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Fibonacci and Galois Representations of
Feedback-With-Carry Shift Registers
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Abstract—A feedback-with-carry shift register (FCSR) with
“Fibonacci” architecture is a shift register provided with a small
amount of memory which is used in the feedback algorithm. Like
the linear feedback shift register (LFSR), the FCSR provides a
simple and predictable method for the fast generation of pseu-
dorandom sequences with good statistical properties and large
periods. In this paper, we describe and analyze an alternative
architecture for the FCSR which is similar to the “Galois”
architecture for the LFSR. The Galois architecture is more
efficient than the Fibonacci architecture because the feedback
computations are performed in parallel. We also describe the
output sequences generated by the-FCSR, a slight modification
of the (Fibonacci) FCSR architecture in which the feedback bit is
delayed for clock cycles before being returned to the first cell of
the shift register. We explain how these devices may be configured
so as to generate sequences with large periods. We show that the

-FCSR also admits a more efficient “Galois” architecture.

Index Terms— -FCSR, feedback with carry, feedback-with-
carry shift register (FCSR), Fibonacci, Galois, linear feedback
shift register (LFSR).

I. INTRODUCTION

PSEUDORANDOM binary sequences with various statis-
tical properties (such as high linear span, low cross-cor-

relation values, high pairwise Hamming distance) are impor-
tant in many areas of communications and computing, such
as cryptography, spread-spectrum communications, error-cor-
recting codes, and Monte Carlo integration. Linear feedback
shift registers (LFSRs) provide an economical, fast, and effi-
cient method for generating a wide variety of pseudorandom
sequences. During the last few years, the feedback-with-carry
shift register (FCSR) architectures and a simple modification,
the -FCSR architectures have been investigated as alternative
methods for the efficient generation of long pseudorandom bi-
nary sequences [1]–[3], [12], [14], [25]. The analysis of FCSR
sequences has quite a different flavor from that of LFSR se-
quences, although they share an incredible list of parallel prop-
erties (see [7], [12], [13], [15], [16]). The FCSR circuits de-
scribed in these papers resemble the “Fibonacci” configuration
of the LSFR. The current paper has three objectives:
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1) to develop and analyze the “Galois” configuration for
FCSR and -FCSR circuitry (cf. [22]);

2) to give a new elementary description for-FCSR se-
quences and to characterize the strictly periodic ones;
and

3) to formalize the notion of a mathematical “model” for a
finite-state machine with output, and to find such models
for FCSR and -FCSR generators, both in their Fibonacci
and Galois configurations.

We now describe each of these three points in greater detail.
Galois and Fibonacci Configurations:The Galois and Fi-

bonacci configurations for an LFSR are recalled in Figs. 1 and 2.
The FCSR of Fig. 3 somewhat resembles the Fibonacci repre-
sentation, and one might ask whether there is an analogous Ga-
lois representation for the same FCSR sequences. Such a rep-
resentation was first discussed in [22]. In this paper, we will
analyze the Galois representations for FCSR (and-FCSR) cir-
cuitry. It turns out that the initial loading is easier to describe in
the Galois representation. Moreover, the Galois representation
is more efficient than the Fibonacci representation since the ad-
ditions occur simultaneously (“in parallel”) and each individual
sum involves no more than 3 bits.

-FCSR Sequences:There is an enormous collection of vari-
ations on the basic FCSR architecture which have also been ana-
lyzed to varying degrees [12], [11], [14], [17]–[19]. Perhaps the
simplest of these variations is the-FCSR (Fig. 5), in which the
feedback bit is computed but is delayed for clock cycles
before being fed back. In Theorem 6.5, we explain the surprising
new result that the output of a-FCSR may be described by

(1)

where is a certain integer. (Compare this to the case of an
FCSR, for which the output sequence is always given by (1) with

. It often follows that this sequence is adecimationof the
FCSR sequence with connection integer.) This new “elemen-
tary description” does not involve algebraic number fields. The
-FCSR architecture also has a “Galois” representation which

we describe in Fig. 8 and for which we also construct models
(see later).

Mathematical Models:Let be a finite-state machine with
output. For simplicity, we assume the possible output values are

and . We say that a state of is periodic if the machine even-
tually returns to this state after finitely many iterations. Define
a modelfor to consist of a ring together with an element

, a mapping , and a correspondence be-
tween elements and periodic states of so that: a) the
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state change is given by and b) the output is given by
. Hence, for a given initial state, the output sequence of the

machine is

(2)

where corresponds to the initial state. Sometimes it
is easier to describe the correspondence above by a mapping

periodic states of . If is one to one, we say
the collection is an injectivemodel. In other cases,
the correspondence may be more easily described by a mapping

periodic states of . If is an onto mapping we
say the collection is aprojectivemodel. Ideally, we
would like or to be one-to-one correspondences, in which
case the inverse mapping can usually be described, however, it
may require a nontrivial amount of computation to do so, par-
ticularly when attempting to describe the initial state of the ma-
chine, cf. (4), (6), (10), (14). In this paper, we describe models
for FCSRs, and -FCSRs, both in their Galois and Fibonacci
configurations. In each case, we discover the surprising fact that
the models for Fibonacci configurations are injective while the
models for the Galois configurations are simpler and are projec-
tive. For comparison, in the first (purely expository) part of this
paper we quickly recall some (well-known) models for LFSRs.

Throughout this paper, denotes the integers; denotes the
rational numbers, and denotes the Galois field with ele-
ments. The multipliers, and the contents of the shift registers in
this paper are assumed to be elements of the field. However,
the same analysis applies to registers with entries inand for
this reason we do not automatically convert everyto .

II. LFSR, FIBONACCI ARCHITECTURE

The purpose of this section is to recall some well-known re-
sults concerning LFSRs, in a way which will motivate our treat-
ment of FCSRs. In the Fibonacci representation (see Fig. 1),
the register is initially loaded with bits . The
output sequence is given by the linear recurrence

(3)

for . Assume . To such an LFSR of length,
associate theconnection polynomial

where correspond to the taps on its cells. Any
infinite binary sequence may be identi-
fied with its generating function which is
an element of the ring of formal power series with co-
efficients in the integers modulo. The sequence is called the
coefficient sequence of the function . It is eventually peri-
odic if and only if is equal to the quotient of two polyno-
mials . It is strictly periodic
if and only if . Recall the following
classical result [5, Sec. 2.5, p. 30], or [20, Theorem 8.40, p. 416].

Fig. 1. Fibonacci LFSR.

Theorem 2.1:Suppose an LFSR with connection polynomial
of degree has initial loading . Set

(4)

where . Then the output sequence is the coefficient se-
quence of the function . Conversely, if

is any strictly periodic sequence, let
be its generating function. Then is the con-

nection polynomial of an LFSR which generates the sequence,
and determines the initial loading by (4).

Ring-Theoretic Model:Let be the ring of polyno-
mials in with coefficients. Let us denote the mapping

which assigns to each polynomial its constant
term by . It is a homomorphism of rings. The
connection polynomial
generates an ideal in this ring, and we consider the quotient

We assume so that, in the ring

It follows that any element may be uniquely represented
as a polynomial

of degree less than. Define the mapping

by (5)

This means that first the elementis represented by a polyno-
mial of degree less than, and then is taken to be
the constant term. (The mappingisnota ring homomorphism,
and its definition depends on this particular choice of complete
set of representatives in for the elements of , consisting
of polynomials of degree .) Note that is invertible in
with . Define a mapping

states which associates to any the state
of the shift register which is given by

for . The following is a concise statement, in the
language of models, of the discussion found in [24, Sec. 7].

Theorem 2.2:The collection is an injective
model for the LFSR with connection polynomial . Every
state of the LFSR is periodic. The mappingbetween elements
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Fig. 2. Galois LFSR.

of and states of the shift register is a one-to-one correspon-
dence such that the change of state is given by .
The output sequence of the LFSR with initial loading is
given by (2), that is, for ,

Remarks: If is irreducible and is a root of then
the mapping given by is an
isomorphism of rings, and there is a unique linear mapping

so that for all .
Hence, the output sequence is given by the well-known formula

where is determined by the initial
loading. If is a primitive polynomial then the output sequence
has maximal length and it is an-sequence.

III. LFSR, GALOIS ARCHITECTURE

In the Galois representation of Fig. 2, with each clock cycle
the output of the last cell is introduced into each of the tapped
cells simultaneously, where it is added (modulo) to the con-
tents of the preceding cell. If are the feedback
multipliers then the recurrence equations are as follows:

for

Define the connection polynomial
and assume . Let be the output sequence.

Theorem 3.1:Suppose a (Galois) LFSR with connection
polynomial has initial loading . Set

(6)

Then the output sequenceis the coefficient sequence of the
function . Conversely, if
is any strictly periodic sequence, let be
its generating function. Then is the connection polynomial
of a (Galois) LFSR which generates the sequence, and
determines the initial loading by (6).

As in (5), define by .
Assume . Define the mapping states which
associates to each state of the
shift register the following element:

Theorem 3.2:The collection forms a projective
model for the (Galois) LFSR with connection polynomial .
The mapping states is a one-to-one correspondence

Fig. 3. Fibonacci FCSR.

such that the change of state is given by . The output
sequence is given by (2), that is,

(7)

IV. FCSR, FIBONACCI ARCHITECTURE

In the FCSR architecture [12], the basic shift register is pro-
vided with a small amount of auxiliary memory which is a
nonnegative integer. The contents (or ) of the tapped cells are
addedas integersto the current contents of the memory to form
an integer sum . The parity bit is fed back into the
first cell of the shift register while the higher order bits
are retained for the new value of the memory. The output se-
quence is given by the followinglinear recurrence with carry:

(8)

which can be solved for and since . (The ini-
tial memory is .) It was shown in [12] (and is easy to
see from the preceding equations) that, for any initial nonnega-
tive memory value , the memory will decrease exponentially
until it lies within the range and will remain
in that range forever after. (Here, denotes the number of
’s in the binary expansion of the nonnegative integer.) There-

fore, memory overflow will never occur provided the FCSR is
equipped with at least memory bits (see
Fig. 3). Assume and define theconnection integer

To any infinite binary sequence one may
associate the formal power series

(9)

The set of all such power series forms a ring under the obvious
operations of addition and multiplication; this is the ring of
-adic integers (an elementary review of which is provided in

[12]). The ring contains all fractions with
, provided that is odd. The sequenceis eventually periodic

if and only if its -adic integer is a rational number, in which
case it can be expressed as such with an odd denominator. The
sequence is strictly periodic if and only if with odd
and with . (cf. [12, Theorems 2.1 and 6.1], [17], [24,
Theorem 15.5, p. 458]). In [12], we proved the following analog
of Theorem 2.1, which describes the output of an FCSR.
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Theorem 4.1:Suppose an FCSR with connection integer
of degree has initial loading and initial
memory . Set

(10)

where . Then the output sequence is the coefficient se-
quence of the -adic number . Conversely, if

is any strictly periodic sequence, let
be the corresponding-adic number. Then, is the connection
number of an FCSR which generates the sequence, anddeter-
mines the initial loading by (10).

Besides the all-zero state (thebottomstate) there is another
fixed state (thetop state): take and

where is the Hamming weight
of the binary expansion of . The output is the sequence of
all ’s. The associated-adic number is .

Ring-Theoretic Model:Take with distinguished
element . Define

by (11)

This means that first the elementis represented by a number
between and and then this number is reduced modulo.
(The mapping is not a ring homomorphism and its definition
depends on this particular choice of complete set of represen-
tatives in for the elements in , consisting of the integers
between and . This set of representatives is chosen be-
cause the-adic expansion of the resulting numbers have
strictly periodic coefficient sequences.)

Define states by assigning to any the
initial state with (for )
and with initial memory

Theorem 4.2:Let be an odd positive integer. The collec-
tion is an injective model for the FCSR with connec-
tion integer . The mapping is a one-to-one correspondence
between the elements of and the strictly periodic states
(except for the top state) such that the state change is given by

. The output sequence is given by (2)

Remarks: The fact that is a one-to-one correspondence fol-
lows from Theorem 4.1. If is prime then is a field and
its multiplicative group is cyclic. In this case, is a
generator of if and only if is a primitive root modulo
. Such a choice of gives rise to maximal length sequences, or
-sequences, which are in many ways analogous to the-se-

quences generated by an LFSR [12].
Although the mapping always gives a strictly periodic state

of the FCSR, we do not know a simple characterization of these

Fig. 4. Galois FCSR.

states. The initial loading of the register portion is simply the
lower order bits in the binary expansion of the number

(however, we do not know a similar simple formula for the initial
value of the memory). To see this, let . Then

. But so
which gives

So the lower order bits in the binary expansion of coincides
with the first bits in the -adic expansion of , which is
also the first bits to be output by the FCSR. However, these
first bits also coincide with the initial loading of the register
portion of the FCSR.

V. FCSR, GALOIS ARCHITECTURE

The Galois representation [22] for an FCSR is illustrated in
the Fig. 4.

Here, the bits are multipliers. (We assume
.) The cells denoted are the memory

(or “carry”) bits. The sign represents a full adder. At the
th adder, the following input bits are received: 1) from

the preceding cell, 2) from the feedback line, and 3)
from the memory cell. These are added to form a sum(with

). At the next clock cycle, this sum modulois
passed on to the next cell in the register, and the higher order
bit is used to replace the memory

and

In other words, the new values and are given by

for

(12)

To analyze the behavior of this circuit, define theconnection
integer

(13)

The following result is an analog of Theorem 2.1.

Theorem 5.1:Suppose an -stage (Galois)-FCSR with
connection integer has initial loading with register and
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memory contents and ,
respectively. Set

(14)

Then the output sequence of the FCSR is the coef-
ficient sequence for the-adic expansion of the rational number

. Conversely, if is any strictly periodic
sequence let be the corresponding-adic number.
Then is the connection integer of a (Galois) FCSR which gen-
erates the sequence, anddetermines the initial loading by (14).

Proof: Given and as above, let denote
the -adic integer which is represented by the output sequence.
First we claim that is divisible by (meaning that
it has no constant term). In fact

The constant term in is . However, is also
the first output bit, that is, , which verifies the claim.

Now run the shift register one step obtaining a new loading
; given by (12). Let

denote the new -adic number represented by
the output sequence of this new state; so . Define

(writing for convenience) and
calculate that and . Hence,

By the preceding claim, the constant term of vanishes as
well, which is to say that is divisible by . By induction,
we find that , and so is
divisible by for all , which is to say that it equals.

There are two stable states: the all-zero state (orbottomstate),
and thetopstate where for and for

. The output of the top state is the all-one sequence.
For any periodic state other than the top state, if then the
memory cell will eventually drop to and will remain for-
ever after. So the periodic states must satisfy whenever

. Let us say that a state satisfying this condition
is an “admissible” state. The admissible states may be thought
of as the set of all states of a Galois-FCSR in which memory
cells are provided only when the corresponding feedback tap

is nonzero.
Now we wish to describe a model for the (Galois)-FCSR.

Define and as in (11). Define
states to be the mapping which assigns to any

state ; the element ,
where is defined in (14).

Theorem 5.2:The collection is a projective
model for the Galois-FCSR with connection integer. For
any admissible initial loading, the output of the Galois-FCSR
is strictly periodic. The mapping defines an onto mapping
from the set of admissible states (except for the top state) of the
FCSR to the elements of , such that the change of state is

given by . Hence, the output sequence is given by
(2), that is,

Proof: The greatest possible value foris when all
and all the admissible in which case for all , so

So, for any admissible state, we have: . It
is easy to see that any suchmay be realized by an admissible
state, hence, the mapping is onto. If , the -adic
expansion for (which is the output sequence of the shift
register initialized at any admissible state) is strictly periodic.
Reducing (13) modulo and multiplying by gives

(15)

so

which describes the change of state.

Corollary 5.3: There is an onto function from the set of pe-
riodic (admissible) states of the Galois-FCSR with connection
integer to the set of periodic states of the Fibonacci-FCSR with
connection integer such that corresponding states produce the
same output.

Remark: We do not know a simple formula describing the
contents of the th cell as a function of time. Despite The-
orem 5.2, we do not know how to intrinsically characterize the
periodic states of the Galois-FCSR, (other than to say that they
must be admissible states) because there may be several dif-
ferent (admissible) states corresponding to the same number.
However, there is only one way to obtain (namely, by

and all other ’s and ’s are ), so this state is neces-
sarily a periodic state. If is primitive modulo , then all the
other periodic states are obtained from this one by running the
shift register.

VI. -FCSR, FIBONACCI ARCHITECTURE

The -FCSR architecture was introduced in [12] and [14],
where its basic properties are listed (see also [17]).-FCSR se-
quences are important because they exhibit approximately uni-
form distribution of -tuples for all (where is easily
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determined from the parameters of the register) [8]. In this sec-
tion, we recall the operation of these shift registers and summa-
rize the results from [6] which explain how to design them so as
to give predictable outputs. The operation of a-FCSR is sim-
ilar to that of the FCSR except that each “carried” bit is delayed

steps before being added.
This is best understood using the ring which consists

of polynomials in (with integer coefficients), subject to the
formal relation . The ring contains the integers
and it can be embedded as a subring of the real numbersby
mapping to the positive . However, there are also other
embeddings into the complex numbers. Any may be
uniquely expressed as a polynomial

with by making use of the equation whenever
higher powers of are encountered. Let us say that such an
element is nonnegativeif each . (This is stronger than
saying that the associated real number is nonnegative.) Using the
binary expansion of each, we see that a nonnegative element

can be uniquely expressed as a polynomial

with coefficients. Addition and multiplication preserve
nonnegative elements, and are performed in the obvious way,
except that carried bits are advancedsteps because

so it is best not to think of these coefficients as lying in the field
. The operations and make sense in this ring.

If then

and we will say that is odd if . (For example,
so .) Similarly

A -FCSR consists of a shift register with cell contents
, feedback connections , and

memory cells , each of which is a or . We
represent the memory by the nonnegative element

Associated to the feedback connections we define the connec-
tion “number”

(16)

Then is odd, and is nonnegative. The output
sequence is given by thelinear recurrence with delayed carry

(17)

with initial memory . This equation can be solved
for and since .

Fig. 5. Fibonaccid-FCSR.

Fig. 6. AZZZ[�] adder ford = 2.

To be explicit, the operation of the-FCSR may be described
as follows: Form the integer sum . Write

as a nonnegative element of , that is, as a polynomial
with coefficients in , using . (It is this fact which
gives rise to the delay by steps in the carry operation.) Using
addition in form the (nonnegative) sum .
Shift the contents of the register cells to the right by one step.
Place the bit in the leftmost register cell. Re-
place the memory by . Thus, the
new values are related to the old values

by for and

which shows that the output is given by (17).
Implementation:The block diagram for a -FCSR is the

same as that of an FCSR, but since addition in is needed, it
is slightly more convenient to break the addition into two parts
as in Fig. 5. The part labeled adds the inputs as integers
and outputs the result according to its binary expansion. The
part labeled is an adder in .

For , the adder , together with the memory
may be described as follows. Each symbolrepresents a full
adder with three inputs, cascaded so as to form a ripple counter.
With each clock cycle, the current contentsof the memory
is added to the integer which is presented at the input to the
adder according to its binary expansion. The resultis returned
to the memory (which involves modifying only the even-num-
bered memory cells). Then, the contents of the memory are
shifted one step to the right, thus outputting the lowest order
bit and retaining the higher order bits (with
the highest order bit in the following example set to).

Let denote the number of nonzero’s involved in
the feedback. It is easy to see from Fig. 6 (or from the change of
state equations above) that the memory will decrease until

for all , so no memory overflow
will occur provided the shift register is provided with memory
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cells where . The
deeper analysis of a-FCSR is completely parallel to that of an
FCSR, however, some less familiar mathematics is needed.

Let be the ring of “ -adic integers” consisting of all
formal power series in

(18)

with . Addition and multiplication are performed in
the obvious way, using the relation whenever necessary;
in particular, contains the -adic integers . Since

we see that also contains . In fact, contains all frac-
tions with provided that is odd (meaning
that ), in which case we shall refer to (18) as
“the” -adic expansion of . Such fractions are precisely the
elements of whose -adic expansions are eventually peri-
odic. The following result was proven in [14].

Theorem 6.1:Suppose a -stage (Fibonacci) -FCSR with
connection integer is initially loaded with register contents

and memory . Set and

Then the output sequence of the-FCSR is the coefficient se-
quence for the -adic expansion of the fraction .
Conversely, if is a strictly periodic binary
sequence with corresponding-adic integer

and if is nonnegative, thenis the connection number
of a -FCSR which generates this sequence.

A surprising consequence is that not every periodic binary
sequence may be realized as the output sequence of a-FCSR:
only those for which is nonnegative. This deficiency (if
indeed it is such) can be rectified by considering a “polarized”
-FCSR in which the entries are permitted to take values

in . It is easy to see that no “overflow” will ever occur
and thatany may be realized as the connection number
of such a polarized-FCSR.

Strictly Periodic -adic Expansions:One of the main results
in [6] is a characterization of the strictly periodic sequences.
Let be the -dimensional vectorspace (over) with basis

. In fact, it is the fraction field of
and it is a totally ramified degree extension of the rational
numbers [9, Ch. 12]. However, we will not need these facts in
this paper. Let be the vector-space isomorphism
given by

Then consists of all points in with integer coordi-
nates, so we will refer to as the set oflattice pointsin .

Fix . Recall that thenorm of is the deter-
minant of the action given by multiplication byon the vector
space . With respect to the above basis, the matrix for mul-
tiplication by may be easily calculated. For and

, and for and , these ma-
trices are, respectively,

and

The matrix for arbitrary is similar. It follows (by reducing this
matrix modulo ) that is odd if and only if its norm

is odd. Let denote the ideal in generated
by and let denote the quotient ring.
The number of elements in the ring is . If ,
we denote by its image in . If is odd then is
invertible in .

If is a finite collection of linearly
independent vectors in Euclidean space, let us denote the
(half-open)parallelepiped spanned by to be the set

(19)

Let

be the set of lattice points in the parallelepiped (in ) which
is spanned by the set of vectors . In
[6], we proved the following result.

Theorem 6.2:Suppose that and that is odd.
Then the -adic expansion of the fraction is strictly
periodic if and only if . Moreover, the mapping

induces a one-to-one correspondence

(20)

Remarks: Theorem 6.2 says that the setis a complete set
of representatives for the elements of . A face
of the parallelepiped (19) is the set of points obtained by set-
ting some of the coefficients . The set of lattice points

in any face corresponds under (20) to an additive sub-
group of . If is a prime field then there are no
additive subgroups other than , in which case all the nonzero
elements of lie in the interior of the parallelepiped.

Ring-Theoretic Model:Take . Using the set
we can define a mapping

by (21)

This means that must first be replaced by the corresponding el-
ement in the complete set of representatives, then this element
is reduced modulo to obtain an element of .
Define states to be the mapping which associates
to the initial loading for

and the initial memory

Theorem 6.3:Let and suppose is nonnega-
tive. Then the collection is an injective model for the
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-FCSR with connection number. The state change is given by
and the output sequence is

(22)

This result (whose proof may be found in [6] or [14]) has the dis-
advantage that computations in the somewhat mysterious ring

may be rather messy. However, in certain cases it
is possible to identify this ring with the much simpler object

. In [6] we proved the following lemma.

Lemma 6.4:Suppose is odd and that
is prime. Then the natural composition
induces an isomorphism of rings

(23)

It follows that the output sequence (22) can be described as
(up to a shift) for some ,

not necessarily equal to. In the next paragraph, we determine
this “base” and the shift.

Let denote the inverse to the isomor-
phism (23). It is completely determined by the single integer

because for any integers(with ), the
mapping satisfies

The prime number may be considered as an element of
and as such, it turns out to be divisible by(see [6]). Define

by expanding

(24)

The following result is proven in [6].

Theorem 6.5:Let . Suppose that
is an odd prime number and that lies in the strictly
periodic region described in Theorem 6.2. Let . Let

where is defined by (24). Then, for
all , the following equation holds:

Thus, the output sequence (22) may be simply described as
. If then we arrive at

the surprising conclusion that the-FCSR sequence is the
-fold decimation of the (ordinary) FCSR sequence with con-

nection integer . The numbers and can be computed di-
rectly from knowledge of . For and these compu-
tations give Table I

An Example: Consider the -FCSR with and
. The shift register is four-stage with feedback coefficients

, (so that ). Then
which is prime, so the parallelogram contains 16

elements in its interior; see Fig. 7.
The isomorphism maps to ,

which is primitive modulo , so we obtain a maximal length
output sequence. Each element in has a unique rep-
resentative in the above parallelogram; these representatives

TABLE I
PARAMETERS OFZZZ[�]

Fig. 7. Parallelogram forq = 5 + 2�.

TABLE II
MODEL STATES FORq = 5 + 2�

are listed in the second column of Table II. Note that the second
column modulo coincides with the third column moduloas
predicted by the theorem.

VII. -FCSR, GALOIS ARCHITECTURE

In the Galois architecture for a-FCSR, the carried bits are
delayed steps before being fed back, so the output of the
memory or “carry” cell is fed into the register cell .
(Recall that the register cells are numbered starting from.)
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Fig. 8. Galois2-FCSR.

If there are feedback multipliers and carry cells
then register cells are evi-

dently needed since will feed into . This is illustrated
in Fig. 8 for . If , the situation is more complicated
and an indeterminate numberof “additional” memory cells

are needed, which feed into“additional” reg-
ister cells . It is not at all obvious at first
glance whether the amountof extra memory can be chosen to
be finite without incurring a memory overflow during the op-
eration of the shift register. However (see “Memory Considera-
tions” subsection in the following text), we show that this is in-
deed the case and henceforth we suppose thathas been chosen
as described there, to be sufficiently large so as to avoid any
memory overflow. Suppose a general (Galois)-FCSR is ini-
tially loaded with given values , , , ; , ,

, . The register operates as follows. (To simplify nota-
tion, set for , set for and also
for , and set for .)
For each (with ) form theintegersum

; it is between and . The new values
are given by and , that is,

for (25)

(Note, for example, that these equations say .)
Assume and define the connection number

(26)

Theorem 7.1:Suppose a Galois-FCSR with connection
number has initial loading ;

. Set

(27)

If is sufficiently large (as described in “Memory Consid-
erations” below) then no memory overflow will occur, and
the output sequence coincides with the

-adic expansion of the fraction . Conversely, if
is a periodic sequence with corresponding

-adic number and if is nonnegative, then is
the connection number of a Galois-FCSR which generates
the sequence.

Proof: Given and as above, let denote
the -adic number which is represented by the output sequence.
Compute

But since this is the first bit to be output from the shift
register, hence the quantity has no constant term.

Now run the shift register one step, obtaining a shifted output
sequence , a corresponding-adic number , a new
loading ; given by (25), and
hence a new . Compute that and

hence

By the same argument as above, the constant term of
vanishes as well, hence is divisible by . By induction
we find that is divisible by for all , which is to
say, . This proves the first statement. The converse
is similar. The bound on the memory is proven below under
“memory considerations.”

Ring-Theoretic Model:Consider a Galois -FCSR with
connection number . Let and define

as in (21). Define states to
be the mapping which assigns to any statethe element

of (27). The proof of the following
theorem is identical to that of Theorem 5.2.

Theorem 7.2:The collection is a projective
model for the Galois -FCSR with connection number. The
change of state is given by . Hence, the output
sequence is

Corollary 7.3: There is a mapping from the set of periodic
states of the Fibonacci-FCSR with connection number to
the set of periodic states of the Galois-FCSR with connection
number so that corresponding states produce the same output.

Of course, Theorem 6.5 also applies in the Galois case.

Corollary 7.4: Suppose a Galois-FCSR with connection
number
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is chosen such that is a prime number. Sup-
pose the initial loading is chosen so that (27) lies in the
set of strictly periodic elements (Theorem 6.2). Then the output
sequence of the -FCSR is given by

where and .
Memory Considerations:In this subsection, we make use

of some ideas from [17]. Consider a (Galois)-FCSR as de-
scribed at the beginning of this section, with feedback multi-
pliers , memory cells , and register
cells . Let and define by
(26).

Let us denote the standard embedding (which
maps to the positive ) by . Recall that an element

is positiveif each of the coefficients
. This implies (but is not implied by) that . For

a given positive-real number, there may be infinitely many
elements such that , however, there are only
finitely many positivesuch elements . In this subsection we
show that if is chosen so that

(28)

then no memory overflow will occur and, in fact, for any initial
loading of the shift register the memory will decrease until the
value (27) of satisfies

(29)

and it will remain within this range thereafter. (Here, as in [17],
the fact that is crucial.)

First suppose the initial loading
satisfies (29). Then the same will be true for every

subsequent state of the shift register. Let ;
denote the next state of the shift register with

corresponding value . Then (as in the
proof above) so

as claimed. The same calculation shows that if then
, meaning that the value of will drop until it en-

ters the range (29). Now let us estimate the maximum number
of memory cells which are needed in order to accommodate all
such values of . (The following estimates can be easily im-
proved.) The worst possible case occurs when all
except for the last possible term ( or ) in
which case

Then (29) gives

Consequently, if is chosen so that (28) holds then no memory
overflow will occur.

A deeper result of Klapper and Xu [17] states that even if
negative coefficients are permitted in the register contents, the
memory will nevertheless remain bounded.

Our understanding of the Galois-FCSR architecture still
leaves much to be desired. We do not know how to intrinsically
characterize the strictly periodic states. We do not even know
how to find a class of “admissible” states for which the output
is strictly periodic (as we did in the case of the FCSR). We do
not know an optimal estimate on the amount of memory needed
for the -FCSR (except in the case ). We do not know how
to describe the contents of each cell as a function of time.

VIII. C ONCLUSION

We have found a “Galois” representation for FCSR and
-FCSR pseudorandom sequence generators. We have con-

structed “models” for the behavior of FCSR and-FCSR
generators, both in their Fibonacci and Galois representa-
tions. In each case, we find the Galois representation to be
simpler, especially with regard to the computation of the
initial loading of the register. Moreover, the Galois circuitry
is faster since the arithmetic operations occur in parallel. We
have analyzed the operation of the-FCSR circuit using some
rather sophisticated number theory, and have shown how it
can be configured so as to give output sequences of the form

.

ACKNOWLEDGMENT

The authors would like to thank the Institute for Advanced
Study in Princeton, NJ for its hospitality and support while this
paper was being prepared.

REFERENCES

[1] R. Couture and P. L’Ecuyer, “On the lattice structure of certain linear
congruential sequences related to AWC/SWB generators,”Math.
Comp., vol. 62, pp. 799–808, 1994.

[2] , “Distribution properties of multiply-with-carry random number
generators,”Math. Comp., vol. 66, pp. 591–607, 1997.

[3] T. W. Cusick, C. Ding, and A. Renvall,Stream Ciphers and Number
Theory. Amsterdam, The Netherlands: Elsevier/North-Holland, 1998.

[4] L. E. Dickson,History of the Theory of Numbers. Washington, DC:
Carnegie Inst., 1919, vol. 1. Reprinted by Chelsea and published by
American Mathematical Society, 1966.

[5] S. Golomb,Shift Register Sequences. Laguna Hills, CA: Aegean Park,
1982.

[6] M. Goresky and A. Klapper, “Periodicity and arithmetic correlations of
algebraic feedback shift register sequences over ramified extensions of
the rationals,” preprint.

[7] M. Goresky, A. M. Klapper, and L. Washington, “Fourier transforms
and the 2-adic span of periodic binary sequences,”IEEE Trans. Inform.
Theory, vol. 46, pp. 687–691, Mar. 2000.

[8] M. Goresky and A. Klapper, “Distributional properties ofd-FCSR se-
quences,” manuscript, to be published.

[9] K. Ireland and M. Rosen, “A classical introduction to modern
number theory,” in Graduate Texts in Mathematics. New York:
Springer-Verlag, 1990, vol. 84.

[10] E. Key, “An analysis of the structure and complexity of nonlinear bi-
nary sequence generators,”IEEE Trans. Inform. Theory, vol. IT-22, pp.
732–736, Nov. 1976.

[11] A. Klapper, “Feedback with carry shift registers over finite fields,”
in Proceedings of Leuven Algorithms Workshop (Lecture Notes in
Computer Science). New York: Springer-Verlag, 1994, vol. 1008, pp.
170–178.

[12] A. Klapper and M. Goresky, “Feedback shift registers, 2-adic span, and
combiners with memory,”J. Cryptogr., vol. 10, pp. 111–147, 1997.



2836 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 11, NOVEMBER 2002

[13] M. Goresky and A. M. Klapper, “Arithmetic crosscorrelation of feed-
back with carry shift regiseter sequences,”IEEE Trans. Inform. Theory,
vol. 43, pp. 1342–1346, July 1997.

[14] , “Feedback registers based on ramified extensions of the 2-adic
numbers,” inAdvances in Cryptology—Eurocrypt 1994 (Lecture Notes
in Computer Science). New York: Springer Verlag, 1994, vol. 718, pp.
215–222.

[15] , “Large period nearly de Bruijn sequences,” inAdvances in Cryp-
tology—Eurocrypt 1996 (Lecture Notes in Computer Science). New
York: Springer Verlag, 1995, vol. 921, pp. 263–273.

[16] , “Cryptanalysis based on 2-adic rational approximation,” in
Advances in Cryptology—Crypto ’95 (Lecture Notes in Computer
Science). New York: Springer Verlag, 1995, vol. 963, pp. 262–273.

[17] A. Klapper and J. Xu, “Algebraic feedback shift registers,”Theor. Comp.
Sci., vol. 226, pp. 61–93, 1999.

[18] , “Feedback with carry shift registers overZZZ=(N),” in Proc. Int.
Conf. Sequences and Their Applications, Singapore, Dec. 1998. New
York: Springer-Verlag, to be published.

[19] , “Register synthesis for algebraic feedback shift registers based on
nonprimes,” manuscript, submitted for publication.

[20] R. Lidl and H. Niederreiter,Finite Fields Encyclopedia of Mathe-
matics. Cambridge, U.K.: Cambridge Univ. Press, 1983, vol. 20.

[21] R. McEliece, Finite Fields for Computer Scientists and Engi-
neers. Boston, MA: Kluwer Academic, 1987.

[22] J. Noras, “Fast pseudorandom sequence generators: Linear feedback
shift registers, cellular automata, and carry feedback shift registers,”
Univ. Bradford Elec. Eng. Dept., Bradford, U.K., Rep. 94, 1997.

[23] W. W. Peterson, “Encoding and error-correction procedure for the
Bose–Chaudhuri codes,”IRE Trans. Inform. Theory, vol. IT-6, pp.
459–470, Sept. 1960.

[24] W. W. Peterson and E. J. Weldon, Jr.,Error-Correcting Codes, 2nd
ed. Cambridge, MA: MIT Press, 1972.

[25] B. Schneier,Applied Cryptography, 2nd ed. New York: Wiley, 1996.
[26] M. Simon, J. Omura, R. Scholtz, and B. Levitt,Spread Spectrum Com-

munications Handbook, 2nd ed. New York: McGraw-Hill, 1994.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


