
∑

b·1n=0

(
2n − 2

∑

a∈Vn

f(a) + 2
∑

a∈Vn

f(a)f(a + 1n)[a · b]2

)2

=
∑

b·1n=0

(
2n − 2H(f) + 2

∑

a∈Vn

f(a)f(a + 1n)[a · b]2

)2

=
∑

b·1n=0

(2n − 2H(f))2 + 4(2n − 2H(f))
∑

a∈Vn

f(a)f(a + 1n)[a · b]2

+4

(
∑

a∈Vn

f(a)f(a + 1n)[a · b]2

)2

= 2n−1(2n − 2H(f))2 + 4(2n − 2H(f))
∑

a∈Vn

f(a)f(a + 1n)
∑

b·1n=0

[a · b]2

+4
∑

a,c∈Vn

f(a)f(a + 1n)f(c)f(c + 1n)
∑

b·1n=0

[a · b]2[c · b]2

= 2n−1(2n − 2H(f))2 + 4(2n − 2H(f))(2n−1Q(f) − 2n−1f(0n)f(1n))

+4(2n−1Q(f)2 + 2n−1Q(f) − 2nf(0n)f(1n)Q(f))

= 23n−1 − 22n+1H(f) + 2n+1H(f)2 − 2n+2H(f)Q(f)

+2n+2H(f)f(0n)f(1n) + (22n+1 + 2n+1)Q(f) − 22n+1f(0n)f(1n)

+2n+1Q(f)2 − 2n+2f(0n)f(1n)Q(f).
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Similarly, for the second sum we have

∑

b·1n=1

f̃(b)2 =
∑

b·1n=1

(
∑

a∈Vn

f(a + 1n) − f(a)f(a + 1n) + (f(a) − f(a + 1n))[a · b]2

)2

=
∑

b·1n=1

(
H(f) − 2Q(f) +

∑

a∈Vn

(f(a) − f(a + 1n))[a · b]2

)2

= 2n−1(H(f) − 2Q(f))2

+2(H(f) − 2Q(f))
∑

a∈Vn

(f(a) − f(a + 1n))
∑

b·1n=1

[a · b]2

+
∑

a,c∈Vn

(f(a) − f(a + 1n))(f(c) − f(c + 1n))
∑

b·1n=1

[a · b]2[c · b]2

= 2n−1(H(f) − 2Q(f))2 + 2n(H(f) − 2Q(f))(f(1n) − f(0n))

+2n−1(H(f) − 2Q(f)).

It follows that

E[f̃ 2] = 22n−1 − 2n+1H(f) + 2H(f)2 − 4H(f)Q(f) + 4H(f)f(0n)f(1n)

+(2n+1 + 2)Q(f) − 2n+1f(0n)f(1n) + 2Q(f)2 − 4f(0n)f(1n)Q(f)

+2−1(H(f) − 2Q(f))2 + (H(f) − 2Q(f))(f(1n) − f(0n))

+2−1(H(f) − 2Q(f))

= 22n−1 +
5

2
H(f)2 − 6H(f)Q(f) + 4Q(f)2

−(2n+1 −
1

2
+ f(0n) − f(1n) − 4f(0n)f(1n))H(f)

+(2n+1 + 1 + 2f(0n) − 2f(1n) − 4f(0n)f(1n))Q(f) − 2n+1f(0n)f(1n),

as claimed. 2

6 Arithmetic Walsh Transforms of Linear Functions

In this section we make use of the analysis in Section 2 to completely describe the
arithmetic correlations of linear functions. That is, of Boolean functions f(a) = Tc(a) =
[a · c]2, a, c ∈ Vn.

If c = 0n, then f is identically zero. By Theorem 2.4,

T̃0n(b) =

{
2n if b · 1n = 0
0 if b · 1n = 1.
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For the remainder of the section we assume that c 6= 0n. By equation (7), if b ·1n = 0,
then

T̃c(b) = 2n − 2
∑

a∈Vn

[a · c]2 + 2
∑

a∈Vn

[a · c]2[(a + 1n) · c]2[a · b]2

= 2
∑

a∈Vn

[a · c]2[(a + 1n) · c]2[a · b]2. (23)

By equation (9), if b · 1n = 1, then

T̃c(b) =
∑

a∈Vn

[(a + 1n) · c]2(1 − [a · c]2) + ([a · c]2 − [(a + 1n) · c]2)[a · b]2). (24)

We treat these equations separately. First suppose that b · 1n = 0. If b = 0n, then
T̃c(b) = 0. If b 6= 0n and c · 1n = 0, then

T̃c(b) = 2
∑

a∈Vn

[a · c]2[a · c]2[a · b]2

= 2
∑

a∈Vn

[a · c]2[a · b]2

=





2
∑

a∈Vn

[a · c]2 = 2n if b = c

2 · 2n−2 = 2n−1 if b 6= c.

(The last line holds because [a · c]2[a · b]2 = 1 on the intersection of two hyperplanes and
is 0 everywhere else.) The last case occurs for 2n−1 − 2 values of b for each such c. If
c · 1n = 1, then

T̃c(b) = 2
∑

a∈Vn

[a · c]2(1 − [a · c]2)[a · b]2 = 0,

since if x ∈ {0, 1}, then x(1 − x) = 0. This occurs for 2n−1 values of b for each such c.
Now suppose that b · 1n = 1. If c · 1n = 0, then

T̃c(b) =
∑

a∈Vn

[a · c]2(1 − [a · c]2) + ([a · c]2 − [a · c]2)[a · b]2) = 0.
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This occurs for 2n−1 values of b for each such c. If c · 1n = 1, then

T̃c(b) =
∑

a∈Vn

(1 − [a · c]2)
2 + (2[a · c]2 − 1)[a · b]2)

=
∑

a∈Vn

(1 − [a · c]2) + (2[a · c]2 − 1)[a · b]2)

= 2n−1 +
∑

a∈Vn

(2[a · c]2 − 1)[a · b]2)

=





2n−1 +
∑

a∈Vn

2[a · c]22 − [a · c]2 = 2n if b = c

2n−1 +
∑

a∈Vn

2[a · c]2[a · b]2 − [a · b]2 = 2n−1 if b 6= c.

The second case occurs for 2n−1−1 values of b for each such c. Now we fix c and describe
the distribution of values of T̃c(b).

Theorem 6.1 Let c ∈ Vn. If c = 0n, then the arithmetic Walsh transform of Tc has
values 0, which occurs 2n−1 times, and 2n, which occurs 2n−1 times. If c · 1n = 0 and
c 6= 0n, then the arithmetic Walsh transform of Tc has values 0, which occurs 2n−1 + 1
times, 2n−1, which occurs 2n−1 − 2 times, and 2n, which occurs once. If c · 1n = 1, then
the arithmetic Walsh transform of Tc has values 0, which occurs 2n−1 times, 2n−1, which
occurs 2n−1 − 1 times, and 2n, which occurs once.

7 Arithmetic Walsh Transforms of Affine Functions

In this section we make use of the analysis in Section 2 to completely describe the
arithmetic correlations of affine nonlinear functions. That is, of Boolean functions f(a) =
Sc(a) = 1 − [a · c]2, a, c ∈ Vn.

If c = 0n, then f is identically one. By Theorem 2.4,

S̃0n(b) =

{
−2n if b = 0

0 if b 6= 0.

For the remainder of the section we assume that c 6= 0n. Theorem 2.4 implies that if
b · 1n = 0, then

S̃c(b) = 2n − 2
∑

a∈Vn

(1 − [a · c]2) + 2
∑

a∈Vn

(1 − [a · c]2)(1 − [(a + 1n) · c]2)[a · b]2

= 2
∑

a∈Vn

(1 − [a · c]2)(1 − [(a + 1n) · c]2)[a · b]2. (25)
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If b · 1n = 1, then

S̃c(b) =
∑

a∈Vn

(1 − [(a + 1n) · c]2)[a · c]2 + ([(a + 1n) · c]2 − [a · c]2)[a · b]2. (26)

We treat these equations separately. First suppose that b · 1n = 0. If b = 0n, then
S̃c(b) = 0. If b 6= 0n and c · 1n = 0, then

S̃c(b) = 2
∑

a∈Vn

(1 − [a · c]2)[a · b]2

=

{
0 if b = c
2 · 2n−2 = 2n−1 if b 6= c.

The last case occurs for 2n−1 − 2 values of b for each such c. If c · 1n = 1, then

S̃c(b) = 2
∑

a∈Vn

(1 − [a · c]2)[a · c]2[a · b]2 = 0.

This occurs for 2n−1 values of b for each such c.
Now suppose that b · 1n = 1. If c · 1n = 0, then

S̃c(b) =
∑

a∈Vn

(1 − [a · c]2)[a · c]2 + ([a · c]2 − [a · c]2)[a · b]2 = 0.

This occurs for 2n−1 values of b for each such c. If c · 1n = 1, then

S̃c(b) =
∑

a∈Vn

[a · c]22 + (1 − 2[a · c]2)[a · b]2

=
∑

a∈Vn

[a · c]2 + (1 − 2[a · c]2)[a · b]2

= 2n−1 +
∑

a∈Vn

(1 − 2[a · c]2)[a · b]2

=





2n−1 +
∑

a∈Vn

[a · c]2 − 2[a · c]22 = 0 if b = c

2n−1 +
∑

a∈Vn

[a · b]2 − 2[a · c]2[a · b]2 = 2n−1 if b 6= c.

The second case occurs for 2n−1−1 values of b for each such c. Now we fix c and describe
the distribution of values of S̃c(b).
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Theorem 7.1 Let c ∈ Vn. If c = 0n, then the arithmetic Walsh transform of 1 − Sc

has values 0, which occurs 2n−1 times, and −2n, which occurs 2n−1 times. If c · 1n = 0
and c 6= 0n, then the arithmetic Walsh transform of 1 − Sc has values 0, which occurs
2n−1 + 2 times and 2n−1, which occurs 2n−1 − 2 times. If c · 1n = 1, then the arithmetic
Walsh transform of 1 − Sc has values 0, which occurs 2n−1 + 1 times and 2n−1, which
occurs 2n−1 − 1 times.
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