
1. John Mather’s contributions to singularity theory

by Mark Goresky

1.1. John Mather played a pivotal role in the development of the
intertwined theories of singularities of mappings and stratifications.
He was involved in two significant projects: stability of smooth
mappings, and the foundations of stratification theory.

In 1955 Hassler Whitney [19] defined a smooth mapping f : M →
P between smooth manifolds to be C∞ stable if, for any sufficiently
nearby mapping f ′ : M → P there are diffeomorphism φ : M →
M and ψ : P → P that transform f ′ into f . Equivalently, f

M
f−−−→ P

φ

y yψ
M

f ′
−−−→ P

Figure 1. C∞ equivalence

should lie in an open orbit of the action of the diffeomorphism group
Diff(M) × Diff(P ) on the space C∞(M,P ) of smooth mappings
(with respect to a suitable topology).

Whitney asked: Do stable mappings form an open and dense set
in the space of all smooth proper mappings? For Morse functions
f : M → R and for mappings f : R2 → R2, Whitney showed the
answer is “yes”. He believed the answer would always be “yes”.

In 1960 René Thom [17] dropped a bombshell: he found a smooth
proper mapping R16 → R16 that cannot be smoothly approximated
by stable maps. This opened a Pandora’s box of complications.

Despite efforts and partial results of many people, the answer was
not known until 1968 when John Mather developed an enormous
collection of techniques, resulting in six major papers ([4, 5, 6, 7, 8,
9]) that completely answered the question and in some sense killed
the subject because there was nothing more to say.

Theorem 1. [9] Stable mappings M → P form a dense subset of
the space C∞(M,P ) if and only if (dim(M), dim(P )) is represented
by a red dot as shown in Figure 2.
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Figure 2. C∞ stability range of dimensions

1.2. If f ∈ Diff(M,P ) is stable, then near the identity, the diffeo-
morphism group Diff(M) × Diff(P ) maps surjectively to a neigh-
borhood of f so the map on the tangent space

TIDiff(M)× TIDiff(P )→ Tf (C
∞(M,P ))

is surjective, which is to say that every vector field w “along” f is
obtained from vector fields u, v on M,P so that w = v ◦ f + df ◦ u,
as in the following diagram:

TM
df

- TP

M

u
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f
-

w

-

P

v

6

This necessary condition on vector fields is known as “infinitesi-
mal stability”. In [4, 5] Mather developed a far reaching generaliza-
tion of the Weierstrass-Malgrange preparation theorem and used it
to prove the converse: infinitesimal stability implies stability.
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Infinitesimal stability provides an differential-geometric approach
to the problem of stability but it requires solving nonlinear differ-
ential equations for the vector fields u, v. In [6] Mather introduced
the notions of finitely determined mappings and finite singularity
type. He showed how to replace the vector fields in the differential-
geometric problem with their Taylor expansions to some finite or-
der, thus converting the problem into a purely algebraic one.

1.3. Next, in [7], Mather solved the resulting algebraic problem.
Suppose f : M → P with f(x) = y. The R-algebra Cy of germs
(at y) of C∞ functions P → R contains a maximal ideal my of
germs that vanish at y. Mather defined Q(f) = Cx/f

∗(my)Cx and
Qk(f) = Q(f)/mk+1 where m is the intersection of the maximal
ideals in Q(f). Mather proved, if f is stable (near x) then the iso-
morphism class of f is determined by the finite dimensional algebra
Qp+1(f) where p = dim(P ). He also characterized those R-algebras
that come from stable mappings, thus giving an “algebraic” solu-
tion to the problem of identifying stable mappings.

In [8] Mather used transversality techniques to address the den-
sity of stable mappings. Putting everything together he concluded
that stable mappings are dense in the region described in Figure 2.

1.4. A central object in Mather’s analysis is the jet space. Recall
that Jkx,y(M,P ) consists of equivalence classes of smooth functions
f : M → P , f(x) = y, two being equivalent if they agree to order
k at x ∈M . Allowing x, y to vary gives the vector bundle of k-jets,
Jk(M,P ) → M × P whose elements may be thought of as finite
approximations to smooth functions f : M → P . Let Jk1 (M,M) be
the group of invertible k-jets. One might hope that the orbits of the
action of Jk1 (M,M)×Jk1 (P, P ) on Jk(M,P ) form a stratification of
the jet space but this is only true for orbits of small codimension.
Orbits of high codimension exist in continuous families, and this is
the source of the non-density of C∞ stable mappings.

1.5. Throughout this period, René Thom had been thinking that
perhaps topologically stable maps might be dense, replacing the
diffeomorphisms φ, ψ in Figure 1.1 with homeomorphisms. At first
glance this may seem a hopeless task since a homeomorphism may
be arbitrarily bad. But Thom developed a far reaching vision as to
how this might be achieved: Develop the theory of stratifications
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that are topologically locally trivial along each stratum; show that
the jet space has a natural stratification in which the aforemen-
tioned families of orbits combine into single strata; then show that
transversality of the jet Jk(f) : M → Jk(M,P ) to these strata,
plus the “isotopy lemmas” implies that f is topologically stable.
These ideas were outlined in §4 of [14], amplified in [15, 16].

Mather explained to the author [13] that he had a great deal
of difficulty in making sense of Thom’s outline and he did not
understand Thom’s definition of the stratification of the jet space.
In the end, using his notions of finite singularity type, Mather
was able to prove that topologically stable maps are dense. His
proof differs from Thom’s outline in that Mather does not use a
stratification of the jet space, although he initially thought it would
be necessary to do so. Mather published [10] an outline of his proof
in 1973.

Mather later [11], citing his inspiration from Thom’s outline,
used his density theorem to construct a stratification of the jet
space and showed that topological stability of f : M → P is im-
plied by transversality of the jet mapping M → Jk(M,P ) to this
stratification.

1.6. In 1976 Gibson et. al. [2], using many of Mather’s techniques
and results, but following Thom’s outline more closely, published a
second proof, see also [1]. Gibson et. al. make use of a stratification
of the jet space, possibly different from Mather’s. They rely, in an
essential way, on the foundational work on stratification theory in
Mather’s 1970 notes [12] which were available by then.

Mather’s plan was to write a book explaining his proof of the
density of topologically stable mappings, but only the first chap-
ter [12] was completed. This chapter, however, had an incredible
influence on singularity theory and is still the best source on the
foundations of stratification theory. In this chapter Mather mod-
fies Thom’s definitions slightly and provides a complete proof of
the isotopy lemma that was sketched by Thom in [10].

1.7. Stratification theory. Can an analytic set exhibit fractal
behavior? If f : X → Y is a proper analytic mapping between
analytic sets, do the fibers fall into finitely many distinct homotopy
types? These questions were partially put to rest when Lojasiewicz
triangulaged [3] semi-analytic sets. However, analytic and algebraic
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sets appear to have natural decompositions into more manageable
pieces.

Whitney [18, 20, 21] made various attempts to decompose alge-
braic sets into unions of smooth manifolds. He found two problems,
illustrated by examples. The first example is an algebraic subset of
Euclidean space such that no decomposition into smooth manifolds
will be locally trivial in the C1 sense. The variety

xy(y − x)(y − zx) = 0

shown in Figure 3 consists of four ”sheets” meeting along the z axis.
Three of the sheets are simply a product with the z axis, but the
fourth sheet twists around the axis. Any differentiable flow in the
ambient Euclidan space, parallel to the z axis, that preserves the
first three sheets cannot preserve the fourth, because the derivative
at any point on the z axis is determined by the cross-ratio. So the
homogeneity that is apparent in this example can only be realized
by a continuous flow.

Figure 3. xy(y − x)(y − zx) = 0

The second example shows that the naive approach to stratifying
an algebraic set does not work. One might hope to stratify an alge-
braic variety by starting with the nonsingular part, then throwing
it away and continuing by induction. Whitney’s second example,
is illustrated in Figure 4. The nonsingular part consists of the two
dimensional surfaces. When we remove this part, what remains is
a smooth line. However one point on this line is special, because
of the way the two dimensional part twists around the line. Whit-
ney proposed conditions A and B as criteria that would (correctly)
force the origin to be considered as a separate stratum.
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Figure 4. y2 = x3 − x2z2

In [14], R. Thom proposed a program to solve both of Whit-
ney’s problems: a way to prove that a stratification satisfying the
Whitney conditions would be topologically locally trivial.

1.8. Thom’s outline was very difficult to follow and Mather felt
that the first step in proving his own results on topological stability
required a complete proof of Thom’s proposal, that a Whitney
stratified set is topologivally locally trivial ([13]). Mather’s 1970
notes accomplish this in great detail.

The proof, approximately following Thom, first requires the con-
struction of a system of control data: a “tubular neighborhood” TX
of each stratum X together with a projection πX : TX → X to the
stratum, and a function ρX : TX → [0, ε) measuring the “distance”
from the stratum. The various (πX , ρX) are required to satisfy
certain compatibility conditions between strata.

Assuming Whitney’s conditions, and using a delicate construc-
tion of tubular neighborhoods and a double induction, Mather
shows how to construct such a system of control data. Mather
once mentioned that he had an additional 20 pages of notes to ver-
ify the domains and ranges of the various π, ρ agree, but he asked
“Does anyone care?”

1.9. Given a system of control data on a stratified set, the next
step in the solution to Whitney’s problems is the construction of
homeomorphisms that do not come from ambient smooth map-
pings. A controlled vector field is a collection {VX} of vector fields,
tangent to the strata, such that (πX)∗(VY ) = VX and VY (ρX) = 0
whenever X ⊂ Y are strata. In other words, the vector field along
Y preserves the distance to X. Such a vector field may fail to be
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continuous but it has a continuous flow that is smooth on each stra-
tum, see Figure 5. The result is the first isotopy lemma of Thom
and Mather,

Figure 5. Controlled flow of 1
r2

∂
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Theorem 2. [12] Let W be a Whitney stratified subset of some
smooth manifold P , let f : P → M be a smooth mapping whose
restriction to W is proper and suppose that the restriction f |X :
X → M to each stratum X is a submersion. Then f : W → M is
a locally trivial fibration.

1.10. If X is a stratum in W then applying the isotopy lemma
to (πX , ρX) : TX → [0, ε) gives the long sought local structure
theorem for stratified spaces: any point x ∈ X in a stratified
space W has a basis of neighborhoods homeomorphic, by a stratum
preserving homeomorphism, smooth on each stratum, to the product
Bx(ε) × c(Lx) where Bx(ε) is an open ball in X, and c(Lx) is the
cone over the link, Lx = π−1X (x)∩ρ−1X (ε′) of the stratum X at x ∈ X.
(The link Lx is canonically stratified by its intersection with the
strata of W .)

In this sense, the stratification is topologically locally trivial and
it may be understood inductively in terms of the topology of the
link. This key point is the basis for countless applications of the
theory.

1.11. Mather’s notes have had an enormous impact on the math-
ematical literature. Intersection homology theory and stratified
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Morse theory could not have been developed without Mather’s
foundational work. Stratification has become a standard technique
in algebraic geometry, topology and even in number theory. Al-
though Mather’s notes were not published until 40 years after they
were written and distributed, they have been cited hundreds of
times and remain the single most complete and accessible approach
to stratification theory. It is ironic that Mather’s unpublished notes
have had a greater influence on subsequent mathematical develop-
ments than his monumental work on the stability of mappings.
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