2826 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 11, NOVEMBER 2002

Fibonacci and Galois Representations of
Feedback-With-Carry Shift Registers

Mark Goresky Associate Member, IEEBNnd Andrew M. KlapperAssociate Member, IEEE

Abstract—A feedback-with-carry shift register (FCSR) with
“Fibonacci” architecture is a shift register provided with a small
amount of memory which is used in the feedback algorithm. Like
the linear feedback shift register (LFSR), the FCSR provides a
simple and predictable method for the fast generation of pseu-
dorandom sequences with good statistical properties and large

1) to develop and analyze the “Galois” configuration for
FCSR andi-FCSR circuitry (cf. [22]);

2) to give a new elementary description f&fFCSR se-
quences and to characterize the strictly periodic ones;
and

periods. In this paper, we describe and analyze an alternative
architecture for the FCSR which is similar to the “Galois”
architecture for the LFSR. The Galois architecture is more
efficient than the Fibonacci architecture because the feedback
computations are performed in parallel. We also describe the
output sequences generated by thé-FCSR, a slight modification

of the (Fibonacci) FCSR architecture in which the feedback bit is W d ib hof th th ints i ter detail
delayed for d clock cycles before being returned to the first cell of € now aescribe each of these three points In greater detail.

the shift register. We explain how these devices may be configured ~ Galois and Fibonacci ConfigurationsThe Galois and Fi-
so as to generate sequences with large periods. We show that thebonacci configurations for an LFSR are recalled in Figs. 1 and 2.
d-FCSR also admits a more efficient “Galois” architecture. The FCSR of Fig. 3 somewhat resembles the Fibonacci repre-
Index Terms—d-FCSR, feedback with carry, feedback-with- Sentation, and one might ask whether there is an analogous Ga-
carry shift register (FCSR), Fibonacci, Galois, linear feedback lois representation for the same FCSR sequences. Such a rep-
shift register (LFSR). resentation was first discussed in [22]. In this paper, we will
analyze the Galois representations for FCSR GR€CSR) cir-
cuitry. It turns out that the initial loading is easier to describe in
the Galois representation. Moreover, the Galois representation
PS_EUDORA'\_‘DOM binary sequences with various statiss more efficient than the Fibonacci representation since the ad-
tical properties (such as high linear span, low cross-ciitions occur simultaneously (“in parallel”) and each individual
relation values, high pairwise Hamming distance) are impagym involves no more than 3 bits.
tant in many areas of communications and computing, such;.FcsR SequencesThere is an enormous collection of vari-
as cryptography, spread-spectrum communications, error-Cgfinns on the basic FCSR architecture which have also been ana-
re(_:ting c_odes, and Monte C_arlo integratior_L Linear feedbargyzed to varying degrees [12], [11], [14], [17]-[19]. Perhaps the
shift registers (LFSRs) provide an economical, fast, and effijmp|est of these variations is tHeFCSR (Fig. 5), in which the
cient method for generating a wide variety of pseudorandog@edback bit is computed but is delayed bt 1 clock cycles
sequences. During the last few years, the feedback-with-Cagigfore being fed back. In Theorem 6.5, we explain the surprising

shift register (FCSR) architectures and a simple modificatiopeyy result that the output of&FCSR may be described by
the d-FCSR architectures have been investigated as alternative

methods for the efficient generation of long pseudorandom bi-
nary sequences [1]-[3], [12], [14], [25]. The analysis of FCSR
sequences has quite a different flavor from that of LFSR s¢hereN € Zis a certain integer. (Compare this to the case of an
quences, although they share an incredible list of parallel prdp=SR. for which the output sequence is always given by (1) with
erties (see [7], [12], [13], [15], [16]). The FCSR circuits de? = 2. It often follows that this sequence islacimationof the
scribed in these papers resemble the “Fibonacci” configuratibfF SR sequence with connection intege) This new “elemen-
of the LSFR. The current paper has three objectives: tary description” does not involve algebraic number fields. The
d-FCSR architecture also has a “Galois” representation which

. . _ we describe in Fig. 8 and for which we also construct models
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|I. INTRODUCTION

a; =b~" (mod N) (mod 2) (1)

0018-9448/02$17.00 © 2002 IEEE



GORESKY AND KLAPPER: FIBONACCI AND GALOIS REPRESENTATIONS OF FEEDBACK-WITH-CARRY SHIFT REGISTERS 2827

state change is given by — gh and b) the output is given by
T(h). Hence, for a given initial state, the output sequence of the

machine is
ai = T(B'h) @ @ @ @ @

whereh € R corresponds to the initial state. Sometimes it @
is easier to describe the correspondence above by a mapping
S: R — {periodic states of\/}. If S is one to one, we say

the collection{ R, S, T’} is aninjectivemodel. In other cases, F9- 1. Fibonacci LFSR.

the correspondence may be more easily described by a mappin% ) ) )
E: {periodic states oM} — R. If E is an onto mapping we heorem 2.1: Suppose an LFSR with connection polynomial

Qr—1 | Qr-2 oo a ag +—

say the collectiof R, E, T} is aprojectivemodel. Ideally, we ¢ Of degreer has initial loadingag, a1, ..., a,—1). Set
would like S or E to be one-to-one correspondences, in which r—1 k

case the inverse mapping can usually be described, however, it hMX) = Z Z Giap_; X" (4)
may require a nontrivial amount of computation to do so, par- k=0 i=0

ticularly when attempting to describe the initial state of the mgvhereg, = —1. Then the output sequence is the coefficient se-

chine, cf. (4), (6), (10), (14). In this paper, we describe modeigience of the functiont(X) = —h(X)/q(X). Conversely, if

for FCSRs, andi-FCSRs, both in their Galois and Fibonacch — p,, b, ... is any strictly periodic sequence, IB{X) =

configurations. In each case, we discover the surprising fact tha (X' /4( X)) be its generating function. Thei.X ) is the con-

the models for Fibonacci configurations are injective while thgection polynomial of an LFSR which generates the sequence,

models for the Galois configurations are simpler and are projegndx(X) determines the initial loading by (4).

tive. For comparison, in the first (purely expository) part of this , .

paper we quickly recall some (well-known) models for LFSRs, Ring-Theoretic Model:Let F,[.X] be the ring of polyno-
Throughout this papeg denotes the integer€ denotes the mials in X with 0,1 coef_flClents. Let us denotg th_e mapping

rational numbers, andf,, denotes the Galois field with ele- £2[-X] — F> which assigns to each polynomial its constant

ments. The multipliers, and the contents of the shift registersfifMm Pyz — = (mod X). Itis a homomorph|52m of rings. The

this paper are assumed to be elements of the FieldHowever, COnnection polynomig}(X) = —14+¢ X +¢ X~ +---+¢, X"

the same analysis applies to registers with entridd imnd for 9enerates an ideqg) in this ring, and we consider the quotient

this reason we do not automatically convert evedyto +1. R = F,[X]/(q).

We assume,. # 0 so that, in the ring?

Il. LFSR, ABONACCI ARCHITECTURE .1 1
X I—(l—qu—"'—qr_lX )

The purpose of this section is to recall some well-known re- ar
sults concerning LFSRs, in a way which will motivate our treatt follows that any element € R may be uniquely represented
ment of FCSRs. In the Fibonacci representation (see Fig. &y, a polynomial
the register is |n|t|_ally_ loaded wnh bitgy, a1, ..., a._1. The WX) = ho+ P X 4+ by X7
output sequence is given by the linear recurrence
of degree less than Define the mapping

ap = Z GiGr—i ©) T:R— Fy by T(h)=h(modq¢g)(mod X). (5)
=1

This means that first the elemehis represented by a polyno-
mial of degree less than and therT'(h) = hy is taken to be
the constant term. (The mappifigs nota ring homomorphism,
and its definition depends on this particular choice of complete
set of representatives [ .X] for the elements oR, consisting

of polynomials of degree r.) Note thatX is invertible in R
with X=1 = ¢ + @2X + --- + ¢.X"~'. Define a mapping

S: R — {state$ which associates to arly€ R the stateS(h)

of the shift register which is given by

for ¢ > r. Assumeq, # 0. To such an LFSR of length,
associate theonnection polynomial

W X)=¢ X" 4+ X 4+ X -1

whereqy, ¢, ..., g correspond to the taps on its cells. Any
infinite binary sequence = (aq, a1, a», ...) Mmay be identi-
fied with its generating functiod(X) = >"°2, a; X* which is ‘
an element of the rind'>[[X]] of formal power series with co- a; = X~ *h(mod ¢)(mod X)
efficients in the integers modulh The sequence s called the
coefficient sequence of the functiet(X). It is eventually peri-
odic if and only if A(X) is equal to the quotient of two polyno-
mials A(X) = —h(X)/q¢(X) € F[[X]]. Itis strictly periodic =~ Theorem 2.2:The collection{R, S, T} is an injective
if and only if deg(h(X)) < deg(q(X)). Recall the following model for the LFSR with connection polynomiglX). Every
classical result[5, Sec. 2.5, p. 30], or [20, Theorem 8.40, p. 416}ate of the LFSR is periodic. The mappifijpetween elements

for 0 < ¢ < r — 1. The following is a concise statement, in the
language of models, of the discussion found in [24, Sec. 7].



2828 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 11, NOVEMBER 2002

'aT—l ‘b e a

Fig. 2. Galois LFSR.

a ag

div2 mod 2

ag ——

— |

>

Fig. 3. Fibonacci FCSR.

of R and states of the shift register is a one-to-one correspon-

dence such that the change of state is giverhby> X 'h.
The output sequence of the LFSR with initial loadiif):) is
given by (2), that is, foi > r,

a; = T(X7'h) = X ~*h(mod ¢)(mod X).

Remarks: If ¢ is irreducible andx € F',- is a root ofg then
the mapping®: F[X]/(q) — Fs givenbyX — «is an
isomorphism of rings, and there is a uniglie linear mapping
T: Fyr — Fy sothatl(®(h)) = T(h) forall h € Fo[X]/(q).

such that the change of state is giverfbys X —1h. The output
sequence is given by (2), that is,

bi = (X7'h) (mod ¢) (mod X). (7

IV. FCSR, HBONACCI ARCHITECTURE

In the FCSR architecture [12], the basic shift register is pro-
vided with a small amount of auxiliary memory which is a

Hence, the output sequence is given by the well-known formJl@nnegative integer. The contenif 1) of the tapped cells are
a; = T(a%z) wherez € F, is determined by the initial @ddedas integerdo the current contents of the memory to form

loading. Ifq is a primitive polynomial then the output sequenc@n integer suna. The parity bits (mod 2) is fed back into the

has maximal length and it is an-sequence.

Ill. LFSR, GALOIS ARCHITECTURE

first cell of the shift register while the higher order bjis/2]
are retained for the new value of the memory. The output se-
guence is given by the followinignear recurrence with carry

In the Galois representation of Fig. 2, with each clock cycle !
the output of the last cell is introduced into each of the tapped 2my + ar = me—1 + Z Fithe—i (®)
=0

cells simultaneously, where it is added (mod@)jao the con-

tents of the preceding cell. lfi, g2, ..., ¢, are the feedback which can be solved fat; anda, sincea; € {0, 1}. (The ini-

multipliers then the recurrence equations are as follows:

CL;ICL7‘,+1 + gi410a0, for0<i<r—2
a,/,,_l = qrap-

Define the connection polynomig{ X) = —1 + >/_, ¢;: X"

tial memory ism = m,._1.) ltwas shown in [12] (and is easy to
see from the preceding equations) that, for any initial nonnega-
tive memory valuen, the memory will decrease exponentially
until it lies within the rang® < m < wt (¢+1) and will remain

in that range forever after. (Heret (x) denotes the number of
1’sin the binary expansion of the nonnegative integgim here-

and assume, #0. Letb= (b, b1, . ..) be the output sequence.fore, memory overflow will never occur provided the FCSR is
Theorem 3.1:Suppose a (Galois) LFSR with connectiorfduiPped with at least+ [log,(wt (¢ + 1)) ] memory bits (see

polynomialg has initial loading ao, a1, ..., a,_1). Set

MX)=ao+a X+ +a_ X" (6)

Fig. 3). Assumey,. # 0 and define the&onnection integer

I =¢2 4+ ¢ 12 Y+ +q2-1€Z.

Then the output sequendeis the coefficient sequence of thel© any infinite binary sequenee= (ao, a1, az, ...) one may

function 3(X) = —h(X)/q(X). Conversely, ib = by, by, ...
is any strictly periodic sequence, [8({X) = —h(X)/q¢(X) be

its generating function. Ther{ X) is the connection polynomial

of a (Galois) LFSR which generates the sequence,/ddd)
determines the initial loading by (6).

Asin (5), definel: R— F3 by T'(h)=h (mod ¢) (mod X).
Assumeleg(q) =r. Define the mappind’: {state$ — R which
associates to each state= (a,_1, a,—2, ..., a1, ag) Of the
shift register the following element:

h=E(s)=a+aX+aX’+  +a_ XL

Theorem 3.2:The collection{ R, E, T'} forms a projective
model for the (Galois) LFSR with connection polynomjak ).

associate the formal power series

o= i ai2i. 9
i=0

The set of all such power series forms a ring under the obvious
operations of addition and multiplication; this is the rifg of
2-adic integers (an elementary review of which is provided in
[12]). The ringZ, contains all fractionse = m/n withm, n €

Z, provided that is odd. The sequenees eventually periodic

if and only if its 2-adic integekx is a rational number, in which
case it can be expressed as such with an odd denominator. The
sequence is strictly periodic if and onlyif= —h/q with ¢ odd

and with0 < & < q. (cf. [12, Theorems 2.1 and 6.1], [17], [24,
Theorem 15.5, p. 458]). In [12], we proved the following analog

The mappingt’: {stateg — R is a one-to-one correspondencef Theorem 2.1, which describes the output of an FCSR.
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Theorem 4.1:Suppose an FCSR with connection integer @ @ @
of degreer has initial loading(o, a1, ..., a,—1) and initial
memorym. Set H H H

r—1 @ a1 @ ag

r—1 k
h=m2" =Y > qa_i2*€Z (10)

®
ORI NONNO

whereqo = —1. Then the output sequence is the coefficient se
quence of the2-adic numberr = —h/q. Conversely, ifa =
ap, a1, ... 1S any strictly periodic sequence, lat = —h/q Fig. 4. Galois FCSR.
be the correspondingradic number. Theny is the connection
number of an FCSR which generates the sequenceé; deter-
mines the initial loading by (10).

states. The initial loading of the register portion is simply the

lower orderr bits in the binary expansion of the number
Besides the all-zero state (thettomstate) there is another

. . 2#(a) _ 1

fixed state (thetop state): takez; = 1 (0 < ¢ < » — 1) and W =~h <4>

m = wt (g + 1) — 1 wherewt (g + 1) is the Hamming weight q

of the binary expansion of + 1. The output is the sequence of however, we do not know a similar simple formula for the initial

all 1's. The associategtadic number isx = —1. value of the memory). To see this, Bt= (2¢(@ — 1)/q. Then
Ring-Theoretic Model:Take R = Z/(¢q) with distinguished p, = —1(mod 2#(®). Butr < ¢(¢) s0 B¢ = —1(imod 2")
element3 = 271, Define which gives
T:R— Z/(2) by T(h)=h(mod q)(mod2). (11) Wo—n <2¢<q> - 1) = /g (mod 27,
q

ggijvgneerglr;sn;hat fllrsatntgfhzlﬁmzﬂﬁ:ﬁgéf?se?etii fey damnou drgjt;erSO the lower order bits in the binary expansion & coincides
q- with the firstr bits in the2-adic expansion of-h/q, which is

(The mapplngT_ IS not_a ring hor_nomorphsm and its deflnlt'onalso the firstr bits to be output by the FCSR. However, these
depends on this particular choice of complete set of repres

n- . . . . .. . .
: ) ) I . st » bits also coincide with the initial loading of the register
tatives inZ for the elements imk, consisting of the integers ! g g

betweend andq — 1. This set of representatives is chosen bé)_Ol’thl’] of the FCSR.
cause the-adic expansion of the resulting numbers /¢ have
strictly periodic coefficient sequences.)

Define S: R — {state$ by assigning to any. € Z/(q) the The Galois representation [22] for an FCSR is illustrated in
initial state witha; = 27"h(mod ¢) (mod 2) (for 0<i<r—1) the Fig. 4.
and with initial memory Here, the bitsq, ¢, ..., ¢. are multipliers. (We assume

g~ # 0.) The cells denoted,, ¢, ..., ¢._; are the memory
r—1 k “ () H .
1 N (or “carry”) bits. TheX sign represents a full adder. At the

V. FCSR, G\LOIS ARCHITECTURE

jth adder, the following input bits are received: d) from

the preceding cell, 2)qg; from the feedback line, and 3)

from the memory cell. These are added to form a syrtwith
Theorem 4.2:Let ¢ be an odd positive integer. The collecd < j < r — 1). At the next clock cycle, this sum modutois

tion{R, S, T} is an injective model for the FCSR with connecpassed on to the next cell in the register, and the higher order

tion integerg. The mappingS is a one-to-one correspondenceit is used to replace the memory

between the elements &/(q) and the strictly periodic states ) ) _

(except for the top state) such that the state change is given by aj_; =0c;mod 2 and ¢; =o;div2.

h = 27"h. The output sequence is given by (2) In other words, the new value$_, andc are given by

a; = 2_jh(1n0d (]) (InOd 2) 263 + afj*l =aoq; + a; + c;, for 1 < j <7r— 1

. a;*—l =qrao- (12)

Remarks: The fact thatS is a one-to-one correspondence fol-
lows from Theorem 4.1. I§ is prime thenZ/(q) is a field and To analyze the behavior of this circuit, define tb@ennection
its multiplicative group(Z/(q))* is cyclic. In this case2 ! isa integer
generator of Z/(q))* ifand only if 2 is a primitive root modulo y "
g. Such a choice of gives rise to maximal length sequences, or ¢=-1+n2+ @2+ +q¢2. (13)
£-sequences, which are in many ways analogous torthee-
quences generated by an LFSR [12].

Although the mapping always gives a strictly periodic state Theorem 5.1:Suppose anr-stage (Galois)-FCSR with
of the FCSR, we do not know a simple characterization of thesennection integer; has initial loading with register and

The following result is an analog of Theorem 2.1.
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memory content$ag, ay, ..., a,_1) and(cy, ea, ..., c._1), diven byh — 271h. Hence, the output sequence is given by
respectively. Set (2), that is,
h=ao+ (a1 +c1)2+ -+ (a1 +1)27 L (14) by = 277 h(mod g) (mod 2).

. Proof. The greatest possible value fors when alla; = 1
Then the output sequentg b1, bs - - - of the FCSR s the coef and all the admissible; — 1 in which case;; = g, for all j, so

ficient sequence for the-adic expansion of the rational number
3 = —h/q.Conversely, ib = bg, by, ...isany strictly periodic h=1+(1+q)2+ -+ 1+ qg_1)2"
sequence le8 = —h/q be the corresponding-adic number. o 1 aor —

Theng is the connection integer of a (Galois) FCSR which gen- = tatl-as =q
erates the sequence, andetermines the initial loading by (14).50, for any admissible state we haved < h = E(s) < q. It

Proof: Given’ andg as above, le} = > 2o bi2 denote g easy to see that any suthmay be realized by an admissible
th_e2-ad|c m_teger which is repr.ese.n.te.d by the outpu_t sequenggyie, hence, the mappitgis onto. If0 < & < g, the 2-adic
Firstwe claim thay B+ € Z is divisible by2 (meaning that  gypansion for-4 /4 (which is the output sequence of the shift
it has no constant term). In fact register initialized at any admissible state) is strictly periodic.
Reducing (13) modulg and multiplying by2—! gives
gB= (—14+q2+ @2°+ ) (bo+ b2+ 022" +- )

27 =g+ @24 32+ -+ ¢,.277F (mod 15
= o+ 2(—by + qibo) + - . 1T @eT43 q ( q) (15)

o)
The constant term inB + h is —by + ag. However,ag is also . . o .
the first output bit, that iszo = b, which verifies the claim. 27 h=ao2 " 4 (a1 +c1)2” + (ag +¢2)2" + -+
Now run the shift register one step obtaining a new loading r—2
- + (ar—1+cro1)2

(ag, ---s ap_1; €1, ..., 1) given by (12). LetB’ = (@1t )
Yot bi2t denote the new2-adic number represented by =(aoq + a1 +¢1)2° + (aoqe + az + )2t + - -
the output sequence of this new state;b50= b;;,. Define or—2 gr—1
W = Y2 (a4 ¢)2 (writing ¢, = 0 for convenience) and +(@0gr—1 + a1+ 61)277" + a0g
calculate thaeB’ = B — by and2h’ = h + agq. Hence, = (2¢, +a)2° + (2, +a)) 2t + - -

2(gB’ +h') = q¢B+ h. + (20 +a ) 2 a2

=ap+(ap + )2+ (ay+h) 2+
By the preceding claim, the constant terng&f +/’ vanishes as , , .
well, which is to say thagB+1 is divisible by22. By induction, + (o 1+ )2
we find that2"(¢B™ + h(") = ¢B + h, and sogB + h is . .
divisible by2® for all n, which is to say that it equals 01 “eh describes the change of state. =
. Corollary 5.3: There is an onto function from the set of pe-
There are two stable states: the all-zero statbgomstate), riodic (admissible) states of the Galois-FCSR with connection

and thetop state where,; = 1for0 < ¢ <r—1and¢; = ¢; for . L g . .
1< i < r—1. The output of the top state i the all-one sequenclgteQerq to the set of periodic states of the Fibonacci-FCSR with

For any periodic state other than the top statg i 0 then the connection integey such that corresponding states produce the
. ; . same output.

memory celle; will eventually drop tod and will remain0 for-
ever after. So the periodic states must satisfy= 0 whenever ~ Remark: We do not know a simple formula describing the
g; = 0. Let us say that a state satisfying this condiion< ¢;) contents of thekth cell as a function of time. Despite The-
is an “admissible” state. The admissible states may be thougiheém 5.2, we do not know how to intrinsically characterize the
of as the set of all states of a Galois-FCSR in which memoperiodic states of the Galois-FCSR, (other than to say that they
cellsc; are provided only when the corresponding feedback tapust be admissible states) because there may be several dif-
g, IS nonzero. ferent (admissible) states corresponding to the same number

Now we wish to describe a model for the (Galois)-FCSRdowever, there is only one way to obtain= 1 (hamely, by
DefineR = Z/(g) andT:R — Z/(2) as in (11). Define ay = 1 and all othera’s and¢'s are0), so this state is neces-
E: {state$ — Z/(q) to be the mapping which assigns to angarily a periodic state. 12 is primitive modulog, then all the
state{ag, ai, ..., ar_1;¢1, ..., c.—1 } the elemenk(mod ¢), other periodic states are obtained from this one by running the
whereh is defined in (14). shift register.

Theorem 5.2:The collection{R, F, T} is a projective
model for the Galois-FCSR with connection integerFor
any admissible initial loading, the output of the Galois-FCSR The d-FCSR architecture was introduced in [12] and [14],
is strictly periodic. The mappind’ defines an onto mapping where its basic properties are listed (see also [H/HCSR se-
from the set of admissible states (except for the top state) of tipgences are important because they exhibit approximately uni-
FCSR to the elements &/(q), such that the change of state igorm distribution ofk-tuples for allk < ko (whereky is easily

VI. d-FCSR, FBONACCI ARCHITECTURE
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determined from the parameters of the register) [8]. In this se i, [mod « 1| as
. . . . r— rT— e
tion, we recall the operation of these shift registers and summ

ag
rize the results from [6] which explain how to design them so a
to give predictable outputs. The operation af-&CSR is sim- e @ e @ e
ilar to that of the FCSR except that each “carried” bit is delaye
d — 1 steps before being added. 0 | Z <—/ ’ ‘

This is best understood using the ridj=] which consists
of polynomials inw (with integer coefficients), subject to the
formal relation7® = 2. The ringZ[r] contains the integet® Fig. 5. Fibonaccil-FCSR.
and it can be embedded as a subring of the real nunf®drg
mappingr to the positive!y/2. However, there are also other me | ms ms | ma | m1 | mo | mod 7

my
embeddings into the complex numbers. Ang Z[x] may be
uniquely expressed as a polynomial T l T l T l
z=z20+um+- o +zgmtt c® CG\ A
with z; € Z by making use of the equatiarf = 2-7° whenever L
higher powers ofr are encountered. Let us say that such an 2
elementz is nonnegativef eachz; > 0. (This is stronger than 4

saying that the associated real number is nonnegative.) Using the k
binary expansion of each), we see that a nonnegative elemerft9: 8- A Z[r] adder ford = 2.

# € Zlr] can be uniquely expressed as a polynomial To be explicit, the operation of the FCSR may be described
L as follows: Form the integer sum = Z;’;& a;qr—i. Write
= Z < o' as a nonnegative element &{r|, that is, as a polynomial
with 0, 1 coefficients inx, using2 = #<. (It is this fact which
with 0, 1 coefficients. Addition and multiplication preservegives rise to the delay by steps in the carry operation.) Using
nonnegative elements, and are performed in the obvious wagldition in Z[x] form the (nonnegative) sum = m + o’.
except that carried bits are advanegsteps because Shift the contents of the register cells to the right by one step.
Place the bit,, = o (mod ) in the leftmost register cell. Re-

place the memory byn’ = o(divw) = (o — a,.)/w. Thus, the
so it is best not to think of these coefficients as lying in the fielgeW valuegag, af, . .., a;*—/ﬁ m') are related to the old values
F,. The operation&mod 7) and(div 7 ) make sense in this ring. (@0; @1, - -+, ar—1; m) by a; = a;y, for 0 < i <» —1and

f 2 =20 +210+---+ Zd,17rd_1 then

1+1=2=0+07+0r% +---+0r% ! 4 7¢

wm’ +a, =m+ Z GG

z{(mod 7)) = zp (mod 2) € Fy im1

which shows that the output is given by (17).
Implementation: The block diagram for al-FCSR is the

same as that of an FCSR, but since additio# jn] is needed, it

is slightly more convenient to break the addition into two parts

) ) ] ) as in Fig. 5. The part labeled adds the), 1 inputs as integers
A d-FCSR consists of a shift register with cell contentgng gytputs the resut according to its binary expansion. The

ag, a1, - .., a,_1, feedback connections, ¢._1, ..., g1, and part labeledl is an adder irZ/[r].

memory cellsno, m, ..., m,, each of whichis @ or1. We  por g = 2, the Z[«] adderll, together with the memory:

represent the memory by the nonnegative element may be described as follows. Each symbbtepresents a full

adder with three inputs, cascaded so as to form a ripple counter.

With each clock cycle, the current contemtsof the memory

Associated to the feedback connections we define the conniscadded to the integer’ which is presented at the input to the

and we will say that is oddif z (mod«) = 1. (For example,
—1=1-7%s0—-1(mod =) = 1.) Similarly

2divr) =2 420+ + 2g_1mi2,

m=mqg+mim +---+myn® € Z[x|.

tion “number” adder according to its binary expansion. The resustreturned
) . to the memory (which involves modifying only the even-num-
¢g=-l+art+ter+ +qr. (16)  pered memory cells). Then, the contents of the memory are

tshifted one step to the right, thus outputting the lowest order
bit o (mod 7) and retaining the higher order bitsliv 7 (with
the highest order bit:g in the following example set t6).
i Let wt (g + 1) denote the number of nonzegts involved in
My + G = My—1 + Z ¢ilr—i (A7) the feedback. Itis easy to see from Fig. 6 (or from the change of
=0 state equations above) that the memory will decreasemuntit
with initial memorym = m,_;. This equation can be solved0 for all i > dlog,(wt (g + 1)) + d, SO no memory overflow
for m; anda, sincea; € {0, 1}. will occur provided the shift register is provided with memory

Theng € Z[x] is odd, andg + 1 is nonnegative. The outpu
sequence is given by th@ear recurrence with delayed carry
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cellsmg, my, ..., m, wheres > dlog,(wt (¢ + 1)) +d. The g9 + ¢:7, and ford = 3 andq = qo + @7 + go7?, these ma-
deeper analysis of &@FCSR is completely parallel to that of antrices are, respectively,
FCSR, however, some less familiar mathematics is needed. 9 9
Let Z, be the ring of “-adic integers” consisting of all © 21\ g do =12 2%‘
formal power series in @ o A
@2 4@ 9o
o= Z a;t (18) The matrix for arbitraryl is similar. It follows (by reducing this
o matrix modulo2) thatq € Z[r] is odd if and only if its norm
N(q) € Z is odd. Let(q) denote the ideal iZ[r]| generated
by ¢ € Z[r] and letR = Z[r]/(g) denote the quotient ring.
The number of elements in the ridgis |N(q¢)|. If 2 € Z[x],
we denote byz (mnod ¢) its image inR. If ¢ is odd thenr is
QI . i invertible in R.

If E = {e1, €2, ..., e} is a finite collection of linearly
we see thaZ ; also containZ[x]. In fact, Z,. contains all frac- independent vectors in Euclidean sp#% let us denote the
tionsa = a/bwith a, b € Z[r] provided that is odd (meaning (half-open)parallelepiped spanned b¥ to be the set
that b (modw) = 1), in which case we shall refer to (18) as X
“the” r-adic expansion of/b. Such fractions are precisely the P(E) = { Z ae;
elements oZ,, whoser-adic expansions are eventually peri-
odic. The following result was proven in [14].

with a; € {0, 1}. Addition and multiplication are performed in
the obvious way, using the relatiaif = 2 whenever necessary;
in particular,Z. contains the-adic integer<Z,. Since

OSCLZ‘<1}. (19)

=1

Let
Theorem 6.1:Suppose a-stage (Fibonacci)-FCSR with ) i
connection integey is initially loaded with register contents A=Z[r]NP(g, qm, qr=, ..., qr" ")
..., a,_1) and memoryn. Setqgy = —1 and . L . .
(a0, a1, -, @r-s) yn o be the set of lattice points in the parallelepiped@r]) which
r—1 k is spanned by the set of vectofg, qr, ¢n%, ..., gr¢~1}. In
h=mr" =" " gap_iw". [6], we proved the following result.
k=0 =0

) - Theorem 6.2:Suppose thak, ¢ € Z[x] and thatg is odd.
Then the output sequence of_ the=CSR is th@T coefficient se- Then ther-adic expansion of the fraction = —k/q is strictly
quence for ther-adic expansion of the fraction = —h/q.  periodic if and only ifh € A. Moreover, the mapping|r] —
Conversely, ifa = (ao, a1, ...) is a strictly periodic binary z[]/(4) induces a one-to-one correspondence
sequence with correspondingadic integere =) .~ a;7" =
—h/qand if¢+1 is nonnegative, theqis the connection number A« Z[x]/(q). (20)
of ad-FCSR which generates this sequence. O
Remarks: Theorem 6.2 says that the gietis a complete set
representatives for the elements4jfr|/(¢). A faceF C P
of the parallelepiped (19) is the set of points obtained by set-
indeed it is such) can be rectified by considering a “polarizeé"ng some of the coefficients; = 0. The set of lattice points
d-FCSR in which the entrieg, m; are permitted to take valuesA N Iin any face corresponds un_der (.20) to an additive sub-
. : p . group ofZ[=]/(q). If Z[x]/(q) is a prime field then there are no
in {1, 0}. Itis easy to see that no “overflow” will ever occur dditive subgroups other th8t}, in which case all the nonzero
and thatnyg € Z[#] may be realized as the connection numbgf_ o group A )
; elements ofA lie in the interior of the parallelepiped.

of such a polarized-FCSR.

Strictly Periodicr-adic Expansions:One of the mainresults  Ring-Theoretic Model:TakeR = Z[r]/(g). Using the set
in [6] is a characterization of the strictly periodic sequencese can define a mapping
Let Q[r] be thed-dimensional vectorspace (ov@) with basis
{1, 7r,[7r]2, ..., 71} In fact, it is the fraction field ofZ[r] T:R—Fy by T(h)=h(modg)(modr).  (21)
and it is a totally ramified degreg extension of the rational This means that must first be replaced by the corresponding el-
numbers [9, Ch. 12]. However, we will not need these facts iment in the complete set of representatitethen this element
this paper. Let: @[«] — Q" be the vector-space isomorphisms reduced module to obtain an element &[] /(r) = Z/(2).
given by Define S: R — {state$ to be the mapping which associates
to h € R the initial loadinga; = 7~%h (mod ¢) (mod 7) for
0 <4 < r — 1 and the initial memory
Thenr(Z[x]) consists of all points iQ* with integer coordi- —1 K
nates, so we will refer t&[r] as the set dfttice pointsin Q[r]. m= i <h + Z Z Qiak—ﬂrk> )

Fix ¢ € Z[r]. Recall that thenorm N(q) of ¢ is the deter- ' =0 i=0
minant of the action given by multiplication kyon the vector
space[x]. With respect to the above basis, the matrix for mul- Theorem 6.3:Let ¢ € Z[r]| and suppose + 1 is nonnega-
tiplication by ¢ may be easily calculated. Fdr= 2 andg = tive. Then the collectiof R, S, T’} is an injective model for the

A surprising consequence is that not every periodic bina(r)\f
sequence may be realized as the output sequencé-6GSR:
only those for whichy + 1 is nonnegative. This deficiency (if

T(ag + a1 m+ "'+ad—17fd_1) = (ag, a1, ..., ag_1).
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d-FCSR with connection number The state change is given by TABLE |
h — 7'k and the output sequence is PARAMETERS OF Z]r]
a; = 7~ "h (mod ¢) (mod 7). (22) ‘ H d=2 | d=3 ‘
2
This result (whose proof may be found in [6] or [14]) has the dis- |—{ Qo+ i Qo + i + ¢o7
advantage that computations in the somewhat mysterious rind N(q) || ¢ — 243 a5 + 263 + 443 — 690q1q2
Z[r]/(g) may be rather messy. However, in certain cases it @ —q1q2) + 6 — qoqu)
is possible to identify this ring with the much simpler object J o — 1T (@ +(q%) _ ((]Oqz)ﬂz )
Z/(N). In [6] we proved the following lemma. 5 5
. bl 2a1/q0 | 2(¢7 —9092)/ (%5 — 0142)
Lemma 6.4: Suppose; € Z[x] is odd and thatV = |N(q)| 2
is prime. Then the natural compositiéh— Z[r] — Z[x]/(q) 50 o % — N2
induces an isomorphism of rings
[ 7T
Z/N = Z[x)/(q). (23) ‘ S
It follows that the output sequence (22) can be described as
a;=b"" (mod N) (mod 2) (up to a shift) for somée Z/(N), o

not necessarily equal t In the next paragraph, we determine
this “base”s and the shift.

Lety: Z[r]/(q) — Z/(N) denote the inverse to the isomor-
phism (23). It is completely determined by the single integer
b = 1(n) because for any integers (with 0 < ¢ < d — 1), the S q
mappingy satisfies

d—1 d—1
T/) <Z cmi) = z:czbZ
=0 =0

The prime numbeN may be considered as an elemen#Zjf]
and as such, it turns out to be divisible by(see [6]). Define TABLE I
s$; € 4 by expanding MODEL STATES FORq = 5 + 27

Fig. 7. Parallelogram fog = 5 + 2.

d—1 i | 77 (mod (¢)) | 5-67%(mod 17) | output
§=N(g)/g=>_ s (24) 0 5+ 51 5 1
=0 1 745w 15 1
The following result is proven in [6]. 2 7+ 67 11 1
Th . _ 3 8+ 67 16 0
eorem 6.5:Let h, ¢ € Z[r]. Suppose thaN = |N(g)| 1 6+ drr 14 0
is an odd prime number and that € A lies in the strictly 5 A+ 3r g 0
periodic region described in Theorem 6.2. lbet (7). Let 6 349 . 1
A = spyp(h) € Z/(N) wheresg is defined by (24). Then, for - A4 dr 4 0
all 7, the following equation holds: g 44 om 19 0
77 h (mod ¢) (mod 7) = b7 A (mod N) (mod 2). 9 24271 2 0
10 24w 6 0
Thus, the output sequence (22) may be simply described as| 11 147 1 1
Ab™I (mod N) (mod 2). If b = 2% (mmod N) then we arrive at 12 343w 3 1
the surprising conclusion that theFCSR sequench is the 13 5+ 4 9 1
k-fold decimation of the (ordinary) FCSR sequence with con- | 14 6+ 5w 10 0
nection integerV. The number$ ands, can be computed di- 15 5+ 37w 13 1

rectly from knowledge of.. Ford = 2 andd = 3 these compu-

tations give Table | are listed in the second column of Table Il. Note that the second

An Example: Consider thei-FCSR withd = 2 andq = " odular coincides with the third column modutbas
5+2x. The shift register is four-stage with feedback coefficients

G =0 g = gs — qu = 1(s0thatg + 1 — 6 + 27). Then predicted by the theorem.
N(q) = 17 which is prime, so the parallelogram contains 16
elénzents in its interior; see Fig. 7. VII. d-FCSR, GLOIS ARCHITECTURE

The isomorphismy: Z[x]/(¢) — Z/(17) mapsr to b = 6, In the Galois architecture for @FCSR, the carried bits are
which is primitive modulol7, so we obtain a maximal lengthdelayedd — 1 steps before being fed back, so the output of the
output sequence. Each elementdiw]/(g) has a unique rep- memory or “carry” celle; is fed into the register celt;4_o.
resentative: in the above parallelogram; these representativéRecall that the register cells are numbered starting fegh



2834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 11, NOVEMBER 2002

Ay @ Ar_1 9

a1 @ aq

Fig. 8. Galois2-FCSR.

If there arer feedback multipliersy, ..., g, andr carry cells Proof: Given’ andg as above, leB = 3.2 b7t denote

1, ..., ¢ thenr+d—1register cellsi, ..., a.+4 2 are evi- ther-adic number which is represented by the output sequence.
dently needed sincg. will feed into a,.+4—»2. This is illustrated Compute

in Fig. 8 ford = 2. If d > 3, the situation is more complicated

and an indeterminate numbernf “additional” memory cells ¢B +h = (=bo +ao) + (=b1 +abo +ar)w +--- .

Crits -, G4 A€ needed, which feed intdadditional” reg- gyt 4, = b, since this is the first bit to be output from the shift
istercellsa, 441, - .., ar4144—2. Itis not at all obvious at first register, hence the quanti@yB + » has no constant term.

glance whether the amounof extra memory can be chosen to o run the shift register one step, obtaining a shifted output
be finite without incurring a memory overflow during the OPsequencé), ¥,, ..., a corresponding-adic numbe3’, a new
e_rat|(3n of the §h|ft_ register. quever (see “Memory Cor‘s!de_rfﬁading (alyy a1y -y @y y_oi &, -, ¢) given by (25), and
tions” subsection in the following text), we show that this is infence a new'. Compute thawB' = (B — by) € Z[x] and
deed the case and henceforth we suppose the been chosen 5,/ _ (h + aoq) € Z[x] hence

as described there, to be sufficiently large so as to avoid any

memory overflow. Suppose a general (GaleldfCSR s ini- w(qB + 1) = (gB+ h).

tially loaded with given value$ao, a1, ..., Grittd—2; C1, C2, ,
... ¢ryt). The register operates as follows. (To simplify notal-3y the same argument as ahove, the constant tedo#-

tion, setg; = 0forj > 7+ 1, sete; = 0 for j < 0 and also vani_shes as well, hen@eB_J.r{L is divisinble by#?2. Byiqdugtion
forj >r+t+1 andsets; = 0forj > r4 t+d— 1) we find thatgB + h. is divisible by7r * for all n, which is to
For eachj (with 1 < j < r + £ + d — 1) form theintegersum _say,_ql_? + h = 0. This proves the first stgtement. The converse
0, = aod;+a;+¢;— g1 itis betweerd and3. The new values ‘|‘s similar. The_ boun_d on”the memory is proven below under
are given bye’, ; = o; (mod 2) andc; = o;(div2), thatis, memory considerations. =
. . Ring-Theoretic Model:Consider a Galoisd-FCSR with
2cita; = aogitajtcj a1,  forl<j<rit+d—1. (25) connection numbey € Z[r]. Let R = Z[r]/(q) and define
T:R — Z/(2) as in (21). DefineE: {state$4 — R to
be the mapping which assigns to any statéhe element
h(modq) € Z[x]/(g) of (27). The proof of the following
theorem is identical to that of Theorem 5.2.

(Note, for example, that these equations&ay, , ;_» = Cr++-)
Assumey,. # 0 and define the connection number

g=—-1+ Z g’ € Z[x). (26)

i=1

Theorem 7.2:The collection {R, F, T} is a projective
model for the Galoigi-FCSR with connection numbet The

o i 1
Theorem 7.1:Suppose a Galoig-FCSR with connection change of state is given by — =~"h. Hence, the output

numberq € Z[r] has initial loading(a, . . ., @ypipd_2; c1, cz, —CAUENCE 's
oy Crgt). Set bi = 7 "h(mod ¢) (mod 7).
rHid=2 Corollary 7.3: There is a mapping from the set of periodic
h = ; — i e Z[r]. 27 y 1l N : .I . odl
; (@i + Cimar)m [#] 27) states of the Fibonacd-FCSR with connection numberto

the set of periodic states of the Galdis-CSR with connection
If ¢ is sufficiently large (as described in “Memory Considnumberg so that corresponding states produce the same output.
erations” below) then no memory overflow will occur, and
the output sequencé = (b, b1, ...) coincides with the
w-adic expansion of the fractionh/q € Z,. Conversely, if  Corollary 7.4: Suppose a Galoig-FCSR with connection
b = (bo, b1, ...) is a periodic sequence with correspondingumber
m-adic numbers = —h/q and if g+ 1 is nonnegative, theqis -
the connection number of a GalaisFCSR which generates g=—1+ qui € Zr]
the sequenca. Pl

Of course, Theorem 6.5 also applies in the Galois case.
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is chosen such thd¥ = |N(q)| € Z is a prime number. Sup- A deeper result of Klapper and Xu [17] states that even if

pose the initial loading is chosen so that (27F A lies in the negative coefficients are permitted in the register contents, the

set of strictly periodic elements (Theorem 6.2). Then the outpuemory will nevertheless remain bounded.

sequencegbg, b1, by, ...} of thed-FCSR is given by Our understanding of the GaloisFCSR architecture still

4 leaves much to be desired. We do not know how to intrinsically

bi = b~" A(mod N) (mod 2) characterize the strictly periodic states. We do not even know
how to find a class of “admissible” states for which the output

whereb = (7)) andA = soip(h) € Z/(N). . ) L L
Memory éo)nsiderationgin( tzlis su/b(sez:tion, we make useS strictly periodic (as we did in the case of the FCSR). We do

of some ideas from [17]. Consider a (GaloisFCSR as de- not know an optimal estimate on the amount of memory needed

scribed at the beginning of this section, with feedback mullfi(-)rtth'_FCSR (exceptin the cage= 2). We do npt knovy how
to describe the contents of each cell as a function of time.

pliersgi, ..., g, memory cellszy, ..., ... ¢4+, and register
cellsag, ..., Gryira_o. Let7? = 2 and defineg € Z[x] by
(26). VIIl. CONCLUSION

Let us denote the standard embeddiig] — R (which  \yg have found a “Galois” representation for FCSR and

mapsr to the positive’y/2) by z — |z|. Recall that an element ; FCSR pseudorandom sequence generators. We have con-
x =2 -,z € Z[r]is positiveif each of the coefficients gy cted “models” for the behavior of FCSR amdFCSR

z; > 0. This implies (but is not implied by) thgk| > 0. For  generators, both in their Fibonacci and Galois representa-
a given positive-real numbek, there may be infinitely many tjons In each case, we find the Galois representation to be

elementss € Z[x] such thajz| < R, however, there are only gimpler, especially with regard to the computation of the

finitely many positivesuch elements. In this subsection we jpjtia| loading of the register. Moreover, the Galois circuitry

show that ift is chosen so that
g 1
i (LB VY (28)

then no memory overflow will occur and, in fact, for any initia

loading of the shift register the memory will decrease until th& =

value (27) ofh satisfies

lq|

|h] <
|w| -1

(29)

is faster since the arithmetic operations occur in parallel. We
have analyzed the operation of tid-CSR circuit using some

rather sophisticated number theory, and have shown how it
can be configured so as to give output sequences of the form

Ab~" (mod N) (mod 2).
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the fact thajx| > 1 is crucial.)
First suppose the initial loadin@u, . . ., ¢ qyt4a—2:c1, - . .,
cryt) Satisfies (29). Then the same will be true for every

subsequent state of the shift register. (€, ..., a4, 1
, --- ¢qy) denote the next state of the shift register with
corresponding valug’ € Z[r|. Thenth’ = h + apg (@asinthe  [2]
proof above) so
3]
Al +1ql _ 1 lal lql
| < MM < gl ) = g
|| |7l \lw| =1 7| =1
as claimed. The same calculation shows thgt|it> |7J|ql1 then  [8]
|7/| < |h|, meaning that the value df will drop until it en- [6]

ters the range (29). Now let us estimate the maximum number
of memory cells which are needed in order to accommodate all[
such values of.. (The following estimates can be easily im-
proved.) The worst possible case occurs wher;a#: a; = 0

except for the last possible term, (s 4q—» = 10r¢,q, = 1)in ~ [8l
which case 9]
ho= g =2 = gprHt=2
[10]
Then (29) gives
(11]

L 1
72 (| — 1) < 3 lal

Consequently, it is chosen so that (28) holds then no Memoryj; 5
overflow will occur. O
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