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Abstract
Assuming a certain “purity” conjecture, we derive a formula for the (complex) coho-
mology groups of the affine Springer fiber corresponding to any unramified regular
semisimple element. We use this calculation to present a complex analog of the fun-
damental lemma for function fields. We show that the “kappa” orbital integral that
arises in the fundamental lemma is equal to the Lefschetz trace of the Frobenius acting
on the étale cohomology of a related variety.
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1. Introduction
Let F = C((ε)) be the field of formal Laurent series, and let o = C[[ε]] be its integer
ring of formal power series. A fundamental object of study in modern representation
theory is the affine Grassmannian X = G (F) /G (o) associated to a complex reduc-
tive algebraic group G. Let g = Lie(G). Each regular semisimple element γ ∈ g(o)

determines a “vector field” on X whose fixed point set

Xγ =
{

xG(o) ∈ X : Ad(x−1)(γ ) ∈ g(o)
}

is a finite-dimensional increasing union of complex projective varieties, which is
known as the affine Springer fiber corresponding to γ. The study of affine Springer
fibers was initiated in [KL2], where many of the basic properties of these varieties
were described.

In this paper we suppose that T ⊂ G is a maximal torus defined over C, and
we consider the affine Springer fiber Xγ associated to regular semisimple elements
γ ∈ t(o), where t = Lie(T ). (Not all affine Springer fibers are of this type; since T is
split over F , we refer to this as the unramified case.) The complex torus T (C) acts on
Xγ . In Theorem 9.2, the first principal result of this paper, we give an explicit descrip-
tion of the T (C)-equivariant homology of Xγ under the assumption that the ordinary
homology of Xγ is pure, in the sense of mixed Hodge theory. (We conjecture that this
always holds; cf. §5.3.) The description in §9.2 is made possible by using [GKM1,
§6.3] (the lemma of Chang and Skjelbred), which describes the equivariant homology
of a T (C)-variety in terms of the 0- and 1-dimensional orbits of T (C). The compu-
tation is reduced to the case of the equivariant homology of affine Springer fibers for
the group SL(2). Among the various ways to compute the equivariant homology in
this special case of SL(2), we have chosen to describe one that is conceptually simple
but computationally rather cumbersome. It uses the existence of a slightly larger torus
T̃ (C) which acts on this Springer fiber. To facilitate the exposition we have extracted
the combinatorial details and placed them in §12.

Suppose that G is adjoint, s ∈ T̂ is an element of the dual torus, and (H, s) is
endoscopic data for G. Then H and G share the same torus T , so γ corresponds to
a regular semisimple element γH ∈ H, and there is an associated affine Springer
fiber X H

γH
. Motivated by the fundamental lemma ([L, §III.1]), one predicts that there

should be a close relation between the homology groups H∗(Xγ ;C) and H∗(X H
γH
;C).

However, from a geometrical point of view, any relationship between these homology
groups comes as a surprise since the group H may not be a subgroup of G. In fact, the
varieties Xγ and X H

γH
have very little to do with each other: there does not appear to be

any map or correspondence between them, and even their dimensions are different, in
general. Moreover, the relation between these homology groups turns out to be rather
subtle: they are not simply isomorphic, but rather, they become isomorphic only after
a degree shift and a certain localization.
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The element s gives rise to a homomorphism χ∗(T ) → C× (defined on the
cocharacter group of T ) such that the set of coroots for H is given by

8∨(H, T ) =
{
α∨ ∈ 8∨(G, T ) : s(α∨) = 1

}
.

The same cocharacter group χ∗(T ) acts freely on Xγ . Let J be the multiplicative
subset of the group algebra C[χ∗(T )] which is generated by the elements (1 − α∨),
where α∨ ∈ 8∨(G, T ) and s(α∨) 6= 1. For any C[χ∗(T )]-module V, let VJ = J−1V
be its localization with respect to J. Let r = r(γ ) be the nonnegative integer defined
in §10.1. The second principal result in this paper is the following complex analog
to the fundamental lemma in the unramified case (a more precise version of which is
stated in Theorem 10.2).

THEOREM 1.1
Suppose that the homology of Xγ is pure and that the homology of X H

γH
is pure. Then

for each i there is a homomorphism

H T (C)
i (Xγ , C)→ H T (C)

i−2r (X H
γH

, C) (1.1.1)

which becomes an isomorphism

H T (C)
i (Xγ ;C)J ∼= H T (C)

i−2r (X H
γH
;C)J (1.1.2)

after localizing with respect to J.

The homomorphism (1.1.1) is compatible with a number of algebras which act on
these homology groups. First, the equivariant homology is a module over the equivari-
ant cohomology D = H∗T (C)(pt) of a point (§4). Second, the group algebra C[χ∗(T )]

acts. Finally, a certain group W̃ G,H
γ of automorphisms of the situation also acts (cf.

§§9.4 and 10.1), and the homomorphism (1.1.1) transforms by a certain character η

under W̃ G,H
γ .

Using the action of D , it is possible to recover the ordinary homology of Xγ from
its equivariant homology, so (1.1.1) gives a homomorphism

Hi (Xγ ;C)→ Hi−2r (X H
γH
;C)

of the ordinary homology, which also becomes an isomorphism after localizing with
respect to J. In §10 the action of the group algebra C[χ∗(T )] is used in order to
(partially) describe the homology of the quotient χ∗(T )\Xγ . Finally, the action of
the group W̃ G,H

γ provides a complex analog for the action of the Frobenius automor-
phism.

These extra ingredients are related to the fundamental lemma for function fields.
In Theorem 15.8, the κ-orbital integral that occurs in the fundamental lemma is shown
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to equal the trace of the Frobenius automorphism on the étale cohomology of the
quotient χ∗(T )\Xγ (k), where now Xγ (k) is the finite characteristic analog of the
complex algebraic variety Xγ . Next, the analogs of Theorems 9.2 and 10.2 need to be
established in étale homology, a task that we have not fully carried out here. In §15.12
we indicate how these results are related to the fundamental lemma in the unramified
case.

We would also like to draw attention to the recent preprint [La2], in which G.
Laumon uses the methods and techniques of the present paper together with a defor-
mation argument from [La1] to prove (under the same purity assumption) the “geo-
metric fundamental lemma” (i.e., the étale cohomology analog of Proposition 11.2)
for unitary groups (and for arbitrary regular semisimple elements γ).

In §§13 and 14 we list the changes that are needed in order to establish similar
results for Springer fibers Yγ in the affine flag manifold Y. The homology of a Springer
fiber in the affine flag manifold carries the additional structure of a (right) action of
the affine Weyl group, the Springer action. It was constructed by Lusztig [Lu] and
(using a statement from [KL1] whose proof does not appear in the literature) by Sage
[S1]. In §14.4 this action is explicitly described using our formula (Theorem 14.3) for
the homology of the Springer fiber Yγ (under the assumption that this homology is
pure). In Theorem 14.6 we state the main consequence: If (H, s) is endoscopic data
for G, if H∗(Yγ ;C) is pure, and if H∗(Y H

γH
;C) is pure, then for each i we obtain a

homomorphism

H T (C)
i (Yγ ;C)→ H T (C)

i−2r (Y H
γH
;C)⊗C[W̃ H ] C[W̃ ]

of D-modules, and a homomorphism on ordinary homology,

Hi (Yγ ;C)→ Hi−2r (Y H
γH
;C)⊗C[W̃ H ] C[W̃ ],

each of which is equivariant with respect to the right action of W̃ and transforms by
the character η under the action of W̃ G,H

γ . Each of these homomorphisms becomes
an isomorphism after localizing with respect to J.

2. Purity for ind-varieties

2.1
Let X be a complex projective algebraic variety with (increasing) weight filtration W
of the cohomology H∗ = H∗(X;C) (see [D2]). The cohomology of X is pure if

Grm W (H i ) = W m(H i )/W m−1(H i ) = 0 for i 6= m.

We obtain an increasing weight filtration on the homology H∗ = H∗(X;C):

W m(Hi ) =
(
H i/W−1−m(H i )

)∗
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by duality. If f : X → Y is a morphism of projective varieties, the induced mapping
f∗ : H∗(X)→ H∗(Y ) is strictly compatible with the weight filtration.

Let X be a complex projective ind-variety (see [Ku], [Sh]), that is, a set with a
filtration X0 ⊂ X1 ⊂ · · · by complex projective varieties such that X =

⋃
∞

n=1 Xn

and such that each Xn → Xn+1 is a closed immersion. A set Y ⊂ X is closed in the
limit topology for X if and only if Y ∩ Xn is closed (in the classical topology) for each
n. Then H∗(X) = lim

→
H∗(Xn) inherits a limit weight filtration W from the weight

filtrations on H∗(Xn). If X =
⋃
∞

n=1 Yn is an equivalent ind-variety structure on X
(meaning that the identity mapping X → X is a morphism of ind-varieties), then the
resulting weight filtration W ′ on H∗(X) agrees with W. We say that the homology of
X is pure if Gr−m W (Hi (X)) = 0 for m 6= i.

Let A = (C×)m be a complex torus that acts on a projective ind-variety X such
that each Xn is invariant under A and such that the action of A on Xn is algebraic
and is compatible with the immersion Xn → Xn+1. In this case we say that A acts
algebraically on X. The classifying space B A may be taken to be the ind-variety
(P1)m

⊂ (P2)m
⊂ · · · , which has pure homology. The Cartan-Leray spectral se-

quence for the A-equivariant homology of Xn is the spectral sequence for the fibration
Xn ×A E A→ B A with E2 ∼= H∗(B A)⊗ H∗(Xn). It inherits a weight filtration such
that the differentials are strictly compatible with the weight. It follows that the Cartan-
Leray spectral sequence for the A-equivariant homology of X inherits a weight filtra-
tion such that the differentials are strictly compatible with the weight. The following
fact is needed for Corollary 10.3.

LEMMA 2.2
Suppose that X is a complex projective ind-variety with an action of an algebraic
torus A. Suppose that the homology of X is pure. Then the homology of X is equiv-
ariantly formal (see [GKM1, §1]); that is, the Cartan-Leray spectral sequence for the
A-equivariant homology of X collapses at E2 and gives rise to an isomorphism

H A
∗ (X;C) ∼= H∗(X;C)⊗C H A

∗ (pt;C).

2.3. Purity of BZn

Define an action of the additive group Z on the contractible ind-variety

EZ = (Z× C)/(m, 0) ∼ (m + 1, 1)

(which is a countable union of affine lines joined each to the next at a single point)
by m · (r, t) = (r + 2m, t) (where m, r ∈ Z and t ∈ C). The quotient BZ = EZ/Z
consists of two copies V0, V1 of C, joined at two points: 0 ∈ V0 is identified with
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1 ∈ V1, and vice versa. The inclusion of the unit circle T 1
→ BZ given by

eiθ
7→

{
θ
π ∈ V0 if 0 ≤ θ ≤ π,
θ
π − 1 ∈ V1 if π ≤ θ ≤ 2π

is a homotopy equivalence. Let 3 = Zn, and set E3 = (EZ)n and B3 = (BZ)n .

We obtain a homotopy equivalence T n
= (T 1)n

→ B3.

Suppose that X is an ind-variety on which 3 acts freely by morphisms. Let
E(X) = E3×3 X be the Borel construction, together with its projections

3\X
p

←−−−− E(X)
π

−−−−→ B3.

Let s : 3 → GL(1, C) be a 1-dimensional representation of finite order, and
write Cs for the representation space. Then s determines local systems Ls = Cs×3 X
on 3\X and L B

s = E3×3 Cs on B3, and there is a canonical isomorphism of local
systems, π∗L B

s
∼= p∗Ls . Denote this local system on E(X) by L E

s . The homology
Leray spectral sequence, with coefficients in L E

s , for the fibration π : E(X)→ B3

has

E2
pq = Hp

(
3; Hq(X;Cs)

)
= Hp(B3;L B

s ⊗Hq) =⇒ Hp+q(3\X;Ls), (2.3.1)

where Hq denotes the local system on B3 corresponding to Hq(X;C). The following
fact is needed for Proposition 11.2.

LEMMA 2.4
Suppose that the homology of X is pure. Then the spectral sequence (2.3.1) collapses
at E2. Hence there is an isomorphism

Hm(3\X;Ls) ∼=
⊕

p+q=m

Hp
(
3; Hq(X;Cs)

)
. (2.4.1)

2.5. Proof
First consider the case when n = 1 and when s is the trivial representation. The
homology H∗(BZ;Hq) may be computed from the Mayer Vietoris sequence for the
covering of BZ by the two (Zariski) closed sets V0 and V1. It is easy to see that this
sequence gives a short exact sequence (of mixed Hodge structures)

0 −−−−→ H1(BZ;Hq) −−−−→ Hq −−−−→
µ−1

Hq −−−−→ H0(BZ;Hq) −−−−→ 0,

where Hq = Hq(X;C) and where µ is the homomorphism induced on homology
from the action of 1 ∈ Z.

Next consider the case of general n but still with s the trivial representation. It
follows by induction that the homology H∗(BZn

;Hq) is the homology of the Koszul
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complex K• =
∧
∗(Cn)⊗ Hq with differential

∂(ei1 ∧ · · · ∧ eir ⊗ h) =

r∑
j=1

(−1) j+1ei1 ∧ · · · ∧ êi j ∧ · · · ∧ eir ⊗
(
µi j (h)− h

)
,

where µ1, . . . , µn are the homomorphisms on Hq determined by the action of the
standard n basis elements e1, . . . , en . Each

∧k(Cn)⊗ Hq is pure of weight −q since
it arises as a direct sum of copies of Hq . So each homology group Hp(B3;Hq) is
pure of weight −q. Since the differentials in the spectral sequence (2.3.1) are strictly
compatible with the weight filtration, this implies that the spectral sequence collapses
at E2.

Now consider the case of a nontrivial representation s of finite order. Such a
representation factors through the (finite) quotient 3/N3 for some positive integer
N . Let φ : B̃ = E3/N3→ B3 be the resulting (finite) cover, and let Ẽ be the fiber
product in the diagram

Ẽ
8

−−−−→ E3×3 X −−−−→
p

3\X

π̃

y yπ

B̃ −−−−→
φ

B3

The preceding argument may be used to see that the Leray spectral sequence for the
mapping π̃ (with constant coefficients) collapses at E2.

The covering φ is a principal homogeneous space for the group 3/N3, which
acts by deck transformations on B̃. So it acts on the local system φ∗(C) as the regular
representation and determines decompositions

φ∗(C) ∼=
⊕
θ

L B
θ and 8∗(C) ∼=

⊕
θ

L E
θ (2.5.1)

into 1-dimensional local systems corresponding to the distinct characters θ :

3/N3→ C×. It follows (see below) that there is a natural isomorphism

H∗(B̃;HB̃
q ) ∼=

⊕
θ

H∗(B3;Hq ⊗Lθ ), (2.5.2)

where HB̃
q (resp., Hq) is the local system on B̃ (resp., on B3) corresponding to

Hq(X;C). In fact, the whole spectral sequence for π̃ decomposes under 3/N3 into
a direct sum (over distinct characters θ of 3/N3) of spectral sequences for π with
coefficients in Lθ . It follows that each of these constituent spectral sequences, one of
which corresponds to the character s, collapses.

There are several ways to verify equation (2.5.2). One way is to use the homotopy
equivalence T n

→ B3, Poincaré duality, and (2.5.1). However, it may also be verified
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directly. Let DB3 (resp., DB̃) be the dualizing complex on B3 (resp., on B̃). Since φ

is a finite covering space, φ∗ ∼= Rφ∗ ∼= Rφ! and φ∗(DB3) ∼= DB̃ . Since the diagram
above is a fiber square,

Rφ∗(HB̃
q ) ∼= Rφ∗(φ

∗Hq ⊗ C) ∼= Hq ⊗
( ⊕

θ

L B
θ

)
.

The homology H∗(B̃;HB̃
q ) is the cohomology (with compact supports) of the sheaf

DB̃ ⊗HB̃
q
∼= φ∗DB ⊗HB̃

q .

Pushing this sheaf forward under φ gives

DB ⊗ Rφ∗(HB̃
q ) ∼= DB ⊗Hq ⊗

( ⊕
θ

L B
θ

)
,

whose compactly supported cohomology is
⊕

θ H∗(B3;Hq⊗L B
θ ), as claimed.

2.6. Remarks
Presumably the theory of weights can be extended to include (co)homology groups
such as Hk(B3;Hq ⊗ Ls), in which case equation (2.5.2) implies that this group
is pure of weight −q. We remark that if the homology of X is both pure and Tate
(meaning that it lives only in even degrees and that Gr−2q H∗(X) is all of Hodge type
(q, q)), then the decomposition (2.4.1) is canonical because in this case the Hodge
filtration and the weight filtration are opposed (see [D1, Prop. 1.2.5]). It seems likely
that Lemma 2.4 remains valid even when the local system s fails to have finite order.

3. Symmetric algebras

3.1
Consider the polynomial algebra

S = Q[x1, . . . , xn] =

∞⊕
k=0

Sk

in n variables, graded by degree (with finite-dimensional graded pieces), and consider
its dual algebra of differential operators

D = Q[∂1, . . . , ∂n] =

∞⊕
k=0

Dk

with ∂i x j = δi j . Then DkS j ⊂ S j−k . The natural pairing

D ⊗ S
〈·,·〉
−−−−→ Q (3.1.1)
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given by 〈∂, P〉 = (∂ P)(0) satisfies

〈∂∂ ′, P〉 = 〈∂, ∂ ′P〉. (3.1.2)

It restricts to a nondegenerate (finite-dimensional) bilinear form Dk⊗Sk → Q, which
vanishes on Dk ⊗ S j for j 6= k. If I =

⊕
∞

k=0 Ik ⊂ D is a homogeneous ideal, define

S{I } =
{
s ∈ S : ∂s = 0 for all ∂ ∈ I

}
to be the subspace annihilated by I. It follows from (3.1.2) that

S{I } = I⊥ =
∞⊕

k=0

I⊥k , (3.1.3)

where
I⊥k =

{
s ∈ Sk : 〈∂, s〉 = 0 for all ∂ ∈ Ik

}
.

So the pairing (3.1.1) passes to a nondegenerate pairing (Dk/Ik)⊗ I⊥k → Q. If ∂ ∈ D ,
set S{∂} = S{(∂)}.

LEMMA 3.2
Suppose ∂, ∂ ′ ∈ D are relatively prime homogeneous elements of D . Then

S{∂∂ ′} = S{∂} + S{∂ ′} (3.2.1)

and

S{∂} ∂ ′·
−−−−→ S{∂} (3.2.2)

is surjective and lowers degree by deg(∂ ′).

3.3. Proof
If I, J ⊂ D are homogeneous ideals, then it follows from (3.1.3) that

S{I + J } = S{I } ∩ S{J },
S{I ∩ J } = S{I } + S{J }.

Taking I = (∂) and J = (∂ ′) proves (3.2.1). Since ∂ and ∂ ′ are relatively prime, the
mapping

D/(∂)
∂ ′·
−−−−→ D/(∂)

is an injective homomorphism of graded algebras, which raises degree by deg(∂ ′). It
follows by duality (3.1.1) that (3.2.2) is surjective.
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4. Equivariant homology

4.1
Let A = A(C) be a complex torus with Lie algebra a. We often use without comment
the canonical isomorphism χ∗(A)⊗ C→ a∗. Let

D(a) = Sym(a∗) =

∞⊕
d=0

Symd(a∗)

be the symmetric algebra of linear differential operators (with constant complex co-
efficients) on a∗, graded by degree. Let

S(a) = Sym(a) =

∞⊕
d=0

Symd(a∗)∗

be the dual symmetric algebra of complex-valued polynomial functions on a∗.

Throughout this paper, cohomology and homology are taken with complex co-
efficients (unless otherwise stated); however, it is possible to use rational coefficients
(e.g., by replacing a∗ with χ∗(A) ⊗ Q). Let B A be the classifying space for A. If
ϕ : A → C× is a character, let c1(ϕ) be the first Chern class of the resulting line
bundle on B A. Then c1 extends to an isomorphism

D(a)→ H∗(B A) = H∗A(pt)

(the Chern-Weil isomorphism) of graded algebras, which doubles degrees.
Multiplication A × A → A determines an H-space structure m : B A × B A →

B A which gives rise to an algebra structure on H∗(B A) = H A
∗ (pt). The homology

H∗(B A) is also a module over H∗(B A) under the cap product. If x ∈ H2(B A),
then the Hopf formula m∗(x) = 1 ⊗ x + x ⊗ 1 implies that x acts on H∗(B A) as
a derivation, so H∗(B A) acts on H∗(B A) by differential operators. It follows that
the mapping S(a) → H∗(B A) (dual to the Chern-Weil isomorphism) is an algebra
isomorphism and is compatible with the cap product, in the sense that the following
diagram commutes:

Dk ⊗ S j −−−−→ S j−ky∼= y∼=
H2k(B A)⊗ H2 j (B A)

∩
−−−−→ H2 j−2k(B A)

Suppose that A acts on a complex projective algebraic variety X whose cohomol-
ogy is pure. Then the cohomology of X is equivariantly formal and the Cartan-Leray
spectral sequence for the equivariant cohomology of X collapses at E2. Let T ⊂ A be
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a (possibly trivial) subtorus, and let I = ker(H∗(B A)→ H∗(BT )) be the resulting
homogeneous ideal. Then the T -equivariant cohomology of X may be recovered from
the A-equivariant cohomology by

H∗T (X) = H∗A(X)⊗H∗A(pt) H∗T (pt).

The equivariant homology H A
∗ (X) is a module over D = H∗A(pt), and by duality, the

T -equivariant homology of X,

H T
∗ (X) = H A

∗ (X){I }, (4.1.1)

is the submodule of H A
∗ (X) consisting of those elements that are annihilated by the

homogeneous ideal I.

4.2
Let ϕ : A → C× be a nontrivial character with corresponding differential op-
erator ∂ϕ ∈ D(a). Let M = ker(ϕ) with Lie algebra m = ker(∂ϕ) ⊂ a∗. Let
j∗ : S(m) → S(a) be the homomorphism induced by inclusion m ⊂ a. Then the
image of j∗ consists of the polynomial functions S(a){∂ϕ} on a∗ which are annihi-
lated by ∂ϕ .

Such a nontrivial character ϕ extends to an action of A on CP1
= C×∪{0}∪{∞}.

As in [GKM1, §§7.1, 7.2], the long exact sequence for the pair (CP1, {0}∪{∞}) breaks
into short exact sequences

0 // H A
∗ (CP1, {0} ∪ {∞})

∂ // H A
∗ ({0})⊕ H T

∗ ({∞}) // H A
∗ (CP1) // 0

S(m)
β

// S(a)⊕ S(a)

where β( f ) = ( j∗( f ),− j∗( f )).

4.3
Now suppose that a complex algebraic torus A acts algebraically on a complex pro-
jective variety Y whose cohomology is pure. Let Y0 ⊂ Y be the set of fixed points,
and let Y1 ⊂ Y be the union of the 0- and 1-dimensional orbits of A in Y. The lemma
of Chang and Skjelbred [CS, Lemma 2.3] (cf. [GKM1, §6.3]), when translated into
homology, says that the following sequence is exact:

H A
∗ (Y1, Y0)

∂
−−−−→ H A

∗ (Y0) −−−−→ H A
∗ (Y ) −−−−→ 0. (4.3.1)

Suppose, moreover, that there are finitely many fixed points Y0 = {y1, y2, . . . , yr }

and finitely many 1-dimensional orbits {E1, E2, . . . , Ed}. The closure E i of each 1-
dimensional orbit is obtained by adding two fixed points ∂ Ei = {yia } ∪ {yib}. Let
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mi ⊂ a be the Lie algebra of the stabilizer of any point in Ei , and let j∗i : S(mi ) →

S(a) be the resulting homomorphism. Using §4.2, the sequence (4.3.1) becomes

d⊕
i=1

S(mi ) −−−−→
β

r⊕
k=1

S(a) −−−−→ H A
∗ (Y ) −−−−→ 0, (4.3.2)

where β =
∑d

i=1 βi with

βi ( fi ) =
(
0, . . . , j∗i ( fi ), . . . ,− j∗i ( fi ), . . . , 0

)
for any fi ∈ S(mi ). (Here, the two nonzero entries occur in the positions correspond-
ing to yia and yib , resp.)

5. Affine Springer fibers

5.1. Notation
Let Gm denote the multiplicative group. If k is a field, if k is an algebraic closure, and
if T is an algebraic torus defined over k, let χ∗(T ) = Hom(Gm, T ) ∼= Hom(k

×
, T (k))

denote the group of cocharacters of T , and let χ∗(T ) = Hom(T, Gm) ∼=

Hom(T (k), k
×
) denote the group of characters of T . The dual torus is T̂ =

Hom(χ∗(T ), Gm). If G is a connected reductive complex algebraic group, if T ⊂ G
is a maximal torus in G, and if (χ∗(T ), 8, χ∗(T ), 8∨) is the resulting root datum for
G (where 8 and 8∨ are the roots and coroots of T in G, resp.), then we denote by
Ĝ the “dual” connected reductive complex algebraic group corresponding to the root
datum (χ∗(T ), 8∨, χ∗(T ), 8).

Throughout this paper (except in §15), we let F = C((ε)) be the field of formal
Laurent series over C and denote by o = C[[ε]] its ring of integers, the formal power
series over C. The valuation val : F → Z takes integer values. Let T be an algebraic
torus defined over C. The following sequence is exact:

1 −−−−→ T (o) −−−−→ T (F)
val
−−−−→ χ∗(T ) −−−−→ 1.

Here, val is defined by the property that α(val(`)) = val(α(`)) for all α ∈ χ∗(T )

and all ` ∈ T (F). (On the left side of this equality, α is viewed as a homomor-
phism χ∗(T ) → Z.) The choice of uniformizing parameter ε determines a splitting
χ∗(T )→ T (F) by β 7→ β(ε), whose image 3 is called the lattice of translations. It
is a free abelian group of rank equal to the dimension of T .

5.2
In this section we recall some definitions and results from [KL2]. Let G be a con-
nected reductive algebraic group over C, with Lie algebra g. Set g(F) = g⊗C F and
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g(o) = g ⊗ o. Denote by Ad the adjoint action of G F on gF . We often write K for
the group G(o) of o-points of G.

The loop Grassmannian (or affine Grassmannian) is the quotient X = G(F)/K .

The affine Grassmannian X is an ind-algebraic variety: it is an increasing union (see
[KL2])

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X

of finite-dimensional complex projective algebraic varieties. If H ⊂ G is a connected
reductive algebraic subgroup, then the inclusion of H into G induces an injection
H(K )/H(o) ↪→ X of the loop Grassmannian for H into the loop Grassmannian
for G.

Each element γ ∈ g(F) gives rise to a “vector field” on X whose fixed point set

Xγ =
{

x K ∈ G(F)/K : Ad(x−1)(γ ) ∈ g(o)
}

is called an affine Springer fiber. We say that the element γ is compact if Xγ 6= φ.
In [KL2] it is proven that a compact element γ ∈ g(F) is regular and semisimple if
and only if Xγ is finite-dimensional, in which case Xγ is an ind-subvariety of X. It
is a union of (possibly) infinitely many irreducible components, each of which is a
complex projective variety.

CONJECTURE 5.3
If γ ∈ g(F) is compact, regular, and semisimple, then for all i the homology group
Hi (Xγ ;C) is pure of weight i.

In [GKM2] we prove this conjecture for elements γ which have “equal valuation.”

5.4. Bruhat decomposition
Let T ⊂ G be a maximal torus defined over C (hence split over F), with its lattice
of translations 3 ⊂ T (F) ⊂ G(F). The identification 3 ∼= T (F)/T (o) induces an
embedding φ : 3 → G(F)/G(o) = X of the loop Grassmannian for T into the
loop Grassmannian for G. Fix a Borel subgroup B ⊃ T , and let I ⊂ G(F) be the
corresponding Iwahori subgroup. Then G(F) = I3K , so X decomposes into I orbits
or Bruhat cells:

X =
∐
`∈3

I`K .

We denote by C` = I`x0 ⊂ X the orbit (cell) corresponding to ` ∈ 3.

5.5. Turning torus
Each λ ∈ C× determines an automorphism σλ of the field F = C((ε)) by σλ(ε

m) =

λmεm . We say that λ acts on F by “turning the loop,” and we refer to the image of
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C× → Aut(F) as the “turning torus.” The turning torus preserves o = C[[ε]], and
the fixed point set of its action is

oC×
= FC×

= C · ε0.

The resulting action of C× on G(F) preserves K = G(o) and induces an action on
X = G(F)/K which commutes with the action of T (C) ⊂ I. On each Bruhat cell
C`, the action of the extended torus

T̃ (C) = T (C)× C× (5.5.1)

may be described by
(t, λ) · g`K = λ(tgt−1)`K . (5.5.2)

5.6. Affine roots
Let 8 = 8(G, T ) be the root system for G, with positive roots 8+ determined by the
choice of B and with root space decomposition

g(C) = t(C)⊕
⊕
α∈8

CYα,

where Yα ∈ g(C)α are root vectors. Let 8̃ = {(α, k) : α ∈ 8, k ∈ Z} be the
collection of affine roots. Each affine root (α, k) may be considered to be a character
of the extended torus T̃ (C) (5.5.1) with (α, k)(t, λ) = α(t)λk . Then T̃ (C) acts on the
affine root space CεkYα through this character; that is,

(t, λ) · εkYα = α(t)λkεkYα. (5.6.1)

Let C0 be the fundamental alcove determined by I , and let 1̃ be the set of simple
affine roots; so

C0 =
{
a ∈ χ∗(T )⊗Z R : α(a)+ k > 0 for all (α, k) ∈ 1̃

}
.

There is a split short exact sequence

1→ I+→ I → T (C)→ 1,

where I+ denotes the unipotent radical of I. Its Lie algebra is given by

N(I ) = Lie(I+) =
∏
n∈Z

εnT (C)⊕
∏
(α,k)

CεkYα, (5.6.2)

where the product is taken over those affine roots (α, k) ∈ 8̃ such that α(a)+ k > 0
for all a ∈ C0. To fix notation we recall the following standard description of the
Bruhat cells.
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LEMMA 5.7
Let x0 = K ∈ X denote the basepoint. Fix ` ∈ 3. The exponential map determines
a T̃ (C)-equivariant isomorphism between the Bruhat cell C` = I`x0 and the vector
space

D` =

⊕
(α,k)

CεkYα, (5.7.1)

where the sum is over those (finitely many) affine roots (α, k) ∈ 8̃ such that

val
(
α(`)

)
+ k < 0 and α(a)+ k > 0 for all a ∈ C0

and where T̃ (C) acts on this vector space according to (5.6.1).

5.8. Proof
The subgroup I+ acts transitively on C`. The stabilizer S` of the point `x0 is I+ ∩
`G(o)`−1, whose Lie algebra s` is the sum of the affine root spaces CεkYα such that
α(a)+ k > 0 (for a ∈ A) and Ad(`)(εkYα) ∈ g(o). The second condition is

εk+val(α(`))Yα ∈ g(o)

or, equivalently, val(α(`))+k ≥ 0. But (5.7.1) is a T̃ (C)-invariant complement to s` in
N(I ), so the exponential mapping takes it isomorphically to the Bruhat cell I`x0.

LEMMA 5.9
The fixed point set of the turning torus on X is

XC×
= G(C)3x0.

The fixed point set of the torus T (C) on X is

X T (C)
= 3x0.

5.10. Proof
It is easy to see that G(C)3x0 ⊂ XC× . To verify the reverse inclusion, it suffices to
show that

XC×
∩ C` ⊂ G(C)3x0

for each Bruhat cell C`. But the fixed point set of the turning torus on the vector space
D` consists of those factors in the sum (5.7.1) with k = 0. So their exponentials are
contained in G(C)∩ I. Similarly, the action of T (C) on D` has a single fixed point at
the origin, so T (C) acts on C` with a single fixed point `x0.
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5.11. 1-dimensional orbits
Let X1 ⊂ X denote the union of the 0- and 1-dimensional orbits under the action of
T (C) on X. If α ∈ 8+, let Uα ⊂ G be the unique connected T -stable 1-dimensional
unipotent subgroup whose Lie algebra contains the root space gα. Then each α ∈ 8+

determines a unique reductive connected algebraic subgroup Hα ⊂ G of semisimple
rank one which is generated by T, Uα, and U−α. Let Xα

= Hα(F)/Hα(o) be the
loop Grassmannian for this subgroup. The inclusion of Hα into G induces an injection
Xα ↪→ X.

LEMMA 5.12
The union of the 0- and 1-dimensional orbits of T (C) on X is

X1 =
⋃

α∈8+

Xα.

If α, β ∈ 8+ and α 6= β, then Xα
∩ Xβ

= 3.

5.13. Proof
If dim(T ) = 1, then the result is obvious since both sides coincide with X , so we may
assume that dim(T ) ≥ 2. The adjoint action of the torus T (C) on Hα factors through
an action of the 1-dimensional quotient T (C)/ ker(α). Hence Xα

⊂ X1. To show that
X1 ⊂

⋃
α∈8+ Xα , it suffices to show that

X1 ∩ C` ⊂

⋃
α∈8+

Xα
∩ C` (5.13.1)

for each Bruhat cell C`. By Lemma 5.7, this amounts to determining the 1-
dimensional orbits of the action of T (C) on the vector space D` of (5.7.1). It follows
from (5.6.1) that if dim(T ) ≥ 2, then these 1-dimensional orbits are precisely the
coordinate axes CεkYα. Therefore we may classify the 1-dimensional orbits of T (C)

on D` by the positive roots, with those orbits corresponding to a fixed α ∈ 8+ being
contained in the subspace

D`,α =

⊕
k

CεkYα =

⊕
k

εk Lie(Uα)(C).

Here, the sum is taken over those k such that α(a) + k > 0 (for all a ∈ C0) and
val(α(`))+k < 0. Let C`,α ⊂ C` be the corresponding subset of the Bruhat cell. Then
C`,α = Xα

∩ C`, which implies (5.13.1). Finally, if α 6= β, then D`,α ∩ D`,β = {0},
which proves that Xα

∩ Xβ
= 3.
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6. Affine Springer fibers for SL(2)

6.1
In this section we fix G(C) = SL(2, C) and set XSL(2)

= G(F)/K with basepoint
x0 = K = G(o). Let T be the torus of diagonal matrices, and let α be the positive
root, α

(
a 0
0 a−1

)
= a2. Let α∨ : F×→ T (F) be the corresponding coroot,

α∨(b) =

(
b 0
0 b−1

)
.

Then 3SL(2)
= 〈α∨(ε)〉 is the cyclic group spanned by α∨(ε), whose elements we

denote by `m = α∨(εm). For any integer n ≤ −1, set

xn =

(
1 εn

0 1

)
K ∈ XSL(2). (6.1.1)

Let α′ : t(F) → F be the differential of α : T (F) → F. The following fact was
observed by D. Nadler.

LEMMA 6.2
The affine Grassmannian XSL(2) is the disjoint union of countably many T (F)-orbits:

XSL(2)
=

∐
n≤0

T (F) · xn .

The orbit of the point xn has (complex) dimension |n|. If γ ∈ t(o) and v = val(α′(γ )),
then the affine Springer fiber XSL(2)

γ is the union of the T (F)-orbits

XSL(2)
γ =

0⋃
n=−v

T (F) · xn (6.2.1)

and it is preserved by the turning torus.

It follows that we may unambiguously denote the affine Springer fiber XSL(2)
γ in

(6.2.1) by XSL(2)
≤v .

6.3. Proof
First observe that every point x ∈ XSL(2) has an expression of the form gK with

g =
(

εm b0ε
n

0 ε−m

)
,

where either
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(1) b0 = 0 or
(2) b0 ∈ o× and n − m < 0.

In fact, the standard Borel subgroup acts transitively on X, so x =
(

a b′
0 a−1

)
x0 for

some a, b′ ∈ F. Set a = a0ε
m with a0 ∈ o×, and right multiply by α∨(a−1

0 ) ∈ K

to obtain x = gx0 with g =
(

εm b
0 ε−m

)
. If b = 0 or if val(b) < m, then we are

done. Otherwise, set b = b0ε
n with n ≥ m and b0 ∈ o×. Right multiply by k =(

1 −b0ε
n−m

0 1

)
∈ K to see that x = gkK ∈ 3.

Now let x = gK with g =
(

εm b0ε
n

0 ε−m

)
. If b0 = 0, then x = α∨(εm)x0 ∈ T (F)·x0.

If b0 ∈ o× and m > n, let a ∈ o× be a square root of b0. Set t = α∨(aεm) ∈ T (F)

and k = α∨(a−1) ∈ K . Then t xn−mk = g, which proves the first statement. The
dimension statement is straightforward. If γ ∈ t(o), then XSL(2)

γ is preserved by T (F),
so it is a union of T (F)-orbits. To verify (6.2.1), suppose γ =

( a 0
0 −a

)
∈ t(o). Then

Ad(xn)γ =
(

a −2aεn

0 −a

)
, which is in g(o) if and only if val(a)+ n ≥ 0.

Each 1-dimensional orbit O of T̃ (C) necessarily contains exactly two fixed points
`s, `t ∈ 3 in its closure, in which case we say that O “connects” the points `s and `t .

LEMMA 6.4
For any two lattice points `s, `t ∈ 3, there exists a unique 1-dimensional orbit Ost

of T̃ (C) in XSL(2) which connects them, and this accounts for all the 1-dimensional
orbits of T̃ (C) in XSL(2). The stabilizer of any point in Ost is the kernel of the affine
root (α, s+t). The orbit Ost is contained in XSL(2)

γ if and only if val(α′(γ )) ≥ |s − t |.

6.5. Proof
By Lemma 6.2, for any T (o)-orbit T there exists a unique s ∈ Z and a unique n ≤ 0
such that `s xn ∈ T . Set t = s + n. We show that
(1) the T̃ (C)-orbit O of `s xn is 1-dimensional,
(2) this is the only 1-dimensional orbit of T̃ (C) in T ,

(3) O connects `s and `t = `s + nα∨(ε), and
(4) T̃ (C) acts on O through the affine root (α, 2s + n).

First compute the action of T̃ (C) on the T (o)-orbit of the point `xn . Let α∨(b) ∈

T (o) with b =
∑

i≥o biε
i
∈ o×. Let a ∈ C×. Since

`s xn =

(
εs εs+n

0 ε−s

)
,

the action of (α∨(a), λ) ∈ T̃ (C) on the point α∨(b)`s xn is the point

y =
(

a(λ · b)λsεs a(λ · b)λs+nεs+n

0 a−1(λ · b−1)λ−sε−s

)
K .
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Right multiply by α∨(a−1(λ · b)−1λ−s) ∈ K to find that

y =
(

εs a2(λ · b)2λ2s+nεs+n

0 ε−s

)
K . (6.5.1)

As a, λ ∈ C× vary, this is a 2-dimensional orbit unless b = b0 ∈ C×, in which case
λ · b = b; hence lima→0 y = `s . To find lima→∞ y, choose λ = b = 1, and right
multiply by (

a−3 a−1ε−n
− a2

a−2 ε−n

)
∈ K

to find

y =
(

a−3εs
+ εs+n a−1εs−n

a−2ε−s ε−s−n

)
K .

So y → `s + nα∨(ε) as a → ∞. It follows from (6.5.1) that T̃ (C) acts on this
1-dimensional orbit through the character (α, 2s + n) = (α, s + t) (cf. (5.6.1)). This
verifies (1)–(4). Finally, by (6.2.1), the orbit O ⊂ Xγ if and only if |n| ≤ val α′(γ ).

7. Equivariant homology of SL(2) Springer fibers

7.1
As in §6, let G = SL(2), let X = XSL(2)

= G(K )/G(o), and let 3 = 3SL(2).

(We use multiplicative notation for the group law in 3.) Let T ⊂ G be the diagonal
matrices, with simple root and coroot α and α∨. Then α∨(ε) ∈ 3 is a generator
(which, by abuse of notation, we denote by α∨), so it determines an isomorphism Z ∼=
3, written s 7→ `s . So α∨ = `1 and α∨`s = `s+1. Fix γ ∈ t(o) with corresponding
Springer fiber Xγ .

To simplify the notation, for the remainder of §7 we write T̃ for T̃ (C), t for t(C),
and so on. Let D = D(t) be the algebra of differential operators on t∗, which is
identified with H∗T (pt) by the Chern-Weil homomorphism. Let S(t) be the symmetric
algebra of complex-valued polynomial functions on t∗. The character α corresponds
to a differential operator ∂α ∈ D(t). Denote by S(t){∂d

α } the kernel of ∂d
α . The Chern-

Weil homomorphism determines an isomorphism of D-modules

H T
∗ (3) ∼= C[3] ⊗C S(t).

PROPOSITION 7.2
Let v = val(α′(γ )). The inclusion 3 ⊂ X induces exact sequences

H T̃
∗ (Xγ , 3)

β̃
−−−−→ H T̃

∗ (3) −−−−→ H T̃
∗ (Xγ ) −−−−→ 0⋃ ⋃ ⋃

H T
∗ (Xγ , 3)

β
−−−−→ H T

∗ (3) −−−−→ H T
∗ (Xγ ) −−−−→ 0

(7.2.1)
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and the image of β is the D-submodule
v∑

d=1

(1− α∨)dC[3] ⊗ S(t){∂d
α } ⊂ C[3] ⊗ S(t). (7.2.2)

7.3. Proof
The Springer fiber Xγ has a paving by affines (see [GKM2]): it is an increasing union
of complex projective algebraic varieties φ ⊂ (Xγ )0 ⊂ (Xγ )1 ⊂ · · · such that each
(Xγ ) j − (Xγ ) j−1 is isomorphic to a single affine space. In fact, the intersection of
Xγ with a single Bruhat cell is either empty or else it is a single affine cell in this
paving. It follows that the homology of (Xγ ) j vanishes in odd degrees. The extended
torus T̃ = T × C× (§5.5) preserves each (Xγ ) j , and it acts with finitely many fixed
points and finitely many 1-dimensional orbits. So the results of §§4.1 and 4.3 may
be applied to this action. Since homology commutes with direct limits, we obtain the
exact sequences (7.2.1) for both the T̃ -equivariant homology and the T -equivariant
homology.

The coroot α∨ determines canonical isomorphisms

S(̃t) ∼= C[x, t] and D (̃t) ∼= C[∂x , ∂t ]. (7.3.1)

According to Lemma 6.4, for each unordered pair of distinct integers a, b ∈ Z such
that |b − a| ≤ v = val(α′(γ )), there is a unique 1-dimensional orbit Eab ⊂ Xγ

which connects `a and `b, on which the torus T̃ acts through the character 8ab whose
differential φab : t̃→ C corresponds to the differential operator

∂ab = ∂α + (a + b)∂t = 2∂x + (a + b)∂t .

Let mab = ker(φab) denote the Lie algebra of the stabilizer of any point in this orbit,
and let j∗ab : S(mab)→ S (̃t) be the resulting inclusion. Then by (4.1.1), the image of
j∗ab consists of all polynomial functions on t̃∗ which are annihilated by the differential
operator ∂ab. Hence

j∗abS(mab) =
{
g((a + b)x − 2t) : g ∈ C[z]

}
consists of polynomial functions of z = (a + b)x − 2t. It follows that the image of β̃

is the sum
∑

a,b Mab of submodules Mab spanned by elements

(`b − `a)⊗ gab
(
(a + b)x − 2t

)
with |b − a| ≤ v. This is the module Pv of §12.6 (with 2t replaced by t).

The T -equivariant homology of Xγ may be recovered (see (4.1.1)) from the T̃ -
equivariant homology of Xγ as the kernel of the operator ∂t . So the image of β is

Im(β) = Pv ∩ ker(∂t ).

Then Proposition 12.7 identifies Pv ∩ ker(∂t ) with the submodule (7.2.2).
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8. Groups of semisimple rank one
For lack of an adequate reference, we include a proof of the following well-known
fact.

LEMMA 8.1
Let H be a connected reductive complex linear algebraic group of rank n and of
semisimple rank one. Then H is isomorphic to either
(1) (C×)n−1

× SL(2, C),
(2) (C×)n−1

× PGL(2, C), or
(3) (C×)n−2

× GL(2, C).

8.2. Proof
Let (L , {α}, L∨, {α∨}) be the (based) root datum for H where 〈·, ·〉 : L∨ × L → Z is
a dual pairing of rank n lattices, α ∈ L , α∨ ∈ L∨, and 〈α∨, α〉 = 2. If

〈α∨, ·〉 : L → Z (8.2.1)

is even-valued, then (1/2)α∨ ∈ L∨, so

L = (α∨)⊥ ⊕ 〈α〉 while L∨ = α⊥ ⊕
〈1
2
α∨

〉
,

which corresponds to case (1). (Here 〈α〉 denotes the cyclic group generated by α ∈ L ,

and (α∨)⊥ denotes the kernel of (8.2.1).) Similarly, if 〈·, α〉 : L∨→ Z is even-valued,
then (1/2)α ∈ L , so

L = (α∨)⊥ ⊕
〈1
2
α
〉

while L∨ = α⊥ ⊕ 〈α∨〉,

which corresponds to case (2).
Now suppose that neither of these homomorphisms is even-valued. Let

{e1, e2, . . . , en−1} be a basis of L0 = (α∨)⊥. Let L1 = {x ∈ L : 〈α∨, x〉 = 1}.
Then L1 − (1/2)α is a translate of L0, so there exist ai ∈ {0, 1/2} such that
L1 − (1/2)α = L0 +

∑n−1
i=1 ai ei and not all the ai are zero. By relabeling the ba-

sis we may assume that a1 = a2 = · · · = ar = 1/2 and the remaining coefficients
are zero. Let v = e1 + e2 + · · · + er . Then {v, e2, . . . , er } is also a basis for L0, and
(1/2)α + (1/2)v ∈ L . It follows that

L = Y ⊕ 〈e2, e3, . . . , en−1〉,

where
Y =

{
mα + m′v : m, m′ ∈ Z or m, m′ ∈ Z+

1
2

}
.

Then this corresponds to case (3), with L∨ = 〈e2, e3, . . . , en−1〉
⊥
⊕ Y⊥.
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8.3
Let H be a connected reductive complex linear algebraic group of semisimple rank
one. Fix a Borel pair B ⊂ T ⊂ H with resulting positive root α. Let X H be the
affine Grassmannian for H , and let 3H

⊂ X H be the lattice of translations for T .

Consider the abstract SL(2, C) which corresponds to the simple root α. The canonical
mapping SL(2) → H induces an inclusion φα : XSL(2)

⊂ X H with φα(3SL(2)) =

〈α∨(ε)〉 ⊂ 3H (
the infinite cyclic subgroup generated by α∨(ε)

)
. To simplify the

notation, identify the coroot α∨ with its image α∨(ε) in 3H .

LEMMA 8.4
The following statements hold.
(1) The affine Grassmannian for H is the disjoint union

X H
=

∐
`∈3H /〈α∨〉

`φα(XSL(2)).

(2) The T H (o)-orbits on X H coincide with the T SL(2)(o)-orbits on X H (which are
in turn translates, by elements of 3H , of T SL(2)(o)-orbits on XSL(2)).

(3) Let γ ∈ tH (o) be a regular element. Then the affine Springer fiber X H
γ is the

disjoint union
X H

γ =

∐
`∈3H /〈α∨〉

`φα(XSL(2)
≤v ), (8.4.1)

where v = val(α′(γ )) (cf. equation (6.2.1)).

8.5. Proof
For part (1), use Lemma 8.1 to reduce to the case H = GL(2) or the case H =
PGL(2). If H = GL(2), then the exact sequences

I −−−−→ SL(2, F) −−−−→ GL(2, F)
det
−−−−→ F× −−−−→ 1,

I −−−−→ SL(2, o) −−−−→ GL(2, o) −−−−→ o× −−−−→ 1

together with the isomorphism val : F×/o× ∼= Z give rise to a diagram

XSL(2)
−−−−→ XGL(2) val det

−−−−→ Zx x ∥∥∥
0 −−−−→ 3SL(2)

−−−−→ 3GL(2)
−−−−→ Z −−−−→ 0

from which the result follows. Now suppose H = PGL(2). If g ∈ H(F), let
τ(g) = val det g mod 2. If τ(g) = 0, then det g has a square root in F and
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g/
√

det g ∈ SL(2, F). So the exact sequences

{±I } −−−−→ SL(2, F) −−−−→ PGL(2, F)
τ

−−−−→ Z/(2),

{±I } −−−−→ SL(2, o) −−−−→ PGL(2, o) −−−−→ 1

give rise to a diagram

XSL(2)
−−−−→ XPGL(2) τ

−−−−→ Z/(2)x x ∥∥∥
0 −−−−→ 3SL(2)

−−−−→ 3PGL(2)
−−−−→ Z/(2) −−−−→ 0

from which the result follows.
For part (2) we may assume H = GL(2) or PGL(2). Let gK ∈ X H , and let

t =
(

a 0
0 d

)
∈ T H (o). Then ad−1 has a square root λ ∈ o. Set t ′ = α∨(λ) ∈ T SL(2)(o).

By matrix multiplication, tgt−1
= t ′g(t ′)−1; hence tgK H

= t ′gK H .

Now consider part (3). It is easy to verify for H = GL(2), for H = PGL(2), and
for n ≤ −1 that xn ∈ X H

γ if and only if |n| ≤ v = val(α′(γ )), where xn =
(

1 εn

0 1

)
K .

Since X H
γ is a union of T SL(2)(o)-orbits, it follows that

X H
γ ∩ φα(XSL(2)) = φα(XSL(2)

≤v ). (8.5.1)

By Lemma 8.1, equation (8.5.1) holds for any H of semisimple rank one. It follows
that the union (8.4.1) is contained in X H

γ . Conversely, if O is a T H (o)-orbit in X H
γ ,

then there exists ` ∈ 3H such that `φα(xn) ∈ O, which holds if and only if φα(xn) ∈

X H
γ or xn ∈ XSL(2)

≤v . So

X H
γ ⊂

⋃
`∈3H

`φα(XSL(2)
≤v ).

The normalizer of φα(XSL(2)
≤v ) in 3H is the sublattice 〈α∨〉 = φα(3SL(2)), so the

union (8.4.1) is disjoint.

9. Equivariant homology of affine Springer fibers

9.1
As in §5, we consider a connected reductive linear algebraic group G defined over
C and a Borel pair T ⊂ B ⊂ G with a resulting system of positive roots 8+. Fix
γ ∈ t(o), and let Xγ be the resulting affine Springer fiber. It contains the lattice
3 = 3G . We use multiplicative notation for the group operation in 3. For notational
simplicity, in this section we denote by t, t∗, and so on, the complex vector spaces
t(C), t∗(C), and so on. Let α ∈ 8+, and let α∨ : F× → T (F) be the corresponding
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coroot; it determines a lattice element that we also denote by α∨ ∈ 3. Moreover,
α∨ ∈ t = t∗∗ corresponds to a (degree 1) monomial

xα∨ ∈ S(t),

while α ∈ t∗ corresponds to a (degree 1) differential operator

∂α ∈ D(t)

such that ∂α(xα∨) = 2. Let S(t)
{
∂d
α

}
be the submodule of polynomial functions that

are annihilated by the differential operator ∂d
α . Define the following submodule of

H T (C)
∗ (3) = C[3] ⊗ S(t):

Lα,γ =

val(α′(γ ))∑
d=1

(1− α∨)dC[3] ⊗ S(t){∂d
α }.

THEOREM 9.2
Suppose that the homology H∗(Xγ ;C) is pure. Then the inclusion 3 ⊂ Xγ induces
an exact sequence

0 −−−−→
∑

α∈8+
Lα,γ −−−−→ C[3] ⊗ S(t) −−−−→ H T (C)

∗ (Xγ ) −−−−→ 0.

9.3. Proof
Since the homology of Xγ is equivariantly formal, the exact sequence (4.3.1) becomes

H T (C)
∗

(
(Xγ )1, 3

) β
−−−−→ H T (C)

∗ (3) −−−−→ H T (C)
∗ (Xγ ) −−−−→ 0, (9.3.1)

where (Xγ )1 denotes the closure of the set of 1-dimensional T (C)-orbits in Xγ . By
Lemma 5.12, Xα

γ ∩ Xβ
γ = 3 if α 6= β, and

(Xγ )1 =
⋃

α∈8+

Xα
γ ,

where Xα
γ is the affine Springer fiber corresponding to γ in the loop Grassmannian

Xα for the group Hα of semisimple rank one which is determined by α. So the image
of β is the sum over positive roots of the image of the corresponding mapping in the
semisimple rank one case. Thus it suffices to consider the case in which the group G
has semisimple rank one, which we now assume.

Let A = ker(α)0
⊂ T , and let T1 ⊂ T be the 1-dimensional subtorus corre-

sponding to the coroot α∨. The canonical decomposition t = t1 ⊕ a determines an
isomorphism H T (C)

∗ (pt) ∼= H T1(C)(pt)⊗ H A(C)
∗ (pt); that is, S(t) ∼= S(t1)⊗ S(a) and

S(t){∂d
α }
∼= S(t1){∂

d
α } ⊗ S(a).
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So the exact sequence (9.3.1) for T (C)-equivariant homology is obtained from
the same exact sequence for T1(C)-equivariant homology,

H T1(C)
∗ (Xγ , 3)

β1
−−−−→ H T1(C)

∗ (3) −−−−→ H T1(C)
∗ (Xγ ) −−−−→ 0 (9.3.2)

by tensoring with S(a). By Lemma 8.4, the homomorphism β1 decomposes as a direct
sum of homomorphisms:⊕

`∈3H /〈α∨〉

`∗φα∗H
T1(C)
∗ (XSL(2)

≤v , 3SL(2)) −−−−→
⊕

`∈3H /〈α∨〉

`∗φα∗H
T1(C)
∗ (3SL(2))

(where φα∗ and `∗denote the homomorphisms on homology which are induced by φα

and by translation by ` ∈ 3H , resp.). So by Proposition 7.2, the image of β1 is the
sum

∑
`∈3H /3SL(2)

`∗φα∗

v∑
d=1

(α∨ − 1)dC[3SL(2)
] ⊗ S(t1){∂

d
α }

=

v∑
d=1

(α∨ − 1)dC[3] ⊗ S(t1){∂
d
α }.

Since the image of β is obtained by tensoring with S(a), we obtain

Im(β) =

v∑
d=1

(α∨ − 1)dC[3] ⊗ S(t){∂d
α }.

In fact, in the semisimple rank one case, as a module over S(a), the vector space
of relations Lα,γ has a basis consisting of the collection of elements

f`,d,α = (1− α∨)d`⊗ xd−1
α ∈ C[3] ⊗ S(t)

with ` ∈ 3 and 1 ≤ d ≤ val(α′(γ )).

9.4
Let Aut denote the automorphism group of the based root datum for G. Let W =
W (G, T ) be the Weyl group, and let W̃ = 3 o W be the extended affine Weyl group.
Then the group

W̃ o Aut (9.4.1)

acts on T and on 3. It acts through W oAut on T (C) and on the root system 8(G, T ).

Consider the diagonal action (from the left) of the group (9.4.1) on the equivariant
homology

H T (C)
∗ (3) ∼= C[3] ⊗C S(t).
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It preserves the kernel

L∞ =
∑

α∈8+

∞∑
d=1

(1− α∨)dC[3] ⊗ S(t){∂d
α }

of the surjection H T (C)
∗ (3)→ H T (C)

∗ (X), so it passes to an action on the equivariant
homology of X, which we refer to as the “left” action. If γ ∈ t(o), then the subgroup

(W̃ o Aut)γ =
{
τ ∈ W̃ o Aut : val(τα(γ )) = val(α(γ )) for all α ∈ 8+

}
(9.4.2)

preserves the module of relations∑
α∈8+

Lα,γ ⊂ H T (C)
∗ (3).

Consequently, if the homology H∗(Xγ ) is pure, the group (W̃ o Aut)γ acts (from the
left) on the equivariant homology H T (C)(Xγ ) by D(t) module homomorphisms. By
(4.1.1), the ordinary homology is the submodule H∗(Xγ ) = H T (C)

∗ (Xγ ){I } which
is killed by the augmentation ideal I , so we obtain an action of (W̃ o Aut)γ on the
ordinary homology of the affine Springer fiber.

We remark that in many cases (including G = SL(n), Sp(n), or O(n)) it is possi-
ble to construct a (continuous) action of the group (9.4.1) on X which is T (C) covari-
ant, meaning that τ(t · x) = τ(t) · τ(x) for t ∈ T (C), x ∈ X , and τ ∈ W̃ o Aut. The
induced action on H T (C)

∗ (X) then agrees with the left action. However, even in these
cases, the topological action of the subgroup (9.4.2) does not necessarily preserve the
Springer fiber Xγ .

10. Endoscopic groups

10.1
In this section we assume, for simplicity only, that G is adjoint. Fix endoscopic data
(H, s) for G. This means that H is a connected reductive complex algebraic group,
that s ∈ T̂ ⊂ Ĝ, and that Ĥ = Ĝs is the centralizer of s in Ĝ. Then Ĥ is connected
since Ĝ is simply connected (see [Hu, §2.11]). We assume, moreover, that Borel pairs
T ⊂ B ⊂ G and TH ⊂ BH ⊂ H (defined over C) have been chosen, giving rise to a
canonical isomorphism

TH ∼= T . (10.1.1)

Then T̂ = TĤ is also a maximal torus in Ĥ . The set of coroots of T in H is

8∨(H, TH ) =
{
α∨ ∈ 8∨(G, T ) : s(α∨) = 1

}
.
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Let D = D(t) ∼= S(t∗) be the graded algebra of differential operators on t∗. Each
α ∈ 8(G, T ) determines a differential operator ∂α ∈ D of degree 1. Define the
homological transfer factor

1 =
∏

α∈8+(G)−8+(H)

∂val α′(γ )
α ∈ D = H∗T (C)(pt). (10.1.2)

It is a homogeneous element of some degree, r =
∑

α∈8+(G)−8+(H) val α′(γ ). The
action of 1 is a surjection of graded D-modules

S(t)
1·
−−−−→ S(t)[−r ] −−−−→ 0

(where A[−r ] denotes the shift in grading and A[−r ]k = Ak−r for any graded vector
space A =

⊕
k Ak).

Fix γ ∈ t(o) regular and semisimple, and let γH ∈ tH = Lie(TH ) be the element
that corresponds to γ under the isomorphism (10.1.1). Then γH acts as a “vector field”
on the affine Grassmannian X H

= H(F)/H(o), and we denote its fixed point set by
X H

γH
.

Let AutG,H be the subgroup of the automorphism group of the based root datum
for G which preserves the roots of H. Let W H be the Weyl group for H, set W̃ H

=

3 o W H and W̃ G,H
= W̃ H o AutG,H , and define a subgroup of W̃ G,H by

W̃ G,H
γ =

{
τ ∈ W̃ G,H

: val(τα′(γ )) = val(α′(γ )) for all α ∈ 8+(G, T )
}
. (10.1.3)

Note that the square of 1 is invariant under W̃ G,H
γ and hence that there exists a sign

character
η : W̃ G,H

γ → {±1}

such that τ(1) = η(τ) ·1 for all τ ∈ W̃ G,H
γ .

Let J ⊂ C[3] be the multiplicative subset that is generated by the elements
1−α∨ for α∨ ∈ 8∨(G, T )−8∨(H, TH ). For any C[3]-module M , let MJ = J−1 M
denote the C[3]J = J−1C[3] module that is obtained by inverting the elements of
J. The localization of the module C[3] ⊗ S(t) is C[3]J ⊗ S(t).

THEOREM 10.2
Suppose that the homology of Xγ and of X H

γH
is pure. Then the surjection

1⊗1 : C[3] ⊗C S(t)→ C[3] ⊗C S(t)[−r ] (10.2.1)

induces a homomorphism of D-modules

9 : H T (C)
∗ (Xγ )→ H T (C)

∗ (X H
γH

)[−2r ] (10.2.2)
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which becomes an isomorphism

9J : H T (C)
∗ (Xγ )J → H T (C)

∗ (X H
γH

)J [−2r ]

after localizing with respect to J. The homomorphisms 9 and 9J are not quite
W̃ G,H

γ -equivariant; rather, they transform under W̃ G,H
γ by the sign character η de-

fined above.

Assuming that the homology of Xγ is pure, by Lemma 2.2 and equation (4.1.1), the
ordinary homology of Xγ is given by the D-submodule of the equivariant homology

H∗(Xγ ;C) ∼= H T (C)
∗ (Xγ ;C) {I }

which is annihilated by the augmentation ideal I ⊂ D . We conclude the following.

COROLLARY 10.3
The action of 1 ⊗ 1 on the equivariant homology induces a homomorphism
H∗(Xγ )→ H∗(X H

γH
)[−2r ] and an isomorphism

H∗(Xγ ;C)J ∼= H∗(X H
γH
;C)J [−2r ]. (10.3.1)

These maps again transform under W̃ G,H
γ by the sign character η.

Although the homomorphism (10.2.2) may be described relatively easily in equivari-
ant homology, the resulting isomorphism (10.3.1) in ordinary homology is much more
complicated.

10.4. Proof of Theorem 10.2
The mapping 9 is well defined because the mapping (10.2.1) kills the submodule

Lα,γ =

val(α′(γ ))∑
d=1

(1− α∨)dC[3] ⊗ S(t){∂d
α }

whenever α ∈ 8+(G) − 8+(H). If w ∈ W̃ o Aut and if f ∈ S(t), then w(1 f ) =

w(1)w( f ). If w lies in the subgroup W̃ G,H
γ , then w(1) = η(w) · 1. Therefore the

maps 1⊗1 and 9 transform under W̃ G,H
γ by the sign character η.

Now let us check that 9J is an isomorphism. The surjection

(1⊗1)J : C[3]J ⊗ S(t)→ C[3]J ⊗ S(t)[−r ]

has kernel
ker(1⊗1)J = C[3]J ⊗ S(t){1},
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and it restricts to a mapping h J in the following diagram:

0 // ∑
α∈8+(G) J−1 Lα,γ

//

h J

��

C[3]J ⊗ S(t) //

(1⊗1)J

��

H T (C)
∗ (Xγ )J

// 0

0 // ∑
α∈8+(H) J−1 Lα,γ [−r ] // C[3]J ⊗ S(t)[−r ] // H T (C)

∗ (X H
γH

)J [−2r ] // 0

It suffices (by the snake lemma) to show that h J is surjective and that

ker(1⊗1)J ⊂
∑

α∈8+(G)

J−1Lα,γ . (10.4.1)

If α ∈ 8+(G) − 8+(H) (i.e., if s(α∨) 6= 1), then (1 − α∨) becomes invertible
in C[3]J . If a ≤ b, then S(t){∂a

α} ⊂ S(t){∂b
α}. Therefore the localization of the

submodule Lα,γ is

J−1Lα,γ = C[3]J ⊗ S(t){∂val(α′(γ ))
α }.

By Lemma 3.2, the sum ∑
α∈8+(G)
s(α∨) 6=1

S(t){∂val(α′(γ ))
α } = S(t){1}

is killed by 1. Therefore

ker(1⊗1)J =
∑

α∈8+(G)
s(α∨) 6=1

J−1Lα,γ ,

which proves (10.4.1). On the other hand, if α ∈ 8+(G) and s(α∨) = 1, then

J−1Lα,γ =

val(α′(γ ))∑
d=1

(1− α∨)dC[3]J ⊗ S(t){∂d
α }.

In this case (by Lemma 3.2) the action of 1 is a surjection

S(t){∂d
α } → S(t){∂d

α }[−r ],

which implies that h J is surjective.

10.5. Remark
We did not use the full strength of the endoscopic hypothesis on H , and in fact,
Theorem 10.2 remains valid whenever H is a connected reductive group for which
there exists a Borel pair TH ⊂ BH and an isomorphism T ∼= TH such that the set of
positive roots 8+(H, TH ) is a subset of the positive roots 8+(G, T ).
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11. The quotient under 3

11.1
As in §10, fix a Borel pair T ⊂ B ⊂ G with resulting positive roots 8+. Fix regular
γ ∈ t(o) with affine Springer fiber Xγ and its lattice of translations 3. The quotient
3\Xγ admits the structure of a complex projective algebraic variety (see [KL2]). Let
(H, s) be endoscopic data with s ∈ T̂ , and assume that s has finite order. View s as
a character s : 3→ GL1(C), and let Cs be the 1-dimensional C[3]-module defined
by s. Then s determines 1-dimensional local systems

Ls = Xγ ×3 Cs and Ms = X H
γH
×3 Cs

on 3\Xγ and 3\X H
γH

, respectively. Let r = deg(1) as in (10.1.2).

PROPOSITION 11.2
Suppose that H∗(Xγ ;C) and H∗(X H

γH
;C) are pure. Then there is an isomorphism

Hm(3\Xγ ;Ls) ∼= Hm−2r (3\X H
γH
;Ms). (11.2.1)

If the homology of Xγ is both pure and Tate, and if the same is true of X H
γH

, then this
isomorphism may be chosen in a canonical manner.

11.3. Proof
The E2-term of the Cartan-Leray spectral sequence for the above 3-equivariant ho-
mology group is

E2
pq(Xγ ;Cs) = Hp

(
3; Hq(Xγ ;Cs)

)
= TorC[3]p

(
Hq(Xγ ), Cs

)
=⇒ Hp+q(3\Xγ ;Ls).

By Lemma 2.4, the spectral sequence collapses and gives rise to an isomorphism

Hm(3\Xγ ;Ls) ∼=
⊕

p+q=m

TorC[3]p
(
Hq(Xγ ;C), Cs

)
(11.3.1)

which is canonical if H∗(Xγ ;C) is also Tate.
Let J ⊂ C[3] be the multiplicative subset generated by the collection of elements

(1 − α∨) with α ∈ 8+(G) and s(α∨) 6= 1. The homomorphism C[3] → Cs (` 7→
s(`)) which gives rise to the local system Ls may be factored as the composition of
ring homomorphisms

C[3] → C[3]J → Cs (11.3.2)

in which the second map is defined by

(1− α∨)−1` 7→
(
1− s(α∨)

)−1s(`)
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for any α∨ ∈ 8∨(G, T ) − 8∨(H, TH ) and any ` ∈ 3. It is well defined because
s(α∨) 6= 1. For any C[3]-module V , the composition (11.3.2) induces an isomor-
phism

V ⊗C[3] Cs ∼= V ⊗C[3] C[3]J ⊗C[3]J Cs ∼= VJ ⊗C[3]J Cs .

Taking derived functors gives an isomorphism TorC[3]p (V, Cs) ∼= TorC[3]Jp (VJ , Cs).

Taking V = Hq(Xγ ;C) gives an isomorphism

Hm(3\Xγ ;Ls) ∼=
⊕

p+q=m

TorC[3]Jp
(
Hq(Xγ ;C)J , Cs

)
.

So Proposition 11.2 follows from Corollary 10.3.

11.4
Although we have not constructed the isomorphism (11.2.1) in a canonical way, the
isomorphism induced by 1,

E2
pq(Xγ ;Cs) ∼= E2

p,q−2r (X H
γH
;Cs),

is canonical, and it transforms under W̃ G,H
γ by the sign character η. It follows that the

Lefschetz number of any w ∈ W̃ G,H
γ on E2

∗(Xγ ;Cs) is equal to that on E2
∗(X H

γH
;Cs)

times the sign η(w).

12. Combinatorial lemmas

12.1
Let 3 be a free abelian group of rank one, and let Q[3] be its group ring. (The group
law in 3 is written multiplicatively.) A choice of generator α∨ ∈ 3 determines an
isomorphism 3 ∼= Z. Write `a ∈ 3 for the element corresponding to a ∈ Z. Then
multiplication by `1 = α∨ acts as a “shift operator”: α∨`a = `a+1.

The algebra Q[∂x , ∂t ] of differential operators in two variables acts on the algebra
Q[x, t] of polynomials in two variables and hence also on the algebra Q[3]⊗QQ[x, t]
with

ker(∂t ) = Q[3] ⊗Q Q[x].

Fix d, m ∈ Z with d ≥ 1. Define

fm,d =
∑

m≤a<b≤m+d

Cab(`b− `a)⊗
(
(a+ b)x − t

)d−1
∈ Q[3]⊗Q Q[x, t], (12.1.1)

where Cab ∈ Z is the integer

Cab = (−1)a−b(a − b)

(
d

a − m

)(
d

b − m

)
.
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Define Jv ⊂ Q[3] ⊗Q Q[x, t] to be the span

Jv =

v∑
d=1

∑
m∈Z

Q fm,d .

LEMMA 12.2
Fix d, m ∈ Z with d ≥ 1. Then

fm,d = (−1)dd!(1− α∨)d`m ⊗ xd−1
∈ ker(∂t ). (12.2.1)

If v ≥ 1, then

Jv =

v∑
d=1

(1− α∨)dQ[3] ⊗Q Q[x]{∂d
x }, (12.2.2)

where Q[x]{∂d
x } denotes the polynomials that are annihilated by ∂d

x , that is, the poly-
nomials of degree at most d − 1.

12.3. Proof
We use the fact (see [H, §1.1]) that for any polynomial p,

n∑
k=0

(−1)k
(

n
k

)
p(k) =

{
0 if deg p ≤ n − 1,

(−1)nn! if p(k) = kn .
(12.3.1)

Since Cab = −Cba , we may express fm,d as

m+d∑
a=m

m+d∑
b=m

Cab`b ⊗
(
(a + b)x − t

)d−1

=

m+d∑
a=m

m+d∑
b=m

(
`b ⊗ Cab

d−1∑
j=0

(
d − 1

j

)
(a + b) j x j (−1)d−1− j td−1− j

)

=

m+d∑
b=m

d−1∑
j=0

(
`b ⊗ (−1)b′

(
d

b − m

)(
d − 1

j

)
td ′

×

m+d∑
a=m

(−1)a−m
(

d
a − m

)
(a − b)(a + b) j x j

)
,

where b′ = b + d − 1− j − m and d ′ = d − 1− j. By (12.3.1), the innermost sum
vanishes unless j = d − 1, leaving

fm,d = (−1)dd!
m+d∑
b=m

(
(−1)b−m

(
d

b − m

)
`b

)
⊗ xd−1,



HOMOLOGY OF AFFINE SPRINGER FIBERS 541

which is (12.2.1). To verify the reverse inclusion in equation (12.2.2), it suffices to
show that (1− α∨)d`m ⊗ xe−1 is in Jv for every d, e with 1 ≤ e ≤ d ≤ v. But

(1− α∨)d`m ⊗ xe−1
= (1− α∨)e(1− α∨)d−e`m ⊗ xe−1

= (1− α∨)e
d−e∑
j=0

(−1)d−e− j
(

d − e
j

)
`m+ j ⊗ xe−1

=
(−1)d−e

e!

d−e∑
j=0

(−1) j
(

d − e
j

)
fm+ j,e

by (12.2.1). Since e ≤ v, this quantity lies in Jv. This completes the proof.

LEMMA 12.4
Fix d, h, v ≥ 1 with v ≤ h. Fix m ∈ Z. Let

g =
∑

m≤a<b≤m+h
b−a≤v

(`b − `a)⊗ Gab
(
(a + b)x − t

)d−1
, (12.4.1)

where Gab ∈ Q (with b > a). If ∂t g = 0 and d > v, then g = 0.

12.5. Proof
Write gab = Gab((a + b)x − t)d−1. The sum in (12.4.1) may be written as either

m+h−1∑
a=m

min(m+h,a+v)∑
b=a+1

or
m+h∑

b=m+1

b−1∑
a=max(m,b−v)

.

Therefore

g =
m+h∑

b=m+1

b−1∑
a=max(m,b−v)

`b ⊗ gab −

m+h−1∑
a=m

min(m+h,a+v)∑
b=a+1

`a ⊗ gab

=

m+h∑
a=m

`a ⊗
( a−1∑

b=max(m,a−v)

gba −

min(m+h,a+v)∑
b=a+1

gab

)
.

(But if a = m, the first sum is empty, while if a = m + h, the second sum is empty.)
Fix a with m ≤ a ≤ m+h. Expanding ((a+b)x− t)d−1, the equation ∂t g = 0 gives
the system of linear equations

a−1∑
b=max(m,a−v)

Gba(a + b) j
−

min(m+h,a+v)∑
b=a+1

Gab(a + b) j
= 0 (12.5.1)
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for 0 ≤ j ≤ d−2. This is a system of d−1 homogeneous equations of van der Monde
type, in min(m + h, a + v) − max(m, a − v) variables. If the number of equations
equals or exceeds the number of variables, then only the zero solution exists since the
corresponding van der Monde determinant is nonzero. Suppose d > v. First consider
the system (12.5.1) corresponding to a = m. Then the first sum in (12.5.1) is empty,
leaving the second sum, which consists of d − 1 (homogeneous) equations (of van
der Monde type) in at most v unknowns Gmb (with a + b ≤ b ≤ a + v). So these
coefficients vanish. Suppose by induction that the coefficients Gab have been shown
to vanish for all pairs (a, b) with a < t and a < b ≤ min(m + h, a + v). Consider
the system (12.5.1) in the case a = t. The terms in the first sum,

∑t−1
x=max(m,t−v) Gxt ,

vanish by the induction hypothesis, leaving only the second sum. This is a system of
d−1 homogeneous equations in at most v variables, so only the zero solution G tb = 0
exists. This completes the induction, so we conclude that g = 0.

We remark that the same (inductive) argument shows that if d = v = h, then
there is at most a 1-dimensional space of solutions, so g is a multiple of fm,d .

12.6
Define Pv ⊂ Q[3] ⊗Q Q[x, t] to be the vector space spanned by elements

(`b − `a)⊗ gab
(
(a + b)x − t

)
, (12.6.1)

where gab are polynomials and where |b − a| ≤ v. Let Pv{∂t } = Pv ∩ ker(∂t ).

PROPOSITION 12.7
Fix v ≥ 1. Then Pv {∂t } = Jv; that is,

ker(∂t ) ∩
∑
|b−a|≤v

Q(`b − `a)⊗Q
[
(a + b)x − t

]
=

v∑
d=1

(1− α∨)dQ[3] ⊗Q[x]{∂d
x }.

12.8. Proof
The inclusion Jv ⊂ Pv{∂t } follows from Lemma 12.2, so we only need to verify the
reverse inclusion. Let Pv,h be the vector subspace of Pv spanned by elements (12.6.1)
such that each gab(z) = Gabzh is homogeneous of degree h (with Gab ∈ Q). Set
Pv,h{∂t } = Pv,h ∩ ker ∂t . Then

Pv{∂t } =
∑
h≥0

Pv,h{∂t },

and Lemma 12.4 says that Pv,h{∂t } = 0 whenever h ≥ v. So we need to show that
Pv,d−1{∂t } ⊂ Jv whenever d ≤ v. Since both Pv{∂t } and Jv are modules over Q[∂x ],
it suffices to consider the case d = v; that is, we must show that Pv,v−1{∂t } ⊂ Jv. Let
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g =
∑

m≤a<b≤m+N
b−a≤v

(`b − `a)⊗ Gab
(
(a + b)x − t

)v−1
∈ Pv,v−1{∂t } (12.8.1)

(for some m, N ∈ Z), where Gab ∈ Q. The expression (12.1.1) for fm,v contains a
unique term with b−a = v. However, the sum (12.8.1) for g contains only terms with
b − a ≤ v, so by subtracting appropriate multiples of f∗,v ∈ Jv ∩ Pv,v−1{∂t }, we can
eliminate all terms with b − a = v. In other words, there exists h ∈ Jv ∩ Pv,v−1{∂t }

such that g − h ∈ Pv−1,v−1{∂t } = 0. Therefore g ∈ Jv.

12.9. Remarks
The lemmas in this section refer to the equivariant homology H T (C)

∗ (XSL(2)
≤v ) of the

affine Springer fiber. Each 1-dimensional orbit Eab ⊂ XSL(2)
≤v of the extended torus

T̃ (C) determines a relation in C[3] ⊗ C[x, t] = H T̃ (C)
∗ (3). For 1 ≤ d ≤ v, the sum

(12.1.1) corresponds to a “constellation” of (finitely many) 1-dimensional orbits, such
that the resulting relation fm,d lies in the subalgebra C[3]⊗C[x] = H T (C)

∗ (3). This
constellation consists of all the 1-dimensional orbits that are contained in a single irre-
ducible component of XSL(2)

≤d . One may think of this constellation of 1-dimensional or-
bits as being attached to the single orbit (the “longest one” in the constellation) which
joins the lattice points `m and `m+d . So H T (C)

∗ (X≤v) is the quotient of C[3] ⊗ C[x]
by the relations (12.2.1), one for each 1-dimensional T̃ (C)-orbit in X≤v.

13. Affine flag manifold for SL(2)

The results in this section are parallel to those of §§6, 7, 8, and 12, so they are pre-
sented without detailed proofs.

13.1
Throughout this section we take G = SL(2). Let B =

(
∗ ∗
0 ∗

)
be the standard Borel

subgroup of SL(2) with corresponding Iwahori subgroup I ⊂ G(o), and let Y =
Y SL(2)

= G(F)/I be the affine flag manifold with basepoint x0 = I. Let T ⊂ G be
the torus of diagonal matrices, with its lattice of translations 3 =

{
α∨(εm) : m ∈ Z

}
,

where α∨ ∈ 8∨ is the simple coroot determined by T ⊂ B (cf. §5). The torus T (C)

acts on Y with fixed points

`m =

(
εm 0
0 ε−m

)
I and rm =

(
0 εm

−ε−m 0

)
I (13.1.1)

for m ∈ Z. Let W = W (G, T ) = {1, wα} be the Weyl group of G. Since the extended
affine Weyl group W̃ = 3 o W acts simply transitively on these fixed points, the
choice of basepoint x0 = `0 ∈ Y determines an identification of W̃ with this set of
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fixed points, which identifies α∨(εm) ∈ 3 with `m ∈ Y and identifies the reflection
wα with r0 ∈ Y. Then `a`b = `a+b, `arb = ra+b, ra`b = ra−b, and rarb = `a−b.

For m ≤ 0, define

xm =

(
1 εm

0 1

)
I and ym =

(
εm
−1

1 0

)
I. (13.1.2)

Then x0 = `0 is still the basepoint. For notational brevity, put y1 = r0. Let T̃ (C)

denote the extended torus (5.5.1). If m ≤ −1 and s ∈ Z, the T̃ (C)-orbit of `s xm is
1-dimensional and it connects the fixed points `s and rm+s . If m ≤ 0, the T̃ (C)-
orbit of `s ym is 1-dimensional and it connects the fixed points rs and `m+s . Let
π : Y SL(2)

→ XSL(2) be the natural projection from the affine flag manifold to
the affine Grassmannian. It is a G(F)-equivariant fibration with fiber isomorphic to
G(C)/B(C) ∼= CP1. It satisfies π(`m) = π(rm) for all m, and π(xm) = π(ym) for
all m ≤ 0.

For m ≤ 0, the T (F)-orbit of xm ∈ Y is (−m)-dimensional, and it projects
isomorphically under π to the T (F)-orbit of the point π(xm) (which was denoted xm

in §6). For m ≤ 1 the T (F)-orbit of ym ∈ Y is (1 − m)-dimensional. If m ≤ 0, it
fibers over the T (F)-orbit of π(ym) = π(xm) with fiber a 1-dimensional affine space.

Fix a regular element γ ∈ t(o), and let

Yγ =
{

x I ∈ Y : Ad(x−1)(γ ) ∈ Lie(I )
}

be the affine Springer fiber corresponding to γ in the affine flag manifold Y. It is
preserved by the extended torus T̃ (C), and the mapping π : Yγ → Xγ is surjective.
(However, it may fail to be a fibration.) The homology of Yγ is pure (see [GKM2]).
The paving of Y by affine cells gives rise to a paving of Yγ by affine cells. In fact, the
intersection of Yγ with a single Bruhat cell in G(F)/I is either empty or else it is a
single affine cell.

PROPOSITION 13.2
The affine flag manifold Y is the disjoint union of countably many T (F)-orbits:

Y =
∐
n≤0

T (F) · {xn ∪ yn+1}. (13.2.1)

The affine Springer fiber Yγ is the union

Yγ = Y≤v =

0⋃
n=−v

T (F) · {xn ∪ yn+1},

where v = val(α′(γ )). For each ordered pair of integers s, t ∈ Z, there is a unique
1-dimensional orbit Est ⊂ Y of the extended torus T̃ (C) which connects the fixed
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points `s and rt . This accounts for all the 1-dimensional orbits of T̃ (C) in Y. The
torus T̃ (C) acts on the orbit Est through the affine root (α, s + t). The orbit Est is
contained in Yγ if and only if −v ≤ t − s ≤ v − 1.

13.3. Proof
If s − t ≥ 1, then Est is the orbit of the point `s xt−s . It is contained in Yγ if and only
if s − t ≤ v. If s − t ≤ 0, then Est is the orbit of the point `t ys−t . It is contained in
Yγ if and only if t − s ≤ v − 1.

13.4
As in §7, the coroot α∨ determines isomorphisms S(̃t) ∼= C[x, t] and D (̃t) ∼=

C[∂x , ∂t ]. Fix γ ∈ t(o), and let v = val(α′(γ )). Let Mab be the vector subspace
of C[W̃ ] ⊗C S(̃t) which is spanned by elements

(`a − rb)⊗ gab
(
(a + b)x − 2t

)
,

where gab are polynomials. Then Mab is a D (̃t)-module. Define Qv =
∑

a,b Mab to
be the sum of those subspaces Mab such that−v ≤ b−a ≤ v−1. Then the inclusion
W̃ ⊂ Yγ induces a short exact sequence on T (C)-equivariant homology,

0 −−−−→ Qv {∂t } −−−−→ C[W̃ ] ⊗C S(t) −−−−→ H T (C)
∗ (Yγ ) −−−−→ 0,

(13.4.1)
where the module of relations Qv {∂t } denotes the submodule of Qv which is annihi-
lated by the differential operator ∂t .

PROPOSITION 13.5
Fix v ≥ 1. The module Qv {∂t } of relations is spanned by

v∑
d=1

(1− α∨)dC[W̃ ] ⊗ S(t){∂d
x } (13.5.1)

and
v∑

d=1

(1− α∨)d−1(1− wα)C[W̃ ] ⊗ S(t){∂d
x }. (13.5.2)

13.6. Proof
This section is parallel to §12. Fix a, b ∈ Z, and fix d ≥ 1. Define

fa,b;d ∈ C[W̃ ] ⊗C C[x, t]

to be the element
a+d−1∑

u=a

b+d−1∑
v=b

(−1)u−v

(
d − 1
u − a

)(
d − 1
v − b

)
(`u − rv)⊗

(
(u + v)x − 2t

)d−1
.
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As in §12, we find that

fa,b;d = (−1)a+b(d − 1)!(1− α∨)d−1(`a − rb)⊗ xd−1
∈ ker(∂t ). (13.6.1)

Fix v ≥ 1. If 1 ≤ d ≤ v, then fm,m;d ∈ Qv and fm+1,m;d ∈ Qv. (These are the
relations coming from the 1-dimensional orbits in each of the two types of irreducible
components of Y SL(2)

≤d ; cf. Remark 12.9.) Define Kv ⊂ C[W̃ ] ⊗C C[x, t] to be the
span

Kv =

∑
m∈Z

v∑
d=1

C fm,m;d + C fm+1,m;d .

Then Kv is a D(t) = C[∂x ] module, and equation (13.6.1) implies that Kv ⊂ Qv{∂t }.

An argument similar to that of §12.6 may be used to show that in fact Kv = Qv{∂t }.

Since

fm,m;d + fm+1,m,d = (d − 1)!(1− α∨)d`m ⊗ xd−1,

fm+1,m+1;d + fm+1,m,d = (d − 1)!(1− α∨)drm ⊗ xd−1,

we see that Kv is the sum

v∑
d=1

(1− α∨)dC[W̃ ] ⊗ S(t){∂d
x } +

v∑
d=1

C f0,0;d .

The second set of relations may be replaced by the less efficient but more symmetric
collection (13.5.2) by noting that for any m ≥ 0,

m−1∑
j=−m

( f j, j;d + f j+1, j;d)+ fm,m;d = (d − 1)!(1− α∨)d−1(`−m − rm)⊗ xd−1,

m−1∑
j=−m

( f j+1, j+1;d + f j+1, j;d)− fm,m;d = (d − 1)!(1− α∨)d−1(r−m − `m)⊗ xd−1.

Since Kv is a C[∂x ]-module, we conclude that for any 1 ≤ d ≤ v,

f0,0;d ∈ (1− α∨)d−1(1−wα)C[W̃ ] ⊗C S(t){∂d
x } ⊂ Kv.

13.7. The semisimple rank one case
As in §8.3, let H be a connected reductive complex algebraic group of semisimple
rank one, let T ⊂ B ⊂ H be a Borel pair, let I ⊂ H(F) be the corresponding Iwahori
subgroup, and let Y H

= H(F)/I be the affine flag manifold for H. Let α, α∨ be the
simple positive root and coroot. These determine a reflection wα ∈ W in the (finite)
Weyl group for H, a 1-dimensional sublattice 〈α∨〉 in the lattice 3H of translations of



HOMOLOGY OF AFFINE SPRINGER FIBERS 547

T, and a differential operator ∂α ∈ D(t) of degree 1. Let W̃ = 3oW be the extended
affine Weyl group. The mapping SL(2) → H determined by α induces an inclusion
φα : Y SL(2)

→ Y H . Let γ ∈ t(o) be a regular element, and set v = val α′(γ ). Then
the affine flag manifold for H is the disjoint union

Y H
=

∐
`∈3H /〈α∨〉

`φα(Y SL(2)),

and the affine Springer fiber for γ is the disjoint union

Y H
γ =

∐
`∈3H /〈α∨〉

`φα(Y SL(2)
≤v ),

which we may unambiguously denote by Y H
≤v. It follows, as in §9.3, that the T (C)-

equivariant homology of Y H
γ is again given by the following.

PROPOSITION 13.8
Suppose that H has semisimple rank one. Fix T ⊂ B ⊂ H , and fix v ≥ 1. Then
the inclusion of the T (C) fixed points in the affine Springer fiber Y H

≤v induces a short
exact sequence

0 −−−−→ Qv {∂t } −−−−→ C[W̃ ] ⊗C S(t) −−−−→ H T (C)
∗ (Y H

≤v) −−−−→ 0,

(13.8.1)
where the module of relations Qv {∂t } is the span of (13.5.1) and (13.5.2).

14. Homology of affine Springer fibers in the affine flag manifold
The results in this section are parallel to §§9 and 10, so they are presented without
detailed proofs.

14.1
As in §5, let F = C((ε)), let G be a connected reductive complex algebraic group,
let T ⊂ B ⊂ G be a Borel pair, and let I ⊂ G(F) be the corresponding Iwahori
subgroup. The affine flag manifold is Y = Y G

= G(F)/I. Let 3 ⊂ T (F) denote the
lattice of translations. Identify each coroot α∨ ∈ 8∨(G, T ) with its image α∨(ε) ∈ 3.

Set W̃ = 3 o W , where W = W
(
G(C), T (C)

)
is the Weyl group. Each cell in the

Bruhat decomposition
Y =

∐
w∈W̃

Iw I/I

contains a unique T (C) fixed point. Hence the choice of basepoint determines a one-
to-one correspondence

Y T (C) ∼= W̃
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between the set of fixed points and the extended affine Weyl group, which is compat-
ible with the action of the lattice 3 of translations.

For each root α ∈ 8+, let wα ∈ W be its corresponding reflection, let Wα =

{1, wα}, and let Hα be the connected reductive group of semisimple rank one which
contains T and the root subgroup Uα ⊂ G. Let Y α be the affine flag manifold for Hα.

If u ∈ Y is a T (C) fixed point, then it determines an isomorphism

φu : Y α
→ Hα

· u ⊂ Y

between Y α and the orbit Hα
· u. It restricts to an isomorphism Y α

≤v
∼= Yγ ∩ Hα

· u
of affine Springer fibers, for any regular element γ ∈ t(o) with v = val α′(γ ). (The
action of wα on Y T (C) preserves the fixed points in the orbit Hα

·u, but it interchanges
those of “type `” and “type r”.) Define

Zα
=

∐
u∈Wα\W

Hα
· u =

∐
u∈Wα\W

φu(Y α).

The proof of the following lemma is parallel to that of Lemma 5.12.

LEMMA 14.2
Let γ ∈ t(o) be a regular element. Then the union of the 0- and 1-dimensional orbits
in the affine Springer fiber is

(Yγ )1 =
⋃

α∈8+

Zα
γ ,

where Zα
γ is the intersection

Zα
γ = Yγ ∩ Zα

=

∐
u∈Wα\W

φu(Y α
≤v).

If α 6= β, then Zα
γ ∩ Zβ

γ = W̃ .

Each α ∈ 8+ corresponds to a degree one differential operator ∂α ∈ D(t), to an ele-
ment α∨ ∈ 3, and to a reflection wα ∈ W. For α ∈ 8+, define the D(t)-submodule
Mα,γ to be the sum

val(α′(γ ))∑
d=1

(1− α∨)dC[W̃ ] ⊗C S(t){∂d
α }

+

val(α′(γ ))∑
d=1

(1− α∨)d−1(1− wα)C[W̃ ] ⊗C S(t){∂d
α }.

Using Proposition 13.8, the argument of §9.3 gives the following.



HOMOLOGY OF AFFINE SPRINGER FIBERS 549

THEOREM 14.3
Let γ ∈ t(o) be a regular element. Suppose the homology H∗(Yγ ;C) is pure. Then
the inclusion W̃ ⊂ Yγ induces an exact sequence of D(t)-modules,

0 −−−−→
∑

α∈8+ Mα,γ −−−−→ C[W̃ ] ⊗C S(t) −−−−→ H T (C)
∗ (Yγ ) −−−−→ 0.

The group (W̃ o Aut)γ of (9.4.2) acts on this equivariant homology group, and it
restricts to an action on the ordinary homology,

H∗(Yγ ) = H T (C)
∗ (Yγ ) {I } ,

that is, the subgroup of the equivariant homology which is annihilated by the aug-
mentation ideal I ⊂ D .

14.4. Springer action
Consider the (regular ⊗ trivial) action of W̃ from the right on

C[W̃ ] ⊗ S(t).

This action preserves each relation Mα,γ (for α ∈ 8+). Assume that the homology
H∗(Yγ ;C) is pure. Then the right action of C[W̃ ] passes to an action on H T (C)

∗ (Yγ )

which is compatible with the D(t)-module structure and which commutes with the
(W̃ o Aut)γ -action. So it restricts to an action (from the right) of W̃ on the ordinary
homology H∗(Yγ ). It can be shown that this action coincides with the Springer action
defined by Lusztig [Lu] and (using a statement from [KL1] whose proof does not
appear in the literature) by Sage [S1]. So Theorem 14.3 gives a “formula” for the
Springer action.

14.5. Endoscopic groups
There are parallels to §§10 and 11 for the affine flag manifold also. As in §10, suppose
that G is adjoint, and let (H, s) be endoscopic data for G. Fix compatible Borel pairs
T ⊂ B ⊂ G and TH ⊂ BH ⊂ H with resulting identification TH ∼= T . The group
H has root system 8(H, TH ) ⊂ 8(G, T ) and (extended) affine Weyl group W̃ H

=

3 o W H
⊂ W̃ . Let γ ∈ t(o) be a regular element with corresponding Springer fibers

Yγ and Y H
γH

. Suppose that the homology groups H∗(Yγ ;C) and H∗(Y H
γH
;C) are pure.

Let 1 be the homological transfer factor of (10.1.2), let r = deg(1), and (as before)
let η be the sign character that gives the action of W̃ G,H

γ on 1.

We are going to compare the induced module H T (C)
∗ (Y H

γH
)[−2r ] ⊗C[W̃ H ] C[W̃ ]

to the module H T (C)
∗ (Yγ ). One sees immediately that this induced module is equal to

the quotient of C[W̃ ] ⊗C S(t) by
∑

α∈8+(H) Mα,γ . Note that the surjection

1⊗1 : C[W̃ ] ⊗C S(t)→ C[W̃ ] ⊗C S(t)
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kills Mα,γ whenever α ∈ 8+(G)−8+(H).

Let J ⊂ C[3] be the multiplicative subset generated by the elements 1− α∨ for
α∨ ∈ 8∨(G)−8∨(H). We use the action of 3 on the Springer fibers to regard their
homology groups as modules over the group algebra C[3], allowing us to localize the
homology groups using J . Then we have the following result.

THEOREM 14.6
Suppose that H∗(Yγ ) and H∗(Y H

γH
) are pure. Then the mapping 1 ⊗ 1 induces a

homomorphism of D(t)-modules,

H T (C)
∗ (Yγ )→ H T (C)

∗ (Y H
γH

)[−2r ] ⊗C[W̃ H ] C[W̃ ],

and a homomorphism on ordinary homology,

H∗(Yγ ;C)→ H∗(Y H
γH
;C)[−2r ] ⊗C[W̃ H ] C[W̃ ].

Both homomorphisms transform under η with respect to the left action of W̃ G,H
γ and

are equivariant with respect to the right action of W̃ , and both homomorphisms be-
come isomorphisms

H T (C)
∗ (Yγ )J ∼= H T (C)

∗ (Y H
γH

)J [−2r ] ⊗C[W̃ H ] C[W̃ ],

H∗(Yγ ;C)J ∼= H∗(Y H
γH
;C)J [−2r ] ⊗C[W̃ H ] C[W̃ ]

after localizing with respect to J.

15. An orbital integral

15.1. Setup
Let k be a finite field, and let k̄ be an algebraic closure of k. Let F = k((ε)) and
L = k̄((ε)). Let o denote the valuation ring k[[ε]] of F . We write σ for the Frobenius
automorphism of both k̄/k and L/F , and we write 〈σ 〉 for the infinite cyclic group
generated by σ . We also choose an algebraic closure L̄ of L and write I for Gal(L̄/L).
We write F for the algebraic closure of F in L , and we write 0 for the Galois group
Gal(F/F).

Let G be a connected reductive group over F , and assume that G splits over L . Let
K be a parahoric subgroup of G(F), let KL be the corresponding σ -stable parahoric
subgroup of G(L), and write k and kL for the corresponding parahoric subalgebras
(of g(F) and g(L), resp.). Let X be the k-ind-scheme associated to G(L)/KL . Then
X (k̄) = G(L)/KL and X (k) = G(F)/K .

Let T be a maximal F-torus in G. Let S denote the maximal unramified subtorus
of T . Thus the cocharacter group∗ X∗(S) can be identified with X∗(T )I .

∗The cocharacter group X∗(S) was denoted χ∗(S) in earlier sections.
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Let u be a regular element in Lie(T )(F), and assume that u is integral in the
sense that α(u) lies in the valuation ring of F̄ for every root α of T in G. We write Xu

for the affine Springer fiber {x ∈ X : x−1ux ∈ kL} studied by Kazhdan and Lusztig
in [KL2]. (We usually write x−1ux rather than Ad(x)−1u.)

For µ ∈ X∗(S) we write εµ for µ(ε) ∈ S(L). The map µ 7→ εµ is 〈σ 〉-
equivariant and identifies X∗(S) with a subgroup of S(L) (and of T (L)) which we
denote by 3. The group T (L) centralizes u and therefore acts by left translations
on Xu . The quotient 3\Xu of Xu by the subgroup 3 of T (L) is a nonempty projec-
tive scheme of finite type over k (see [KL2]).

15.2. Normalized Haar measure on T (F)

Recall from [K1, §7.6] the exact sequence

1→ T (L)1 → T (L)
wT
−→ X∗(T )I → 0. (15.2.1)

Taking invariants under 〈σ 〉, we get another exact sequence

1→ T (F)1 → T (F)→
(
X∗(T )I

)〈σ 〉
→ 0, (15.2.2)

where T (F)1 := T (F)∩T (L)1. Surjectivity at the right end of this last exact sequence
is proved in [K1, §7.6].

Let dt be the Haar measure on T (F) which gives T (F)1 measure 1. The group
3〈σ 〉 of T (F) is discrete and cocompact, so the volume of the quotient 3〈σ 〉\T (F) is
finite. We need to compute this volume (with respect to dt).

15.3. Volume computation
We claim that

voldt
(
3〈σ 〉\T (F)

)
=
| cok[X∗(S)0 → X∗(T )0]|

| ker[X∗(S)0 → X∗(T )0]|
. (15.3.1)

To prove this claim we begin by noting that the canonical map

X∗(S) = X∗(T )I
→ X∗(T )I

has finite kernel and cokernel. Thus this map is in fact injective since X∗(S) is torsion-
free. We let M denote its cokernel, so that we get a short exact sequence

0→ X∗(S)→ X∗(T )I → M → 0

of 〈σ 〉-modules, and an associated long exact sequence of group cohomology

0→X∗(S)〈σ 〉→ (X∗(T )I )
〈σ 〉
→ M 〈σ 〉

→X∗(S)0 → X∗(T )0 → M〈σ 〉→ 0
(15.3.2)
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in which we have identified X∗(S)〈σ 〉 with X∗(S)0 and (X∗(T )I )〈σ 〉 with X∗(T )0 .
Since X∗(S)〈σ 〉 → (X∗(T )I )

〈σ 〉 is injective, the subgroups X∗(S)〈σ 〉 and T (F)1

of T (F) have trivial intersection, and therefore

voldt
(
3〈σ 〉\T (F)

)
=

∣∣∣ (X∗(T )I )
〈σ 〉

X∗(S)〈σ 〉

∣∣∣.
It follows from (15.3.2) that∣∣∣ (X∗(T )I )

〈σ 〉

X∗(S)〈σ 〉

∣∣∣ = |M 〈σ 〉|
| ker[X∗(S)0 → X∗(T )0]|

.

Since all groups in the exact sequence

0→ M 〈σ 〉→ M
σ−1
−−→ M → M〈σ 〉→ 0

are finite, we have
|M 〈σ 〉| = |M〈σ 〉|.

Finally, it follows from (15.3.2) that

|M〈σ 〉| = cok
[
X∗(S)0 → X∗(T )0

]
.

Combining the last four equations, we get the claim.

15.4. Normalized orbital integrals
For any compactly supported locally constant function f on g(F), we put

Ou( f ) =

∫
T (F)\G(F)

f (g−1ug) dt\dg,

where dt is the normalized Haar measure on T (F) defined above, and dg is the Haar
measure on G(F) that gives our chosen parahoric subgroup K measure 1. We then
have

Ou( f ) = voldt
(
3〈σ 〉\T (F)

)−1
∫

3〈σ 〉\G(F)
f (g−1ug) dg. (15.4.1)

In the special case when our function f is 1k, the characteristic function of k, we have

∫
3〈σ 〉\G(F)

1k(g−1ug) dg =
∣∣{x ∈ 3〈σ 〉\G(F)/K : x−1ux ∈ k

}∣∣
=

∣∣3〈σ 〉\(Xu(k)
)∣∣. (15.4.2)

Combining (15.3.1), (15.4.1), and (15.4.2), we find that

Ou(1k) =
| ker[X∗(S)0 → X∗(T )0]|

| cok[X∗(S)0 → X∗(T )0]|
·
∣∣3〈σ 〉\(Xu(k))

∣∣. (15.4.3)
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15.5. κ-orbital integrals of 1k

Consider an element u′ ∈ g(F) which is stably conjugate to u (i.e., conjugate under
G(F)). Since the group H1(L , T ) vanishes (see [Se, §X.7]), there exists g ∈ G(L)

such that u′ = gug−1. Apply σ to this equality to see that g−1σ(g) ∈ T (L). The class
of g−1σ(g) in B(T )

(
in other words, the σ -conjugacy class of g−1σ(g) in T (L)

)
is

independent of the choice of g. Here, as usual, for any linear algebraic group G over
F , we write B(G) for the set of σ -conjugacy classes in G(L).

Turning this around, given t ∈ T (L) whose class in B(T ) lies in

D(T/F) := ker
[
B(T )→ B(G)

]
,

we choose g ∈ G(L) such that t = g−1σ(g) and put u(t) = gug−1, an element
of g(F) that is stably conjugate to u and whose G(F)-conjugacy class depends only
on the class of t in B(T ). The construction t 7→ u(t) sets up a bijection from D(T/F)

to the set of G(F)-conjugacy classes in the stable conjugacy class of u.
Recall from [K1, §7.6] that the canonical homomorphism

wT : T (L)→ X∗(T )I

induces an isomorphism (take coinvariants under 〈σ 〉)

B(T ) ' X∗(T )0.

At this point we fix a prime number l that is nonzero in the field k. Put

T̂ := Hom
(
X∗(T ), Q̄×l

)
.

Let κ ∈ Hom(X∗(T )0, Q̄×l ) = T̂ 0 . For t ∈ T (L), we write 〈t, κ〉 ∈ Q̄×l for the value
of the character κ on the element of X∗(T )0 obtained as the image of t under

T (L) � B(T ) ' X∗(T )0.

For Q̄l -valued locally constant compactly supported functions f on g(F), we
define the κ-orbital integral Oκ

u ( f ) by

Oκ
u ( f ) =

∑
t∈D(T/F)

〈t, κ〉 · Ou(t)( f ).

Note that if κ lies in the subgroup Z(Ĝ)0 of T̂ 0 (where we form the Langlands dual
group Ĝ using Q̄l and where Z(Ĝ) denotes the center of Ĝ), then Oκ

u is a stable
orbital integral.

In the special case when f is 1k, we find that

Oκ
u (1k) =

| ker[B(S)→ B(T )]|

| cok[B(S)→ B(T )]|
·

∑
t∈D(T/F)

〈t, κ〉 · |3〈σ 〉\X tσ
u |, (15.5.1)
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where we have written X tσ
u for the fixed point set of tσ on Xu , which appears in our

formula since x 7→ gx induces a bijection from X tσ
u to Xu(t)(k), where g ∈ G(L) is

chosen so that t = g−1σ(g), as before.

15.6. Local systems Lη on 3\Xu

Any finite-dimensional (continuous) l-adic representation of 3 o Gal(k̄/k) (with the
topology on 3 given by all subgroups of finite index) gives rise to a local system on
3\Xu over k (which becomes constant when pulled back to Xu over k̄). Put Ŝ :=
Hom(X∗(S), Q̄×l ). Let

η ∈ Hom
(
X∗(S)0, Q̄×l

)
= Ŝ0

= Ŝ〈σ 〉,

and assume that η has finite order. Using the isomorphism 3 ' X∗(S), we also view
η as a character on 3, and since η is fixed by σ , we may extend η to a character on
3 o Gal(k̄/k) by making it trivial on Gal(k̄/k). We use the resulting 1-dimensional
representation of 3 o Gal(k̄/k) to form a rank one local system Lη on 3\Xu over k.

Since the action of T (L) on Xu commutes with that of 3, it induces an action
(over k̄) of T (L) on 3\Xu and Lη, and therefore T (L) acts on the cohomology
groups H i (3\Xu, Lη). It follows from the definitions that the subgroup 3 of T (L)

acts on these cohomology groups through the character η−1. Moreover, the “identity
component” T (L)1 of T (L) acts trivially on them. Then since 3 · T (L)1 has finite
index in T (L) and acts by a character on cohomology, each cohomology group is
a semisimple T (L)-module. Therefore (using (15.2.1)) we can decompose the coho-
mology groups as

H i (3\Xu, Lη) =
⊕

κ

H i (3\Xu, Lη)κ ,

where κ runs through the finite set of characters κ ∈ Hom(X∗(T )I , Q̄×l ) = T̂ I whose
image under T̂ I

→ Ŝ is η−1 and where H i (3\Xu, Lη)κ denotes the κ-isotypic sub-
space of H i (3\Xu, Lη) (viewing κ as a character on T (L), as before).

15.7. Main result
Now we can state the main result of this section, which gives a cohomological inter-
pretation of the κ-orbital integrals of 1k.

THEOREM 15.8
Let κ be an element of finite order in T̂ 0 . Then the κ-orbital integral Oκ

u (1k) is given
by

Oκ
u (1k) = Tr

(
σ−1
; H•(3\Xu, Lη)κ

)
,

where η is the image of κ−1 under T̂ 0
→ Ŝ0 .
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Here we have written Tr(σ−1
; H•(3\Xu, Lη)κ) as an abbreviation for

2 dim Xu∑
i=0

(−1)i Tr
(
σ−1
; H i (3\Xu, Lη)κ

)
.

Proof
The first step is to apply the Grothendieck-Lefschetz trace formula. We claim that for
any t ∈ T (L) we have

Tr
(
(tσ)−1

; H•(3\Xu, Lη)
)
=

∑
x̄∈(3\Xu)tσ

〈λx , η〉 (15.8.1)

with notation as follows. We are writing (3\Xu)tσ for the fixed points of tσ on 3\Xu ,
and for such a fixed point x̄ , we choose a representative x ∈ Xu and define λx ∈ 3

by the equality tσ x = λx x . The image of λx in 3〈σ 〉 = X∗(S)0 is independent of
the choice of representative x . The equality (15.8.1) follows from the Grothendieck-
Lefschetz trace formula applied to the Frobenius map for a twisted∗ k-form of 3\Xu ,
Lη in which the twisted action of σ is given by tσ .

The formula (15.8.1) can be rewritten as∑
κ ′

Tr
(
(tσ)−1

; H•(3\Xu, Lη)κ ′
)
=

∑
λ∈X∗(S)0

〈λ, η〉−1
· |3〈σ 〉\(Xελtσ

u )|, (15.8.2)

where the sum on the left is taken over κ ′ ∈ T̂ 0 whose image under T̂ 0
→ Ŝ0

is η−1. Indeed, since (tσ)−1 maps H i (3\Xu, Lη)κ ′ to H i (3\Xu, Lη)σ−1(κ ′), only
those κ ′ ∈ T̂ I that are fixed by σ contribute to the trace. As for the sum on the right,
we simply collected like terms in the sum on the right in (15.8.1).

Multiply both sides of (15.8.2) by 〈t, κ〉, sum over

t ∈ cok
[
B(S)→ B(T )

]
= cok

[
X∗(S)0 → X∗(T )0

]
,

and divide by the order | cok | of this cokernel. We obtain

Tr
(
σ−1
; H•(3\Xu, Lη)κ

)
=
| ker |
| cok |

·

∑
t∈B(T )

〈t, κ〉 · |3〈σ 〉\(X tσ
u )|.

Comparing this equation with equation (15.5.1), we see that in order to finish the proof
of the theorem, it suffices to show that if X tσ

u is nonempty, then t lies in ker[B(T )→

∗We are not twisting by a 1-cocycle of Gal(k̄/k). (Only some elements t yield such a 1-cocycle.) Rather, we are
twisting by a 1-cocycle of Gal(k̄/k) in the group of k̄-automorphisms of the projective variety 3\Xu . Note that
we can find a subgroup A of T (L) which acts trivially on 3\Xu and for which T (L)/A can be regarded as the
k̄-points of an algebraic group over k, acting algebraically on 3\Xu .
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B(G)]. Indeed, suppose that tσ(x) = x for some x ∈ G(L)/KL . Then x−1tσ(x) ∈

KL . By Lang’s theorem (applied to the finite-dimensional quotients of the connected
proalgebraic group KL over k) and the completeness of L , every element in KL is
trivial in B(G). Therefore t is trivial in B(G).

15.9. A variant of the main result
The theorem above can be restated in a slightly different way since the classical rela-
tionship between the cohomology of Xu and that of 3\Xu presumably has an l-adic
version

H i (3\Xu, Lη)κ = ExtiX∗(T )I

(
(Q̄l)κ , R0(Xu, Q̄l)

)
.

Here (Q̄l)κ denotes the 1-dimensional X∗(T )I -module obtained by letting X∗(T )I

act on Q̄l via the surjection X∗(T )I → X∗(T )0 and the character κ of X∗(T )0 , and
the complex R0(Xu, Q̄l) is being regarded as an object in a suitable derived category
of X∗(T )I -modules. Note that σ acts on X∗(T )I as well as on R0(Xu, Q̄l); it then
acts on

ExtiX∗(T )I

(
(Q̄l)κ , R0(Xu, Q̄l)

)
as well since κ is fixed by σ . Therefore the theorem above presumably yields the
equality

Oκ
u (1k) = Tr

(
σ−1
; R Hom•X∗(T )I

((Q̄l)κ , R0(Xu, Q̄l))
)
. (15.9.1)

15.10. A geometric reformulation of the fundamental lemma
We now assume that G comes from a (necessarily quasi-split) connected reductive
group over k, which we still denote by G. Thus G is unramified over F , and the para-
horic subgroup K := G(o) is a hyperspecial maximal compact subgroup of G(F);
we denote the corresponding parahoric subalgebra by k := g(o).

As above, we form all Langlands dual groups using Q̄l . Let H be an endoscopic
group for G, and let s be the usual element in Z(Ĥ)0 , where Z(Ĥ) denotes the center
of Ĥ . We write h for the Lie algebra of H . We assume that H is also unramified, so
that it comes from a (quasi-split) group over k, which we still denote by H . Thus we
also have K H := H(o) and kH := h(o).

We use a regular nilpotent element in g(o) whose image in g(k) is also regular
nilpotent in order to form Kostant’s section, obtaining, as in [K2], transfer factors
1(u H , u) which for u lying in Kostant’s section take the simple value

DG(u)DH (u H )−1

(in other words, 1I V (u H , u) in the notation of Langlands and Shelstad [LS]). Here
DG denotes the usual discriminant function on the Lie algebra.
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Let u H be an integral G-regular semisimple element of h(F), and let u be an
image of u H (in the sense of Langlands and Shelstad [LS]) that is G(F)-conjugate to
an element in Kostant’s section. (This uniquely determines the G(F)-conjugacy class
of u.) We then have affine Springer fibers Xu , X H

u H
for u, u H , respectively. Using the

dimension formula for affine Springer fibers (conjectured by Kazhdan and Lusztig
[KL2] and proved by Bezrukavnikov [B]), we can rewrite the transfer factor as

1(u H , u) = q−r ,

where r := dim Xu − dim X H
u H

and q denotes the cardinality of k.
We let T denote the centralizer of u in G, and we identify T with the centralizer

TH of u H in H via the unique admissible isomorphism whose differential maps u H

to u. Via the canonical injection Z(Ĥ) ↪→ T̂ , the element s ∈ Z(Ĥ)0 determines an
element κ ∈ T̂ 0 .

The conjectural fundamental lemma predicts the equality

Oκ
u H

(1kH ) = q−r
· Oκ

u (1k),

which in view of (15.9.1) can be rewritten as the equality of

qr
· Tr

(
σ−1
; R Hom•X∗(T )I

((Q̄l)κ , R0(X H
u H

, Q̄l))
)

and
Tr

(
σ−1
; R Hom•X∗(T )I

((Q̄l)κ , R0(Xu, Q̄l))
)
.

We conjecture the stronger statement that

R Hom•X∗(T )I

(
(Q̄l)κ , R0(X H

u H
, Q̄l [−2r ](−r))

)
is isomorphic to

R Hom•X∗(T )I

(
(Q̄l)κ , R0(Xu, Q̄l)

)
.

15.11. Transfer factors for unramified tori
Earlier in this paper, when we calculated the homology of Springer fibers, the ele-
ments of g(F) we considered did not necessarily lie in Kostant’s section. Therefore
we need a further discussion of transfer factors.

We continue the discussion from Section 15.10 above, making only the following
changes. We no longer require that the elements in g(F) that we consider be G(F)-
conjugate to an element in Kostant’s section. Instead we consider a maximal torus T
of G over k (not just over F), so that in particular T is unramified over F , and we
assume that T comes from a maximal torus TH in H . We identify T and TH using
some admissible isomorphism, and for any G-regular γ ∈ t(F), we denote by γH the
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corresponding element of tH (F). It follows immediately from the definition of trans-
fer factors on the Lie algebra (see [W] and perhaps also [K2]) that there is a constant
cT (depending only on the torus T and our choice of admissible isomorphism) such
that for any G-regular element γ ∈ t(F),

1(γH , γ ) = cT ·1I V (γH , γ ) ·
∏
α

(−1)val(α(γ )),

where α runs over a set of representatives for the symmetric orbits of Frobenius on
the set of roots of T in G that do not come from H . Here∗ val is the valuation on
F that takes the value 1 on uniformizing elements for F . In fact, the constant cT

is equal to 1 since any element γ ∈ t(o) whose image in t(k) is G-regular (which
implies that val(α(γ )) = 0 for all roots α) is G(F)-conjugate to an element in our
choice of Kostant’s section, and therefore for such γ we have (by [K2]) 1(γH , γ ) =

1I V (γH , γ ).
Now recall the homological transfer factor 1 =

∏
α∈8+(G)−8+(H) ∂

val α(γ )
α .

Frobenius acts on X∗(T ) by some element τ ∈ W̃ G,H
γ , and we have τ(1) = η(τ) ·1

(see §10 for the definitions of the group W̃ G,H
γ and the sign character η on it). It is a

simple exercise to check that

η(τ) =
∏
α

(−1)val(α(γ ))

with α again running over a set of representatives for the symmetric orbits of Frobe-
nius on the set of roots of T in G that do not come from H . Therefore we have the
equality

1(γH , γ ) = η(τ) ·1I V (γH , γ ),

which for integral γ can be rewritten as

1(γH , γ ) = η(τ) · q−r (15.11.1)

with r again defined as dim(Xγ )− dim(X H
γH

).

15.12. Remarks on the fundamental lemma for unramified tori
We continue the discussion of Section 15.11. Assume that the étale cohomology
groups H∗(Xγ , Q`) and H∗(X H

γH
;Q`) are pure. By [GKM2], this is true in the equal

valuation case, in other words, when val(α(γ )) is independent of α, since in that case
there is a paving by affines defined over k.

We expect Theorems 9.2 and 10.2 to have corresponding statements in étale
cohomology. Assume that this is so. Then Theorem 9.2 gives a formula for the T -

∗The element α(γ ) was denoted α′(γ ) in earlier sections.
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equivariant étale homology of Xγ as a quotient:

0 −−−−→
∑

α∈8+G

Lα,γ −−−−→ Q`[3] ⊗ S
(
t(Q`)

)
−−−−→ H T

∗ (Xγ , Q`) −−−−→ 0.

The surjection Q`[3] ⊗ S(t(Q`))→ H T
∗ (Xγ , Q`) is Frobenius equivariant, and the

action of Frobenius on Q`[3] ⊗ S(t(Q`)) is given by τ ⊗ Q, where τ ∈ W̃ G,H
γ is

the element through which the Frobenius element σ acts on X∗(T ) and Q denotes the
endomorphism of the symmetric algebra induced by multiplication by q on the vector
space t(Q`). It follows that the action of the Frobenius element σ on H2i (Xγ ;Q`) is
given by σ = q i

· τ .
Therefore Corollary 10.3 gives an isomorphism

H∗(Xγ ;Q`)J ' H∗(X H
γH
;Q`)J [−2r ](r)

which transforms by the sign η(τ) under the action of Frobenius. As in the proof of
Proposition 11.2, this in turn gives an isomorphism

Tor3p
(
(Q`)κ , Hq(Xγ ;Q`)

)
' Tor3p

(
(Q`)κ , Hq−2r (X H

γH
;Q`)

)
(r).

Taking the vector space dual of both sides of this equation, we obtain an isomorphism

Extp
3

(
(Q`)κ , Hq(Xγ ;Q`)

)
' Extp

3

(
(Q`)κ , Hq−2r (X H

γH
;Q`)

)
(−r)

which transforms by the sign η(τ) under the action of Frobenius. It follows that

q−rη(τ)Tr
(
σ−1
; R Hom•3((Q̄l)κ , R0(Xγ , Q̄l))

)
= Tr

(
σ−1
; R Hom•3((Q̄l)κ , R0(X H

γH
, Q̄l))

)
.

Thus, under the assumptions we have made, the fundamental lemma for unramified
tori follows from this last equation together with formulas (15.9.1) and (15.11.1).
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[L] R. P. LANGLANDS, Les débuts d’une formule des traces stables, Publ. Math. Univ.
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